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Message from the General Chairs

The 2008 International Conference on Distributed Computing and Network-
ing (ICDCN 2008) was the ninth event in this series. This event, formerly
known as IWDC (International Workshop on Distributed Computing), became
an international conference in 2007, and it was renamed International Con-
ference on Distributed Computing and Networking to remark the growth in
scope, quality and visibility and the increasing relevance of networking research.
Over the years, ICDCN has become a leading forum for disseminating the latest
research results in distributed computing and networks. This year’s conference
brought together worldwide researchers in Kolkata (India), during January 5–8,
2008, to present and discuss a wide variety of aspects such as networks, systems,
algorithms and applications.

The program of the conference lasted four days and included, in addition
to a high-quality technical program, four tutorials giving young researchers and
students an excellent opportunity to learn about the hottest research areas in
wireless networking, complex systems and high-performance computing.

A conference of this magnitude would not have been possible without the
hard and excellent work of all the members of the Organizing Committee. Our
special thanks are due to Prasad Jayanti and C. Siva Ram Murthy (Program
Co-chairs) and to Mainak Chatterjee (Program Vice Chair), for coordinating
and leading the effort of the Program Committee culminating in an excellent
technical program. We are grateful to the Keynote Chair, Sajal K. Das, for
arranging three high-quality keynote talks by eminent leaders in the field: Roger
Watthenhofer (ETH Zurich), Jie Wu (NSF and Florida Atlantic University), and
Sankar Kumar Pal (Indian Statistical Institute, Kolkata). We would also like to
express our appreciation to the Tutorial Co-chairs, Sajal K. Das and Sarmistha
Neogy, and to the Panel Chair, Kalyan Basu.

We are indebted to all the other members of the Organizing Committee for
their excellent work. Atal Chaudhuri (Organizing Chair) and Subhadip Basu
and Nibaran Das (Organizing Vice Chairs) coordinated the local arrangements.
Shrisha Rao and Sanjoy K. Saha (Publication Co-chairs) managed the publica-
tion of the conference proceedings. We also take this opportunity to acknowledge
the contribution to the conference’s success of the Registration Chair, Mridul S.
Barik, and of the Finance Chair Salil K. Sanyal.

Last but not least, we extend our heartfelt thanks to the authors, reviewers
and participants of the conference, for their vital contribution to the success of
this conference.

January 2008 Marco Conti
Pradip K. Das
Nicola Santoro



Message from the Technical Program Chairs

Welcome to the Proceedings of the Ninth International Conference on Dis-
tributed Computing and Networking (ICDCN) 2008! This annual event started
off nine years ago as a small workshop for distributed computing researchers
in India, and has gradually matured into a true international conference, while
simultaneously widening its scope to cover most aspects of distributed computing
and networking.

We received 185 submissions from all over the world, including Australia,
Bangladesh, Brazil, Canada, China, France, Greece, Iran, Israel, Italy, Malaysia,
Poland, Singapore, South Africa, South Korea, Spain, Switzerland, Tunisia,
United Kingdom, and United States, besides India, the host country. The sub-
missions were read and evaluated by the Program Committee, which consisted
of 25 members for the Distributed Computing Track and 34 members for the
Networking Track, with the additional help of external reviewers. The Program
Committee selected 30 regular papers and 27 short papers for inclusion in the
proceedings and presentation at the conference.

We were fortunate to have several distinguished scientists as keynote and
invited speakers. Roger Wattenhofer (ETH, Zurich) and Jie Wu (Florida Atlantic
University and NSF) delivered the keynote address, and Sudhir Dhawan (IBM
India) and Sushil Prasad (Georgia State University) were the invited speakers.
Sankar Pal from the Indian Statistical Institute, Kolkata, delivered the A.K.
Choudhury Memorial talk. By inviting these speakers to contribute an article
to the proceedings, we ensured that most of the content of these valuable talks
appeared in print in this volume.

The main conference program was preceded by a day of tutorial presen-
tations. We had four tutorials, presented by Sunghyun Choi (Seoul National
University) on “High-Speed WLAN and Wireless Mesh,” Vipin Chaudhary and
John Paul Walters (University of Buffalo) on “Fault-Tolerant High Performance
Computing,” Romit Roy Choudhury (Duke University) on “Exploiting Smart
Antennas,” and Niloy Ganguly (Indian Institute of Technology, Kharagpur) on
“Complex Network Theory.”

We thank all authors for their interest in ICDCN 2008, and the Program
Committee members and external reviewers for their careful reviews despite
a tight schedule. We used the EasyChair system to handle the submissions,
reviews, discussions, and notifications. The system was easy to use and very
helpful.

We hope that you will find the ICDCN 2008 proceedings to be technically
rewarding.

January 2008 Mainak Chatterjee
Prasad Jayanti

C. Siva Ram Murthy
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Rough-Fuzzy Knowledge Encoding and Uncertainty 
Analysis: Relevance in Data Mining 

Sankar K. Pal 
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Abstract. Data mining and knowledge discovery is described from pattern rec-
ognition point of view along with the relevance of soft computing. The concept 
of computational theory of perceptions (CTP), its characteristics and the rela-
tion with fuzzy-granulation (f-granulation) are explained. Role of f-granulation 
in machine and human intelligence, and its modeling through rough-fuzzy inte-
gration are discussed. Three examples of synergistic integration, e.g., rough-
fuzzy case generation, rough-fuzzy c-means and rough-fuzzy c-medoids are  
explained with their merits and role of fuzzy granular computation. Superiority, 
in terms of performance and computation time, is illustrated for the tasks of 
case generation (mining) in large scale case based reasoning systems, segment-
ing brain MR images, and analyzing protein sequences.  

Keywords: soft computing, fuzzy granulation, rough-fuzzy computing, bioin-
formatics, MR image segmentation, case based reasoning. 

1   Introduction 

In recent years, the rapid advances being made in computer technology have ensured 
that large sections of the world population have been able to gain easy access to com-
puters on account of falling costs worldwide, and their use is now commonplace in all 
walks of life. Government agencies, scientific, business and commercial organizations 
are routinely using computers not just for computational purposes but also for storage, 
in massive databases, of the immense volumes of data that they routinely generate, or 
require from other sources. Large-scale computer networking has ensured that such 
data has become accessible to more and more people. In other words, we are in the 
midst of an information explosion, and there is urgent need for methodologies that 
will help us bring some semblance of order into the phenomenal volumes of data that 
can readily be accessed by us with a few clicks of the keys of our computer keyboard. 
Traditional statistical data summarization and database management techniques are 
just not adequate for handling data on this scale, and for extracting intelligently,  
information or, rather, knowledge that may be useful for exploring the domain in 
question or the phenomena responsible for the data, and providing support to deci-
sion-making processes. This quest had thrown up some new phrases, for example, 
data mining [1, 2] and knowledge discovery in databases (KDD).  
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Fig. 1. Block diagram for knowledge discovery in databases [3] 

Data mining is that part of knowledge discovery which deals with the process of 
identifying valid, novel, potentially useful, and ultimately understandable patterns in 
data, and excludes the knowledge interpretation part of KDD (Fig 1). From pattern 
recognition (PR) point of view, data mining can be viewed as applying PR and ma-
chine learning principles in the context of voluminous, possibly heterogeneous data 
sets. Furthermore, soft computing-based (involving fuzzy sets, neural networks, ge-
netic algorithms and rough sets) PR methodologies and machine learning techniques 
hold great promise for data mining. The motivation for this is provided by their ability 
to handle imprecision, vagueness, uncertainty, approximate reasoning and partial truth 
and lead to tractability, robustness and low-cost solutions [4]. An excellent survey 
demonstrating the significance of soft computing tools in data mining problem is pro-
vided by Mitra et al. [5]. Some of the challenges arising out of those posed by mas-
sive data and high dimensionality, nonstandard and incomplete data, and over-fitting 
problems deal mostly with issues like user interaction, use of prior knowledge, as-
sessment of statistical significance, learning from mixed media data, management of 
changing (dynamic) data and knowledge, integration of different classical and modern 
soft computing tools, and making knowledge discovery more understandable to  
humans by using linguistic rules, visualization, etc. Recently, a detailed review ex-
plaining the state of the art and the future directions for web mining research in soft 
computing framework is provided by Pal et al. [6]. One may note that web mining, al-
though considered to be an application area of data mining on the WWW, demands a 
separate discipline of research. The reason is that web mining has its own characteris-
tic problems (e.g., page ranking, personalization), because of the typical nature of the 
data, components involved and tasks to be performed, which can not be usually han-
dled within the conventional framework of data mining and analysis. Moreover, being 
an interactive medium, human interface is a key component of most web applications. 

Bioinformatics which can be viewed as a discipline of using computational meth-
ods to make biological discoveries [7] has recently been considered as another impor-
tant candidate for data mining applications. It is an interdisciplinary field mainly  
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involving biology, computer science, mathematics and statistics to analyze biological 
sequence data, genome content and arrangement, and to predict the function and 
structure of macromolecules. The ultimate goal is to enable the discovery of new bio-
logical insights as well as to create a global perspective from which unifying princi-
ples in biology can be derived. There are three major sub-disciplines dealing with the 
following three tasks in bioinformatics: 

a) Development of new algorithms and models to assess different relationships 
among the members of a large biological data set;  

b) Analysis and interpretation of various types of data including nucleotide and 
amino acid sequences, protein domains, and protein structures; and 

c) Development and implementation of tools that enable efficient access and 
management of different types of information.   

First one concerns with the mathematical and computational aspects, while the 
other two are related to the biological and data base aspects respectively. Data analy-
sis tools used earlier in bioinformatics were mainly based on statistical techniques like 
regression and estimation. With the need of handling large heterogeneous data sets in 
biology in a robust and computationally efficient manner, soft computing, which pro-
vides machinery for handling uncertainty, learning and adaptation with massive paral-
lelism, and powerful search and imprecise reasoning, has recently gained the attention 
of researchers for their efficient mining.  

While talking about pattern recognition and data mining in the 21st century, it will 
remain incomplete without the mention of the Computational Theory of Perceptions 
(CTP), explained by Zadeh [8, 9], which has a significant role in the said tasks. In the 
following section we discuss its basic concepts and features, and relation with soft 
computing. 

The organization of the paper is as follows. Section 2 introduces the basic notions 
of computational theory of perceptions and f-granulation, while Section 3 presents 
rough-fuzzy approach to granular computation, in general. Section 4 explains the ap-
plication of rough-fuzzy granulation in case based reasoning. Sections 5 and 6 dem-
onstrate the concept of rough-fuzzy clustering and their key features with applications 
to segmenting brain MR images and analyzing protein sequence. Concluding remarks 
are given in Section 7. 

2   Computational Theory of Perceptions and F-Granulation 

Computational theory of perceptions (CTP) [8, 9] is inspired by the remarkable hu-
man capability to perform a wide variety of physical and mental tasks, including rec-
ognition tasks, without any measurements and any computations. Typical everyday 
examples of such tasks are parking a car, driving in city traffic, cooking meal, under-
standing speech, and recognizing similarities. This capability is due to the crucial 
ability of human brain to manipulate perceptions of time, distance, force, direction, 
shape, color, taste, number, intent, likelihood, and truth, among others. 

Recognition and perception are closely related. In a fundamental way, a recogni-
tion process may be viewed as a sequence of decisions. Decisions are based on  
information. In most realistic settings, decision-relevant information is a mixture of 
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measurements and perceptions; e.g., the car is six year old but looks almost new. An 
essential difference between measurement and perception is that in general, measure-
ments are crisp, while perceptions are fuzzy. In existing theories, perceptions are  
converted into measurements, but such conversions in many cases, are infeasible, un-
realistic or counterproductive. An alternative, suggested by the CTP, is to convert 
perceptions into propositions expressed in a natural language, e.g., it is a warm day, 
he is very honest, it is very unlikely that there will be a significant increase in the 
price of oil in the near future.  

Perceptions are intrinsically imprecise. More specifically, perceptions are f-
granular, that is, both fuzzy and granular, with a granule being a clump of elements of 
a class that are drawn together by indistinguishability, similarity, proximity or func-
tionality. For example, a perception of height can be described as very tall, tall, mid-
dle, short, with very tall, tall, and so on constituting the granules of the variable 
‘height’. F-granularity of perceptions reflects the finite ability of sensory organs and, 
ultimately, the brain, to resolve detail and store information. In effect, f-granulation is 
a human way of achieving data compression. It may be mentioned here that although 
information granulation in which the granules are crisp, i.e., c-granular, plays key 
roles in both human and machine intelligence, it fails to reflect the fact that, in much, 
perhaps most, of human reasoning and concept formation the granules are fuzzy  
(f-granular) rather than crisp. In this respect, generality increases as the information 
ranges from singular (age: 22 yrs), c-granular (age: 20-30 yrs) to f-granular (age: 
“young”). It means CTP has, in principle, higher degree of generality than qualitative 
reasoning and qualitative process theory in AI [10, 11]. The types of problems that 
fall under the scope of CTP typically include: perception based function modeling, 
perception based system modeling, perception based time series analysis, solution of 
perception based equations, and computation with perception based probabilities 
where perceptions are described as a collection of different linguistic if-then rules. 

F-granularity of perceptions puts them well beyond the meaning representation ca-
pabilities of predicate logic and other available meaning representation methods. In 
CTP, meaning representation is based on the use of so called constraint-centered se-
mantics, and reasoning with perceptions is carried out by goal-directed propagation of 
generalized constraints. In this way, the CTP adds to existing theories the capability to 
operate on and reason with perception-based information. 

This capability is already provided, to an extent, by fuzzy logic and, in particular, 
by the concept of a linguistic variable and the calculus of fuzzy if-then rules. The CTP 
extends this capability much further and in new directions. In application to pattern 
recognition and data mining, the CTP opens the door to a much wider and more sys-
tematic use of natural languages in the description of patterns, classes, perceptions 
and methods of recognition, organization, and knowledge discovery. Upgrading a 
search engine to a question- answering system is another prospective candidate in 
web mining for CTP application. However, one may note that dealing with percep-
tion-based information is more complex and more effort-intensive than dealing with 
measurement-based information, and this complexity is the price that has to be paid to 
achieve superiority.  



 Rough-Fuzzy Knowledge Encoding and Uncertainty Analysis 5 

 

3   Granular Computation and Rough-Fuzzy Approach 

Rough set theory [12] provides an effective means for analysis of data by synthesizing 
or constructing approximations (upper and lower) of set concepts from the acquired 
data. The key notions here are those of “information granule” and “reducts”. Informa-
tion granule formalizes the concept of finite precision representation of objects in real 
life situation, and reducts represent the core of an information system (both in terms 
of objects and features) in a granular universe. Granular computing refers to that 
where computation and operations are performed on information granules (clump of 
similar objects or points). Therefore, it leads to have both data compression and gain 
in computation time, and finds wide applications. An important use of rough set the-
ory and granular computing in data mining has been in generating logical rules for 
classification and association. These logical rules correspond to different important 
regions of the feature space, which represent data clusters. 

For the past few years, rough set theory and granular computation has proven to be 
another soft computing tool which, in various synergistic combinations with fuzzy 
logic, artificial neural networks and genetic algorithms, provides a stronger frame-
work to achieve tractability, robustness, low cost solution and close resembles with 
human like decision making. For example, rough-fuzzy integration can be considered 
as a way of emulating the basis of f-granulation in CTP, where perceptions have fuzzy 
boundaries and granular attribute values. Similarly, rough neural synergistic integra-
tion helps in extracting crude domain knowledge in the form of rules for describing 
different concepts/classes, and then encoding them as network parameters; thereby 
constituting the initial knowledge base network for efficient learning. Since in granu-
lar computing computations/operations are performed on granules (clump of similar 
objects or points), rather than on the individual data points, the computation time is 
greatly reduced. The results on these investigations, both theory and real life applica-
tions, are being available in different journals and conference proceedings. Some spe-
cial issues and edited volumes have also come out [13-15]. 

4   Rough-Fuzzy Granulation and Case Based Reasoning 

Case based reasoning (CBR) [16], which is a novel Artificial Intelligence (AI) 
problem-solving paradigm, involves adaptation of old solutions to meet new de-
mands, explanation of new situations using old instances (called cases), and  
performance of reasoning from precedence to interpret new problems. It has a sig-
nificant role to play in today’s pattern recognition and data mining applications in-
volving CTP, particularly when the evidence is sparse. The significance of soft 
computing to CBR problems has been adequately explained in a recent book by Pal, 
Dillon and Yeung [17] and Pal and Shiu [18]. In this section we demonstrate an ex-
ample [19] of using the concept of f-granulation, through rough-fuzzy computing, 
for performing an important task, namely, case generation, in large scale CBR  
systems. 
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A case may be defined as a contextualized piece of knowledge representing an evi-
dence that teaches a lesson fundamental to achieving goals of the system. While case 
selection deals with selecting informative prototypes from the data, case generation 
concerns with construction of ‘cases’ that need not necessarily include any of the 
given data points. For generating cases, linguistic representation of patterns is used to 
obtain a fuzzy granulation of the feature space. Rough set theory is used to generate 
dependency rules corresponding to informative regions in the granulated feature 
space. The fuzzy membership functions corresponding to the informative regions are 
stored as cases. Figure 2 shows an example of such case generation for a two dimen-
sional data having two classes. The granulated feature space has 32 = 9 granules. 
These granules of different sizes are characterized by three membership functions 
along each axis, and have ill-defined (overlapping) boundaries. Two dependency 
rules: class1 ← L1 ∧ H2 and class2 ← H1 ∧ L2 are obtained using rough set theory. The 
fuzzy membership functions, marked bold, corresponding to the attributes appearing 
in the rules for a class are stored as its case. 

Unlike the conventional case selection methods, the cases here are cluster gran-
ules and not sample points. Also, since all the original features may not be required 
to express the dependency rules, each case involves a reduced number of relevant 
features. The methodology is therefore suitable for mining data sets, large both in 
dimension and size, due to its low time requirement in case generation as well as  
retrieval.  

The aforesaid characteristics are demonstrated in Figures 3 and 4 [19] for two real 
life data sets with features 10 and 649 and number of samples 586012 and 2000 re-
spectively. Their superiority over IB3, IB4 [16] and random case selection algorithms, 
in terms of classification accuracy (with one nearest neighbor rule), case generation 
(tgen) and retrieval (tret) times, and average storage requirement (average feature) per 
case, are evident. The numbers of cases considered for comparison are 545 and 50  
respectively. 

 

Fig. 2. Rough-fuzzy case generation for a two dimensional data [15] 
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Fig. 3. Performance of different case generation schemes for the forest cover-type GIS data set 
with 7 classes, 10 features and 586012 samples 

5   Rough-Fuzzy Clustering and Segmentation of Brain MR Images 

Incorporating both fuzzy and rough sets, a new clustering algorithm is described, 
termed as rough-fuzzy c-means (RFCM). The proposed c-means adds the concept of 
fuzzy membership of fuzzy sets, and lower and upper approximations of rough sets 
into c-means algorithm. While the membership of fuzzy sets enables efficient han-
dling of overlapping partitions, the rough sets deal with uncertainty, vagueness, and 
incompleteness in class definition [26]. 

In the proposed RFCM, each cluster is represented by a centroid, a crisp lower ap-
proximation, and a fuzzy boundary. The lower approximation influences the fuzziness 
of final partition. According to the definitions of lower approximations and boundary 
of rough sets, if an object belongs to lower approximations of a cluster, then the ob-
ject does not belong to any other clusters. That is, the object is contained in that clus-
ter definitely. Thus, the weights of the objects in lower approximation of a cluster 
should be independent of other centroids and clusters, and should not be coupled with 
their similarity with respect to other centroids. Also, the objects in lower approxima-
tion of a cluster should have similar influence on the corresponding centroids and 
cluster. Whereas, if the object belongs to the boundary of a cluster, then the object 
possibly belongs to that cluster and potentially belongs to another cluster. Hence, the 
objects in boundary regions should have different influence on the centroids and clus-
ters. So, in RFCM, the membership values of objects in lower approximation are 1, 
while those in boundary region are the same as fuzzy c-means. In other word, RFCM 
first partitions the data into two classes - lower approximation and boundary. Only the 
objects in boundary are fuzzified. The new centroid is calculated based on the weight-
ing average of the crisp lower approximation and fuzzy boundary. Computation of the 
centroid is modified to include the effects of both fuzzy memberships and lower and 
upper bounds. In essence, Rough-Fuzzy clustering tends to compromise between re-
strictive (hard clustering) and descriptive (fuzzy clustering) partitions. 
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Fig. 4. Performance of different case generation schemes for the handwritten numeral recogni-
tion data set with 10 classes, 649 features and 2000 samples 

 

Fig. 5. Rough-fuzzy c-means: each cluster is represented by crisp lower approximations and 
fuzzy boundary [26] 

The effectiveness of RFCM algorithm is shown, as an example, for classification 
of Iris data set and segmentation of brain MR images. The Iris data set is a four-
dimensional data set containing 50 samples each of three types of Iris flowers. One of 
the three clusters (class 1) is well separated from the other two, while classes 2 and 3 
have some overlap.  

DB Index of Different C-Means

0

0.1

0.2

0.3

0.4

0.5

0.6

1

Different C-Means Algorithms

D
B

 In
d

e
x

FCM
FPCM
FPCM(MR)

KHCM
KFCM

KFPCM
RCM
RFCM(MBP)

RFCM

 

Dunn Index of Different C-Means

0

1

2

3

4

5

6

7

8

1

Different C-Means Algorithms

D
u

n
n

 In
d

ex

FCM

FPCM

FPCM(MR)

KHCM

KFCM

KFPCM

RCM

RFCM(MBP)

RFCM

Execution Time of Different C-Means

0

20

40

60

80

100

120

1

Different C-Means Algorithms

E
xe

cu
tio

n
 T

im
e 

(in
 m

ill
i s

ec
.)

FCM

FPCM
FPCM(MR)

KHCM

KFCM

KFPCM

RCM

RFCM(MBP)

RFCM

 

Fig. 6. Comparison of DB and Dunn Index [25], and execution time of HCM, FCM [21], RCM 
[22], RFCMMBP [23], and RFCM 
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The performance of different c-means algorithms is shown with respect to DB and 
Dunn index [25] in Fig. 6. The results reported establish the fact that RFCM provides 
best result having lowest DB index and highest Dunn index with lower execution 
time. 

For segmentation of brain MR images, 100 MR images with different sizes and 16 
bit gray levels are tested. All the MR images are collected from Advanced Medicare 
and Research Institute (AMRI), Kolkata, India. The comparative performance of dif-
ferent c-means is shown in Fig. 7 with respect to β index [24]. 
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Fig. 7. Comparison of β index [24] of HCM, FCM [21], RCM [22], RFCMMBP [23], and RFCM 

 

Fig. 8. Some original and segmented images of HCM, FCM [21], RCM [22], RFCMMBP [23], 
and RFCM 

Some of the original images along with their segmented versions with different  
c-means are shown in Fig. 8. The results confirm that the RFCM algorithm produces 
segmented images more promising than do the conventional methods, both visually 
and in terms of β  index. 

6   Rough Fuzzy C-Medoids and Amino Acid Sequence Analysis 

In most pattern recognition algorithms, amino acids cannot be used directly as inputs 
since they are non-numerical variables. They, therefore, need encoding prior to input. 
In this regard, bio-basis function maps a non-numerical sequence space to a numerical 
feature space. It uses a kernel function to transform biological sequences to feature 
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vectors directly. Bio-bases consist of sections of biological sequences that code for a 
feature of interest in the study and are responsible for the transformation of biological 
data to high-dimensional feature space. Transformation of input data to high-
dimensional feature space is performed based on the similarity of an input sequence to 
a bio-basis with reference to a biological similarity matrix. Thus, the biological con-
tent in the sequences can be maximally utilized for accurate modeling. The use of 
similarity matrices to map features allows the bio-basis function to analyze biological 
sequences without the need for encoding. 

One of the important issues for the bio-basis function is how to select the minimum 
set of bio-bases with maximum information. Here, we present the application of 
rough-fuzzy c-medoids (RFCMdd) algorithm [20] to select the most informative bio-
bases. The objective of the RFCMdd algorithm for selection of bio-bases is to assign 
all amino acid subsequences to different clusters. Each of the clusters is represented 
by a bio-basis, which is the medoid for that cluster. The process begins by randomly 
choosing desired number of subsequences as the bio-bases. The subsequences are as-
signed to one of the clusters based on the maximum value of the similarity between 
the subsequence and the bio-basis. After the assignment of all the subsequences to 
various clusters, the new bio-bases are modified accordingly [20]. 

The performance of RFCMdd algorithm for bio-basis selection is presented using 
five whole human immunodeficiency virus (HIV) protein sequences and Cai-Chou 
HIV data set, which can be downloaded from the National Center for Biotechnology 
Information (http://www.ncbi.nlm.nih.gov). The performance of different c-medoids 
algorithms such as hard c-medoids (HCMdd), fuzzy c-medoids (FCMdd) [27], rough 
c-medoids (RCMdd) [20], and rough-fuzzy c-medoids (RFCMdd) [20] is reported 
with respect to β index and γ index [20]. The results establish the superiority of 
RFCMdd with lowest γ index and highest β index. 
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7   Conclusions 

Data mining and knowledge discovery in databases, which has recently drawn the at-
tention of researchers significantly, have been explained from the view-point of pat-
tern recognition. The concept of rough-fuzzy computing is given more emphasis. 
Three examples of judicious integration, viz., rough-fuzzy case generation, rough-
fuzzy c-means and rough-fuzzy c-medoids are explained along with their merits. 
Problems of rough-fuzzy clustering in protein sequence analysis and segmentation of 
brain MR images are considered. Fuzzy granulation through rough-fuzzy computing, 
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and performing operations on fuzzy granules provide both information compression 
and gain in computation time; thereby making it suitable for data mining applications. 
As it appears, soft computing methodologies, coupled with computational theory of 
perception (CTP), have great promise for efficient mining of large, heterogeneous 
data, including web mining and bioinformatics [28], and providing solution of real-
life recognition problems.  
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Abstract. Traditional utility-based data-gathering models consider the
maximization of the gathered information and the minimization of energy con-
sumption in WSNs with reliable channels. In this paper, we extend the model
to include retransmissions caused by link failure to improve network utility. The
challenge lies in balancing two competing factors: energy loss (and hence util-
ity) through retransmissions and increased reliability (and hence utility) through
retransmissions. We adopt a utility-based metric proposed in our previous work
[9] and show the NP-hardness of the problem, regardless of the number of source
sensors. We design several approximation heuristics for either case and compare
their performances through simulation. We also study the impact of retransmis-
sions on the maximization of network utility. Extensive simulations through a
customized simulator are conducted to verify our results.

Keywords: Data-gathering, heuristic solution, network utility, routing, stability,
wireless sensor networks (WSNs).

1 Introduction

A typical data-gathering wireless sensor network (WSN) consists of one or more sinks
which subscribe specific data by expressing interests. Many sensors act as data sources
that detect environmental events and push the relevant data to the subscriber sinks.
We consider a general many-to-one (one sink and many sensors) WSN with unstable
wireless links, where the sink assigns different weights (benefit) to different types of
events according to their importance. Sensors periodically sense the subscribed events
and send data through a data-gathering tree to the sink in each round of communication.

Since the wireless channels are unstable, the reliability of data delivery from sensors
to the sink cannot be guaranteed. This unreliability causes data loss and energy waste,
and in turn decreases the amount of information collected by the sink and increases
the total energy consumption by the sensors. To address the inefficiency caused by the
unreliability, we integrate the energy consumption, the instability of wireless channels,
and the benefit of sensed data (to the sink) into a single metric-network utility-which
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is the same as social welfare [11], which studies the efficient allocation of limited re-
sources in a society to optimize the resource utilization. It is well known that a system
is efficient if and only if the system’s social welfare is maximized. The social welfare
of a system = the system benefit − the system cost. Because the systems we study
are the data-gathering WSNs and the purpose of the data-gathering WSNs is to collect
sensed data, the system benefit (called network benefit) is the total amount of weighted
(non-redundant) information gathered by the sink in a round, and the system cost (called
network energy consumption) is the the total energy consumed by all sensors in a round.

The challenges in maximizing network utility in data-gathering WSNs are as follows.
First, the selection of the path from any sensor to the sink depends not only on the
network topology (including the energy consumption and the instability of wireless
channels), but also the benefit value for each operation (collection of a particular type
of data). Second, data from different sensors can share the same path (to the sink) in
order to save energy, but this also introduces additional problems as it is vulnerable to
link failure since multiple data share the same path/link. Third, there is a question as
to whether the number of sensors that have data to send affects the complexity of the
problem. Lastly, retransmission can increase the delivery ratio for a path/link, but can
also increase transmission delay and energy consumption.

To assess the complex trade-offs one at a time, we assume the availability of a suf-
ficient bandwidth for each channel so that contention for the channel is not an issue.
Moreover, we assume that sensors are static and the benefit values for different data
are predetermined. Under these assumptions, we can focus on the determination of the
optimal reverse broadcast/multicast trees (in terms of maximum network utility).

2 Preliminaries

We first consider the path selection problem, i.e., choosing a path for any sensor to the
sink according to the network topology and the benefit value. A network is modeled
as an undirected disk graph. Each link (i, j) has two properties: link cost ci,j and link
stability pi,j . Link cost ci,j is node i’s minimal transmission cost to send a packet to
node j in a single transmission attempt. Link stability pi,j is the ratio of received packets
by node j to transmitted packets by node i in a single transmission attempt. The costs
and stabilities of all links compose the topology information of the network.

To illustrate the basic idea of the expected utility, we first consider a single-link route
(i, j), where j is the sink. We assume that i has data with benefit v to send. Since the
data will be delivered to j with probability pi,j , the expected benefit is v×pi,j . Because
sensor i will consume energy cost ci,j regardless whether j receives the data or not, the
expected utility of this data delivery is:

v × pi,j − ci,j . (1)

We observe that the above calculation of the expected utility can extend to the case of a
multi-hop route. For example, consider a route R =< 1, · · · , i, i + 1, · · · , r >, where
node 1 is the source sensor (the sensor with data to send), and node r is the sink. We can
pretend node r − 1 is also a source sensor; thus, according to Formula (1), the expected
utility from node r − 1 to the sink r is v × pr−1,r − cr−1,r. For simpler presentation,



Utility-Based Data-Gathering in Wireless Sensor Networks with Unstable Links 15

we denote it as the residual expected utility ur−1. Similarly, the expected utility from
node r − 2 to the sink r is ur−2 = ur−1 × pr−2,r−1 − cr−2,r−1. In general, we have

ui = ui+1 × pi,i+1 − ci,i+1. (2)

By applying Formula (2) recursively, we obtain the expected utility U = u1 = u2 ×
p1,2 − c1,2.

We observe that the value of ui − uj can be regarded as the distance between node i
and node j. Therefore, the distance between each two neighboring nodes can be re-
garded as the weight of the link connecting the two nodes, and hence, the weight
information composes the topology information of WSNs with unstable links. Based
on this topology information, it is straightforward to apply a Dijkstra-based algorithm
to select the best path in terms of the shortest distance. However, the tricky part is
that this topology information changes with the change of the benefit value, and there-
fore, different benefit values cause different topologies. Moreover, the weights of differ-
ent links are interdependent, which complicates the construction of the data-gathering
tree.

3 The Model

In this work, our main consideration is WSNs, where sensors periodically sense the en-
vironment and have data to send in each round (period) of communication. The problem
lies in finding a routing scheme to deliver collected data from the designated sensors to
the sink so that the expected network utility (in a round) is maximized. We assume that
each sensor has only one unit of data to send in each round.

We consider path-sharing to save energy because each packet has a minimum fixed
overhead provided by the sequence number, the radio header and CRC, etc. This cost
is fixed and independent of the size of the packet payload. Path-sharing can improve
transmission efficiency by having proportionally less overhead per useful bit transmitted
in the payload. Without loss of generality, we assume that the size of the fixed overhead
is 1 and the size of one unit of data is α. Hence, the packet size of transmitting k units
of aggregated data is 1 + kα.

Formally, in our model, a WSN is modeled as an undirected disk graph (N ∪{d}, E),
where N = {1, 2, · · · , N} is the set of sensor nodes, d is the sink, and E is the set of
links connecting the sensors. A subset S ⊆ N consists of all source sensors, each
of which has 1 unit of data to send in each round. Let pi be the delivery ratio from
source sensor i to the sink d along the path in a spanning tree T , and ci be the expected
cost of node i in T .

∑
i∈S v × pi and

∑
i∈T ci are the expected network benefit and

the expected network consumption, respectively. Thus, our data-gathering problem can
be defined as follows: find a spanning tree T rooted as the sink d that maximizes the
expected network utility, ∑

i∈S

v × pi −
∑

i∈T

ci, (3)

with the constraint that the cost of k units of data transmitted through link ci,j is (1 +
kα)ci,j .
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Fig. 1. An example of utility-based data-gathering tree

Through a simple example shown in Fig. 1(a), we can see that the optimal data-
gathering tree depends not only on the topology information but also on the benefit
value and the value of α. There is one sink and two sources (nodes 1 and 4) in Fig. 1(a).
In the gathering tree described by the flows in solid lines in Fig. 1(b), the expected util-
ity is 0.8 × 2v − 10 × (1 + α) × 2 − 0.8 × 40 × (1 + 2α) = 1.6v − 52 − 84α
because path < 1, 3, d > and path < 4, 3, d > share link (3, d). In the gathering
tree described by the flows in dashed lines in Fig. 1(b), the expected utility of path
< 1, 2, d > is 0.9v − 84(1 + α). Because path < 1, 2, d > and path < 4, 5, d > are
symmetrical and do not share a path, the expected utility is [0.9v − 84(1 + α)] × 2 =
1.8v − 168(1 + α). Comparing the expected utilities from the two data-gathering trees,
their difference is 0.2v − 116 − 84α. Note that α ≥ 0. If v = 100, the optimal data-
gathering scheme is path-sharing. If α = 0.1 and v = 630, the optimal scheme is to not
share a path.

Both the reverse broadcast tree problem and the reverse multicast tree problem
are NP-hard. If all of the links’ stabilities are 1, the reverse broadcast tree problem
can be reduced to the correlated data gathering problem [5], which has been proven to
be NP-hard. Similarly, if all links’ stabilities are 1 and the data cost is excluded, i.e.,
α = 0, the reverse multicast tree problem can be reduced to the geometric spanning
tree problem, which is also NP-hard. Therefore, our reverse broadcast/multicast tree
problem is NP-hard. If we restrict the overhead cost, the data cost α, the link stabil-
ity, the benefit v, and the source sensor set S, the problem can be reduced to different
well-known or solved subproblems. For example, if the overhead cost is not counted,
the problem is reduced to the maximum expected utility path tree problem, whose spe-
cial case that |S| = 1 (only one source sensor) has been studied in our prior work [9]
and an optimal algorithm with complexity of O((|E| + |N |)log|N |) was designed to
solve the problem. Furthermore, if all links are reliable, the problem is reduced to the
shortest-path tree problem. If link stability is not 1 but the benefit v → ∞ and |S| = 1,
it is equal to the most reliable path problem, i.e. find the path with the highest delivery
ratio from s to d. On the other hand, if only the overhead cost is considered (α = 0),
all links’ stabilities are 1, and the source set S = N , the problem is the standard broad-
cast tree problem, which can be solved via the Prime algorithm to construct a minimum
spanning tree.
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4 The Construction of the Data-Gathering Tree

4.1 Build the Reverse Broadcast Tree

Maximum Expected Utility Path Tree. A nave method of constructing the reverse
broadcast tree is to build the maximum expected utility path for each sensor, i.e. build
the maximum expected utility (MEU) path tree. This heuristic is similar to the shortest-
path tree. The difference is that in a MEU path tree, a sensor’s distance to the sink
depends not only on the link cost, but also on the link stability and the data’s benefit to
the sink. Different benefit values usually cause different MEU path trees.

Algorithm 1. MEUPT(N , d, v)

1: Initialize;
2: while N �= ∅ do
3: Find the maximum EU sensor i from N ;
4: Remove i from N to T ;
5: For each i’s neighbor j not in T , Relax(i, j);

Relax(i, j)

1: if i can increase j’s utility then
2: uj ← ui · pj,i − δ · cj,i;

The formal description of this heuristic is given in Algorithm MEUPT. The input
of this algorithm is the sensor set N , the sink d, and the benefit v. The link cost ci,j

and link stability pi,j for each link (i, j) are also given. Initially, the sink’s expected
utility is v, if a sensor j can directly communicate with the sink, its expected utility
is v · pj,d − δ · cj,d, and all the other sensor’s expected utilities are −∞. The reverse
broadcast tree T first contains only the sink. In each iteration of the construction phase,
the algorithm chooses a link that connects a frontier node (node in T ) with a node not
in T and has the maximum expected utility, and removes the node from the sensor set.
Then, the sensor relaxes its neighbors that are still in the sensor set.

The relaxation consists of two steps. First, the chosen node calculates the expected
utility of each neighbor according to the recursive definition of the expected utility
(Formula (2)) with a small modification because of the consideration of the data cost
and overhead cost. Second, the node compares each neighbor’s calculated expected
utility with its original expected utility and saves the larger value as the neighbor’s new
expected utility. This procedure repeats until all sensor nodes are included in T .

Note that in line 2 of the Relax(i, j) function, the coefficient of the cost δ can be
either 1+α or α. If δ = α, it means the overhead cost is excluded from the energy cost,
and hence, there is no need for path-sharing. If δ = 1 + α, it means that data flows do
not share paths. Without path-sharing, the MEU path tree is the optimal data gathering
tree. Thus, the expected network utilities of the MEU path tree with δ = α and the
MEU path tree with δ = 1 +α can be used as an upper bound and a lower bound of the
optimal data-gathering tree, respectively.
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To illustrate the algorithm, we describe the execution of the algorithm on the simple
example given in Fig. 1(a). Assume that the benefit is 200 and δ = α = 1. Among d’s
three neighbors 2, 3, and 5, node 3 has the maximum expected utility 160 while both
node 2 and node 5’s expected utilities are 140. Thus, link (3, d) is first added into T ,
and then node 1 and 4’s expected utilities are both relaxed through node 3 from −∞
to 160 × 0.8 − 10 = 118. Since both node 2 and node 5’s expected utilities are larger
than node 1 and node 4’s expected utilities, node 2 and node 5 are selected earlier than
node 1 and 4. Node 2 (5) will try to relax node 1 (4) but fails to improve nodes 1 and
4’s expected utilities. Finally, node 1 and 4 will be selected, and the MEU path tree
consists of link (1, 3), (4, 3), (3, d), (2, d) and (5, d). If the overhead is not counted,
the expected network utility is 160 + 140 × 2 + 118 × 2 = 676. The actual expected
network utility of the MEU path tree is 676 − 180 = 496, where 180 is the overhead of
the entire MEU path tree.

Maximum Incremental ENU Link First. Although the nave method is simple, it
does not take advantage of path-sharing. Therefore, we propose a greedy-based heuris-
tic, MIENULF, to utilize path-sharing. In each iteration of the construction phase, the
MIENULF heuristic selects a link that can increase the expected network utility the
most. The only difference between the MIENULF heuristic and the MEUPT heuristic
is the relaxation part.

Algorithm 2. MIENULF(N , d, v)

1: The main part is the same as Algorithm MEUPT;

Relax(i, j)

1: if i can increase j’s utility then
2: pj ← pi · pj,i;
3: cj ← ci · pj,i + cj,i;
4: uj ← v · pj − α · ci · pj,i − (1 + α)cj,i;

Besides the expected utility from each sensor, algorithm MIENULF has to memo-
rize the delivery ratio and the expected cost from each sensor to the sink. Therefore,
the algorithm maintains two additional variables for each node: pi and ci - the current
delivery ratio and the current expected cost from node i to the sink along the current
path, respectively. Initially, pi = 0 and ci = 0 if i �= d; otherwise, pd = 1 and cd = 0.
The reason to maintain pi and ci for each node is that the expected cost consists of two
parts: the first part is the cost of the new relaxed link, i.e., (1 + α)cj,i, which consists
of the data cost and the overhead; the second part is the cost shared with other sensors,
i.e., α · ci · pj,i, in which the overhead has been included in other nodes’s expected cost.

We illustrate algorithm MIENULF by running the example given in Fig. 1(a) and still
set v = 200 and α = 1. After d’s relaxation, node 2, 3, and 5’s expected utilities are 80,
120, and 80, respectively. Then link (3, d) is selected and node 3 will relax node 1 and
node 4, whose expected utilities will change to 200 × 0.8 − 40 × 0.8 − 2 × 10 = 108.
Therefore, in MIENULF, nodes 1 and 4 are selected before nodes 2 and 5, whose orders
are different from the execution of MEUPT, although the final trees are the same.
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Spanning Tree-Based Heuristic. The spanning tree-based method builds the data-
gathering tree by applying the Prime algorithm to construct the minimum spanning
tree. The reason is that if we omit the data cost, and hence the utility, the weigh of each
link (i, j) is just −ci,j , i.e., the negative value of the overhead. Therefore, finding a
data-gathering tree that maximizes the weight of the tree is equal to finding the minimal
spanning tree. For the example in Fig. 1(a), the minimum spanning tree, which is dif-
ferent from the MEU path tree, consists of links (3, d), (1, 3), (4, 3), (1, 2), and (4, 5).
The cost of the overhead is 120, and the expected network utility is 160 + 118 × 2 +
76.2 × 2 − 120 = 428.4.

SLT-Based Approximation Algorithm. The SLT-based heuristic utilizes the property
that the expected utility of a tree rooted at the sink can be separated into two parts: the
expected utility excluding the overhead energy cost and the overhead energy cost. Each
part alone can be optimized by a polynomial algorithm. This heuristic is inspired by the
shallow light tree (SLT) [5, 8]. The SLT is a spanning tree that has two properties: the
cost of the SLT is no more than 1+

√
2

γ times the cost of the minimal spanning tree, and
the cost of the path from any node to the sink in the SLT is no more than 1+

√
2γ times

the cost of the shortest path, where γ can be any positive constant. But our SLT-based
heuristic cannot have the approximation ratio because the metrics for the overhead cost
and the modified expected utility are different, unlike those for the MST and the shortest
path.

The construction of the SLT-based approximation algorithm is as follows. First, a
minimum spanning tree is constructed. Starting from the sink, a depth-first-search of
the tree is made. When a node is visited the first time, its expected utility is compared to
its maximum expected utility (along the maximum expected utility path). If its expected
utility is less than θ (θ < 1) times its maximum expected utility, the link connecting its
parent node will be removed, and the maximum expected utility path from the node to
the sink is added.

For the example in Fig. 1(a), assume that v = 200, α = 1, and θ = 0.75. First, the
MST is constructed. When searching the MST from the sink in the depth first order,
since the expected utilities for nodes 3, 1, and 4 are equal to their maximum expected
utilities, links (3, d), (1, 3), and (3, 4) remain the same. However, when nodes 2 and 5
are visited, their expected utilities are 76.2 < 0.75 × 140, where 140 is the maximum
expected utility. Thus, links (1, 2) and (4, 5) are removed, and links (2, d) and (5, d) are
inserted. In this example, the data-gathering tree produced by the SLT-based algorithm
is the same as the MEU path tree.

4.2 Build the Reverse Multicast Tree

All the algorithms used in building the reverse broadcast tree can be used to build the
reverse multicast tree by pruning the redundant, useless branches in order to connect
source sensors to the sink. Besides these algorithms, we propose an algorithm that
builds the reverse multicast tree directly.

Maximum Incremental ENU Path First. The maximum incremental ENU path first
(MIENUPF) approach is similar to the MIENULF heuristic. The difference is that
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instead of adding one link at each iterative step, the MIENUPF inserts a path that con-
nects an unconnected source to the current T . After the selection of the new branch,
each node in the new branch will relax the remaining source sensors. This procedure
repeats until all required source sensors are included in T .

The MIENUPF heuristic uses a modified MIEUIF heuristic as a building block. In
the modified MIEUIF heuristic, line 2 (the loop termination condition) changes from
N �= ∅ to S

⋂
N �= ∅ because we intend to build a reverse multicast tree instead of

the reverse broadcast tree. After the selection of the maximum expected utility node i,
besides removing i from N , node i should also removed from S if i ∈ S.

Initially, only the expected utility of the sink is set to v, and the expected utilities
of all the other nodes are set to −∞. At each iterative step, after the execution of the
modified MIEUIF heuristic, the MIENUPF heuristic will select an unconnected source
sensor with the maximum expected utility and add the branch that connects the source
sensor to T . Although a lot of nodes’ expected utilities were updated in the execution
of the modified MIEUIF heuristic, only the expected utilities of the nodes on the new
branch will be kept.

Algorithm 3. MIENUPF(N , S, d, v)

1: Initialize;
2: while S

⋂
T �= ∅ do

3: MIENULF(N , S, d, v);
4: Find the maximum EU sensor i from S;
5: Remove i from S;
6: Insert into T the branch connecting i to T ;
7: Keep the uj of each node j on the new branch;

For the example in Fig. 1(a), assume that v = 200, α = 1. After the first round of
the MIENULF, all five nodes have been relaxed, and path < 1, 3, d > (or < 4, 3, d >,
depending on the tie-breaking rule; here we adopt the smallest node ID) is inserted into
T . The expected utilities of nodes 2, 4, and 5 change back to −∞ at the end of this
round. In the next round, T starts with the path < 1, 3, d > and link (3, 4) will be
inserted in the end.

5 Simulation

All approaches are simulated on our customized simulator. We empirically study the
performance of different heuristics for the reverse broadcast/multicast tree and the ef-
fect of various network parameters on the performance of the proposed heuristics. The
network parameters include the network density n (i.e., node population), the size of
a unit data (α), link stability, the value of the benefit v, the source sensor set S, the
local quota, and the parameter θ in SLT-based heuristic. The simulation is set up in a
100m×100m area, where all sensors are homogeneous and can be deployed in this area
arbitrarily. The energy cost between any two nodes is proportional to their distance. The
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Fig. 2. Simulation results of the heuristics in building the reverse broadcast/multicast tree

stability of each link is randomly generated (uniform distribution) in the range [β, γ],
where 0 ≤ β ≤ γ ≤ 1.

5.1 Simulation Results

First, we study the effect of θ on the performance of the STL-based algorithm. θ is the
control coefficient in the SLT-based heuristic, in which the value of θ controls whether
a node’s maximum expected utility path should be inserted into the existing spanning
tree or not. As shown in Fig. 2 (a), when θ ≈ 1.1, the SLT-based heuristic has the best
performance. Because the link stability has direct impact on the SLT-based heuristic,
we adopt three different stability low bounds β = 0.7, 0.8, and 0.9 as comparisons. The
three settings show a similar curve, which means the selection of θ is independent of
the link stability.

In section 4, we argue that the expected network utilities of the MEU path tree with
δ = α and the MEU path tree with δ = 1 + α can be used as the upper bound and the
low bound for the optimal data-gathering tree, respectively. Our claim can be verified
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by the simulation results shown in Fig. 2 (b) and (c). In Fig. 2 (b), we study the effect of
α, the size of a unit of data on the performance of the MEUPT algorithm and verify the
lower bound and upper bound. The value of α ranges from 0 to 30 with the increment
being 2. The simulation results show that as the value of α increases, the expected utility
of the MEU path tree, the upper bound, and the lower bound converge. The reason is
that as the value of α grows, the effect of the overhead decreases. In the extreme case,
as α → ∞, the size of the overhead can be omitted, i.e., 1 + α → ∞.

In Fig. 2 (c), we compare the four algorithms in building the reverse broadcast tree
(RBT) in the test dimension of network density, and range it from 10 to 25 with the
increment being 1. As expected, the network density increases the expected network
utility for all the heuristics except the MST-based heuristic, which has the worst perfor-
mance and is even below the lower bound. The reason is that the MST does not take into
account the link stability and benefit issues. The links selected by the MST are close
in geometry but may have a low delivery ratio, and hence, cause a lot data losses. The
expected network utilities of the other three heuristics are close to each other and hard
to compare in Fig. 2 (c). Therefore, we use the lower bound as the base and the expected
network utilities of all the three heuristics are subtracted by the base. The result is shown
in Fig. 2 (d). From Fig. 2 (d), we can conclude that the MIEULF algorithm has the best
performance and the MEUPT algorithm has the worst performance because it does not
take into account path-sharing. Since the MIEULF heuristic has the best performance,
we will use MIEULF in the following simulations.

In Fig. 2 (e), we simulate the effect of the range of link stability on the performance
of the MIEULF heuristic. We increase β from 0 to 0.9 with an incremental step of 0.1.
As β increases, the links become stable. We compare the MIEULF trees with different
values of α, the size of unit data. The simulation results show that the more stable the
links, the higher the expected network utility, and the increment of data size decreases
the expected network utility. The simulation results reflect the fact that the expected
network utility can be affected from two causes. On one hand, the expected network
utility increases with the increment of the link stability. On the other hand, the expected
network utility decreases with the increment of the transmission cost.

Fig. 2 (f) shows the results of the simulation on the effect of benefit value. We use
the MIEULF heuristic to simulate and adopt four combinations of stability range and
the value of α (α = 0, β = 0.5, α = 0, β = 0.8, α = 2, β = 0.5, and α = 0, β = 0.8).
The benefit value varies from 500 to 2000 with an increment of 100. As expected, the
increment of the benefit improves the expected network utility, the increment of the data
size decreases the expected network utility, and the increment of the stability increases
the expected network utility.

We also study the effect of the local quota on the performance. We use the same
setting as the previous experiment. The local quota increases from 1 to 20 with an
increment of 1. According to the simulation results shown in Fig. 2 (g), the increment
of the local quota can increase the expected network utility, but as the number of the
local quota reaches 6, the impact of the continuous increment of the local quota becomes
less essential. The reason for this is that retransmissions increase the delivery ratio the
most in the first several retry attempts.
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Finally, we compare the proposed heuristics for constructing the reverse multicast
tree and study the effect of the size of the source sensor set on the performance. The
simulation results are plotted in Fig. 2 (h) and (i). Because the MIEULF heuristic has the
best performance in building the reverse broadcast tree, we adopt the pruning heuristic
based on the MIEULF heuristic as the representative pruning method. We set the benefit
value to 1000, β = 0.9, and α = 2. Because the expected network utilities of the
MIEULF-based heuristic and the MIEUPF heuristic are close, we subtract 5000 from
both utilities. Fig. 2 (h) shows that the MIEULF-based pruning heuristic has better
performance. Since the MIEULF-based pruning heuristic has better performance, we
use it as the method to study the effect of the size of the source sensor set. The other
settings are the same. Fig. 2 (i) illustrates that the increment of the number of the source
sensors can increase the expected utilities.

6 Related Work

Many existing data-gathering models [5, 10, 12] assume that wireless channels are reli-
able, or the channels are unstable but the reliability can be achieved through retransmis-
sions. However, wireless communication is unreliable in practice, and 100% reliability
is not achievable due to practical issues such as the constraint on the maximum num-
ber of retransmissions in link layer technologies. Therefore, we proposed a new-data
gathering model that takes this unreliability into account.

Existing link reliability models [1, 3, 7] usually adopted the packet-delivery ratio to
define the link reliability, and defined the expected link cost as the link cost divided by
the link reliability. This definition is based on the assumption of unbounded retransmis-
sions. Our previous work [9] proposed a more reasonable definition of the expected link
costs, which does not allow unlimited retransmissions and involves the interdependence
of the stabilities among different links.

Many energy-efficient data-gathering models adopt the reverse broadcast/multicast
tree models [12], which utilizes in-network aggregation and fusion to reduce energy
consumption. To reduce the complexity, the reverse broadcast tree model [12] assumed
the energy consumption of the aggregated data flow is equal to that of a single data flow.
A more reasonable model [4, 5, 6] assumed the existence of data correlation so that the
energy consumption of an aggregated flow from two flows is less than two single flows
and more than one single flow. Our model admits the existence of data correlation, and
adopts a utility metric to balance the reliability and energy cost. Chen and Sha [2] also
adopted the utility-based model in data-gathering WSNs. They assumed that different
data have different levels of importance, and the sink would assign different weights to
different types of data according to their importance.

7 Conclusion

In this paper, we study the data-gathering problem in wireless sensor networks from the
maximization of the expected network utility point of view by considering resource
scarcity and the unstable nature of wireless channels. We model the data-gathering
problem as an optimization problem, prove its NP-hardness, propose several heuristics
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for both the reverse broadcast tree and the reverse multicast tree problems, and use sim-
ulation to study the effects of different parameters and to compare the performance of
various heuristics. In the future, we will explore the effect of the data redundance on
the evaluation of the network benefit and the effect compression technique on reducing
the energy consumptions, as well as the effect of signal strength on stability.
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Abstract. While several important problems in the field of sensor net-
works have already been tackled, there is still a wide range of challenging,
open problems that merit further attention. We present five theoretical
problems that we believe to be essential to understanding sensor net-
works. The goal of this work is both to summarize the current state
of research and, by calling attention to these fundamental problems, to
spark interest in the networking community to attend to these and re-
lated problems in sensor networks.

1 Introduction

Algorithmic sensor network research has been around for almost a decade now,1

and it has meanwhile reached a semi-mature state: Many essential questions have
been studied; some exemplary ones such as, e.g., min-energy [1,2] and min-time
[3,4,5] broadcasting or geo-routing [6,7,8] are understood to a pleasing degree,
belying those who accuse the sensor networking community of not producing
any rigid results.

However, sensor networks continue to puzzle as many fundamental aspects
are not well understood; in this paper we present five brainteasers in the sensor
network domain, covering various areas such as scheduling, topology control,
clustering, positioning, and time synchronization. The five open problems have
in common that they all pertain to data gathering, an important task in sensor
networking. As it is often essential to know when and where data has been
collected, the data needs to be enriched with time (Section 6) and position
(Section 5) information. Additionally, the structure of the network has to be
tuned in order to gather data in an energy-efficient manner. In Section 4 we
save energy by turning off unneeded nodes, in Section 3 by reducing interference.
Finally, in Section 2 we study the capacity of sensor networks, i.e., the achievable
throughput of scheduling algorithms.

The five problems have in common that they all allow for a precise “zero
parameters” definition. This is probably rare in a research area that still mostly
revolves around the question which questions to ask. In that sense, these five
1 Alas, there is no clear date of birth of this research area; however, some of the first

workshops such as, e.g., DialM or MobiHoc were started about a decade ago.
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problems are prototypical for an algorithmic approach to networking. However,
primarily they have in common that the authors of this article are familiar with
them. Our five open problems are by no means the most important problems
that remain to be solved in the sensor network domain. We are sure that three
other authors would come up with a completely different set of open problems, at
least equally worthy of being studied. Nevertheless, we do believe that advancing
the state of the art of any of the problems discussed in this paper will not
only advance sensor networks but also networking and distributed computing in
general.

2 Scheduling

Spatial reuse is fundamental in wireless networking. Due to channel interference,
concurrent transmissions may hinder a successful reception at the intended desti-
nations. Thus, it is vital to coordinate channel access in order to prevent collisions
and to increase network throughput. The task of a scheduling algorithm is to
order a given set of transmission requests such that the correct reception of mes-
sages is not prevented due to interference caused by concurrent transmissions.
Apart from timing message transmissions, scheduling algorithms have another
degree of freedom to optimize their schedule: They can adjust the transmission
power for each message individually to fully benefit from spatial reuse in order
to minimize the total time needed to successfully complete all requests. This is
important since a successful message reception depends on the ratio between
received signal strength on the one hand and interference and ambient noise on
the other hand (also known as SINR).2

More formally, consider the network nodes X = {x1, . . . , xn}. Furthermore,
let Pr be the signal power received by a node xr and let Ir denote the amount of
interference generated by other nodes. Finally, let N be the ambient noise power
level. Then, a node xr receives a transmission if and only if Pr

N+Ir
≥ β, where β

denotes the minimum signal-to-noise-plus-interference ratio that is required for
a message to be successfully received.

In wireless networks, the value of received signal power Pr is a decreasing
function of the distance d(xs, xr) between transmitter node xs and receiver node
xr. More specifically, given the distance d(xs, xr) between sender and receiver,
the decay of the signal power is proportional to d(xs, xr)−α. The so-called path-
loss exponent α is a constant between 2 and 6 and depends on external conditions
of the medium, as well as the exact sender-receiver distance [9]. Let Pi be the
power level assigned to node xi. A message transmitted from a node xs ∈ X is
successfully received by a node xr if

Ps

d(xs,xr)α

N +
∑

xi∈X\{xs}
Pi

d(xi,xr)α

≥ β.

2 The communication model adopting this notion of signal-to-noise-plus-interference
ratio is also known as the physical model [9].
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In [10,11] the scheduling complexity of basic network structures, namely
strongly connected networks, is studied. It is shown that adjusting the trans-
mission power gives an exponential advantage over uniform or linear power as-
signment schemes. This gives an interesting complement to the more pessimistic
bounds for the capacity in wireless networks [9]. The authors of [12] define a
measure called disturbance that comprises the intrinsic difficulty of finding a
short schedule for a problem instance. Furthermore, they propose an algorithm
that achieves provably efficient performance in any network and request setting
that exhibits a low disturbance. For the special case of many-to-one communica-
tion with data aggregation in relaying nodes, [13] derives a scaling law describing
the achievable rate in arbitrarily deployed sensor networks. It is show that for
a large number of aggregation functions a sustainable rate of 1/ log2 n can be
achieved.

In the context of routing, [14] studies the problem of constructing end-to-end
schedules for a given set of routing requests such that the delay is minimized.
That is, each node is assigned a distinct power level, the paths for all requests are
determined, and all message transmissions are scheduled to guarantee successful
reception in the SINR model. In this setting, [14] presents a polynomial-time
algorithm with provable worst-case performance for the problem.

Despite all the work discussed in this section considering transmission schedul-
ing problems with specific constraints, the basic problem is still not fully
understood.

Problem 1. A communication request consists of a source and a destination,
which are arbitrary points in the Euclidean plane. Given n communication re-
quests, assign a color (time slot) to each request. For all requests sharing the
same color specify power levels such that each request can be handled correctly,
i.e., the SINR condition is met at all destinations. The goal is to minimize the
number of colors.

While uniform power assignment is understood well [15], it is unknown how
difficult the problem is if nodes can adapt their transmission power. This is
indisputably a most fundamental problem in the field of sensor networks. A
deeper understanding of scheduling will potentially shed new light also on other
advanced open problems.

3 Topology Control

Energy is a scarce resource in wireless sensor networks. In a very general way,
topology control can be considered as the task of, given a network communication
graph, constructing a subgraph with certain desired properties while minimizing
energy consumption. The subgraph needs to meet some requirements, the mini-
mum requirement being to maintain connectivity. However, sometimes one has
stronger demands, e.g., the subgraph should not only be connected but a spanner
of the original graph. At the same time the subgraph should be sparse as low node
degrees allow for simpler neighborhood management at the nodes; additionally,



28 T. Locher, P. von Rickenbach, and R. Wattenhofer

symmetric links are desired as they permit simpler higher-layer protocols, and,
if the constructed graph is planar, geo-routing protocols can be used. The most
important goal however is energy-efficiency. Energy is saved by several means,
the simplest being to eliminate distant neighbors, and thereby energy-inefficient
connections, since the energy consumption of a transmission is believed to grow
at least quadratically with distance.3 Almost as a side effect, this reduction also
results in less interference. Confining interference additionally lowers the power
consumption by reducing the number of collisions and consequently the number
of packet retransmissions on the media access layer.

Early work focused on topology control algorithms emphasizing locality while
exhibiting more and more desirable properties [16,17,18,19], sometimes present-
ing distributed algorithms that optimize various design goals concurrently. All
these approaches have in common, however, that they address interference re-
duction only implicitly. The intuition was that a low (constant) node degree at
all nodes would solve the interference issue automatically. This intuition was
proved wrong in [20], starting a new thread that explicitly studies interference
reduction in the context of topology control [21,22,23]. The interference model
introduced in [24] in the context of data-gathering structures, which is gener-
alized in [25], proposes a natural way to define interference in sensor networks.
The general question is: How can one connect the nodes such that as few nodes
as possible disturb each other? In the following, we discuss the network and
interference model presented in [25].

The wireless network is modeled as a geometric graph. The graph consists of
a set of nodes represented by points in the Euclidean plane; we want to con-
nect these nodes by choosing a set of edges. In order to prevent already basic
communication between neighboring nodes from becoming unacceptably cum-
bersome [26], it is required that a message sent over a link can be acknowledged
by sending a corresponding message over the same link in the opposite direction.
In other words, only undirected edges are considered. A node is able to adjust
its transmission power to any value between zero and its maximum power level
to reach other nodes. An edge exists if and only if the maximum transmission
range of both incident nodes mutually include their counterpart. The minimum
requirement of a topology control algorithm reducing transmission power levels
is then to compute a subgraph of the given network graph that preserves connec-
tivity. The interference of a node v is then defined as the number of other nodes
that potentially affect message reception at node v.4 The maximum interference
of a graph is then defined as the maximum node interference.

So far, not many results have been published in the context of explicit inter-
ference minimization. For networks restricted to one dimension the authors in

3 In sensor networks, one has to be careful about this model, as generally transmission
distances are short, and the base transmission or even reception energy washes this
quadratic behavior out.

4 In practice, the shape of a node’s interference region is not restricted to be circular.
In particular, it depends on the antenna in use; the interference range is typically
larger than the reception range.
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[25] present a 4
√

n-approximation of the optimal connectivity-preserving topol-
ogy that minimizes the maximum interference. For the two dimensional case, the
authors in [27] propose an algorithm that bounds the maximum interference to
O(

√
n). If average interference of a graph is considered, there is an asymptoti-

cally optimal algorithm achieving an approximation ratio of O(log n) [28]. This
leads us to the open problem:

Problem 2. Given n nodes in the plane. Connect the nodes by a spanning tree.
For each node v we construct a disk centering at v with radius equal to the
distance to v’s furthest neighbor in the spanning tree. The interference of a node
v is then defined as the number of disks that include node v. Find a spanning
tree that minimizes the maximum interference.

This problem is still not understood well. We do not know the complexity of
the problem (solvable optimally in polynomial time, or NP-complete), and it is
unknown whether efficient approximation algorithms exist. Once we understand
interference, we can try to combine it with other optimization goals such as
planarity or constant node degree. And once we understand these, we can start
looking for distributed (or even local) algorithms for the problem. Furthermore,
we can abandon the strict geometric representation of interference and think
about more general interference models [28].

Clearly, there is a relation between Problem 2 and the scheduling problem
studied in Section 2 [10], as in both problems the goal is to increase spatial
reuse by understanding interference. However, we do not believe that solving
one problem would help solving the other, as the scheduling problem allows for
a more general power control approach. It was shown in [11] that there is an
exponential difference between these two models. The next section is related to
this one as well: The goal is also to reduce energy consumption, however with a
different approach.

4 Dominating Set

An alternative method to ensure an efficient operation in dense graphs is to
completely “shut down” a large fraction of all nodes and delegate their respon-
sibilities to a few neighboring nodes. This is in stark contrast to the approach
taken in topology control algorithms where all nodes continue to handle messages
themselves. Naturally, it must be guaranteed that every node has a neighbor that
is in the position to take over its tasks. Ideally, this set of nodes that remain
awake and handle all tasks is as small as possible in order to minimize energy
consumption. New sets of nodes that must stay awake can be constructed peri-
odically in order to even out the burden of communication among all nodes in
the network.

More formally, we again model the network as a graph where edges between
nodes indicate that these nodes can communicate directly. A set of nodes S for
which it holds that every node that is not in S has a direct neighbor in S has
to be found. Such a set is commonly referred to as a dominating set. The goal
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of the minimum dominating set (MDS) problem is to find the dominating set
of minimum size. For certain applications, it is mandatory or at least beneficial
if the nodes in the dominating set are connected. Thus, a variation of the MDS
problem is the problem of finding a minimum connected dominating set.

Computing a minimum dominating set is a hard problem. It has been shown
that the MDS problem is NP-complete not only for arbitrary graphs [29], but
also for special topologies such as unit disk graphs (UDGs) [30,31]. Moreover,
dominating sets cannot be approximated in polynomial time to within a factor
of (1−o(1)) lnn [32] unless NP has quasi-polynomial time algorithms. However,
this bound only holds for general graphs, and in various special cases, constant
approximations can be computed efficiently. For example, there is a simple con-
stant approximation algorithm for dominating sets in UDGs [33]. Note that a
DS can trivially be extended to a connected dominating set by means of a span-
ning tree with only a constant overhead. This result has been generalized in [34],
where it is shown that a constant-factor approximation is even possible if all
nodes are weighted, and the goal is to find a (connected) dominating set that
minimizes the sum of the weight of all nodes in the dominating set. In the un-
weighted case, there is a PTAS for the minimum dominating set problem in unit
disk graphs [35].

Distributed algorithms for the MDS problem have also been studied exten-
sively. The algorithms in the following papers belong to the class of local algo-
rithms in which all nodes are allowed to communicate k times, for a particular
value k, with their neighboring nodes. In this model, nodes can basically gather
information about nodes in their k-neighborhood and can thus base their de-
cisions on this information only. Similarly to the centralized case, it has also
been shown that once a dominating set has been built, this set can be used to
construct a connected dominating set in a distributed fashion [36].

In general graphs, a maximum independent set (MIS) can be constructed us-
ing a randomized algorithm in O(log n) time [37]. Naturally, a MIS is also a
dominating set, but the constructed MIS does not guarantee any bounds on the
approximation ratio. The algorithm presented in [38] computes an O(log Δ)-
approximation in O(log n log Δ) rounds with high probability, where Δ denotes
the maximum node degree. The first constant-time distributed algorithm achiev-
ing a non-trivial approximation ratio is presented in [39]: An O(kΔ2/k log Δ)-
approximation is computed in O(k2) rounds for an arbitrary (constant) k. By set-
ting k = Θ(log Δ), the algorithm achieves an approximation ratio of O(log2 Δ) in
O(log2 Δ) rounds. This result was later improved to an O(log Δ)-approximation
algorithm also requiring O(log2 Δ) rounds [40].

There has also been a lot of work on computing dominating or maximum
independent sets in unit disk graphs. Note that in unit disk graphs a maximum
independent set is a good approximation of the optimal dominating set, thus
the two problems are basically equivalent. A PTAS for UDGs is also achievable
by means of a local algorithm [41]. If the nodes know the distance to all other
nodes, a MIS can be constructed in O(log∗ n) time in unit disk graphs and also
in a large class of bounded independence graphs [42], which matches a MIS
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lower bound of Ω(log∗ n) [43]. The fastest deterministic algorithm for the MIS
problem in unit disk graphs—in fact, in any growth-bounded graph—requires
O(log Δ log∗ n) time [44] to construct a MIS. A MIS can be constructed faster
using a randomized algorithm whose running time is only O(log log n log∗ n) with
high probability [45].

It is, however, still unclear if a dominating set that is only a constant factor
larger than the smallest possible dominating set can be constructed very quickly
in unit disk graphs.

Problem 3. Let each node in a unit disk graph know its k-neighborhood for
a constant k, i.e., each node knows all nodes up to distance k including their
interconnections. Given this information, each node must decide locally without
any further communication whether it joins the dominating set or not. Is it
possible to construct a valid dominating set that is only a constant factor larger
than the optimal dominating set?

While there are lower bounds to find a MIS or a coloring, there is no lower bound
for the MDS problem. It is unclear if a constant-time algorithm can compute
a dominating set in UDGs, and conversely if a constant-factor approximation
requires ω(1) time. There are many related open problems such as the problem
of finding a MIS or a coloring with a small approximation ratio as quickly as
possible.

5 Embedding

Many envisioned application scenarios in the field of wireless sensor networks rely
on positioning information: sensing the environment is only useful if one knows
where the data has actually been measured. Knowledge of location information
can also improve the performance of routing algorithms because it allows the use
of geo-routing techniques [6,7]. Equipping all sensor nodes with specific hardware
such as GPS receivers would be one option to gain position information at the
nodes. However, GPS reception might be obstructed by climatic conditions or
in-door environments. Another solution is to provide only a few nodes (so-called
anchor or landmark nodes) with GPS and have the rest of the nodes compute
their position by using the known coordinates of the anchor nodes [46,47]. One
characteristic inherent to all these approaches is that the solution quality is
determined by the anchor density and their actual placement.

Obviously, in the absence of anchors, nodes are clueless about their real coordi-
nates. However, recent work has pointed out that for many applications it is not
necessary to have real coordinates but it suffices to have virtual coordinates—two
nodes having similar coordinates implies that they are physically close together.
Moreover, a deeper understanding of anchorless positioning would likely advance
the state of the art of anchor-based positioning algorithms. A mapping of all the
nodes to virtual coordinates, in this case coordinates in the Euclidean plane, is
called an embedding.
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Sensor networks are typically modelled as unit disk graphs in which there is
an edge between two nodes if and only if the Euclidean distance between them
is less or equal to 1. It has been shown that the problem of deciding whether
a given graph is a unit disk graph is NP-hard [48]. A more general model for
sensor networks is given by d-quasi unit disk graphs. A graph is called a d-
quasi unit disk graph (d-QUDG, d ≤ 1) if there is an embedding that respects
the following two rules: If two nodes are connected, the distance between their
respective coordinates must be at most 1, and if there is not edge between two
nodes, the distance between their coordinates must exceed d. Note that a 1-
QUDG corresponds to a UDG graph and that the definition of a d-QUDG does
not specify whether there is an edge between two nodes at a distance in the
range (d, 1] for d < 1. In that sense, a d-QUDG is a relaxed version of a UDG. A
QUDG can generally be regarded as a more realistic model for sensor networks
since nodes at a critical distance may or may not be able to communicate. The
quality q(e) of an embedding e in this model is defined as

q(e) =
max{u,v}∈E dist(u, v)
min{u,v}/∈Edist(u, v)

.

A good embedding has a small value for its quality. It has been shown that it
is also NP-hard to find an embedding such that q(e) <

√
3/2 [49]. In the same

work, it has further been proven that it is NP-hard to decide whether a graph
can be realized as a d-quasi unit disk graph with d ≥ 1/

√
2. Surprisingly, the

problem remains hard even if additional information is available. For example,
each node might know the exact distance to each of its neighbors. Given this
distance information, it is still NP-hard to decide whether the graph is a UDG
or not [50]. Instead of having distance information, the nodes might be aware
of the angle between itself and any two of its neighbors. The problem remains
NP-hard also in this context [51].

In [52], the first approximation algorithm for this problem is presented,
which heavily borrows techniques introduced by Vempala [53], claiming an
O(log2.5 n

√
log log n)-quality embedding in polynomial running time.5 The cur-

rently best known algorithm for this problem is due to Pemmaraju and Pir-
wani [54], which computes a O(log2.5 n)-quality embedding of a given unit disk
graph.

In practice, many heuristics are used to compute embeddings efficiently. Var-
ious approaches based on, e.g., distance measurements [55], using eigenvectors
[56] or linear programming [51] etc. have been shown to produce acceptable
results. Still, in theory the problem is not well understood.

Problem 4. Given the adjacency matrix of a unit disk graph, find positions
for all nodes in the Euclidean plane such that the ratio between the maximum
distance between any two adjacent nodes and the minimum distance between any
two non-adjacent nodes is as small as possible.

5 A subsequent paper [54] corrects the bound on the quality to O(log3.5 n
√

log log n).
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Apparently, there is a large gap between the best known lower bound, which is a
constant, and the polylogarithmic upper bound. It is a challenging task to either
come up with a better approximation algorithm or prove a stronger lower bound.

6 Time Synchronization

Many protocols require that the participants be closely synchronized in order
to guarantee an efficient and successful execution. It is therefore mandatory
to provide a distributed clock synchronization algorithm whose objective is to
ensure that the nodes are able to acquire a common notion of time. As the state
of the system is distributed, the participating nodes can synchronize their clocks
by exchanging messages with their neighboring nodes and thereby learn about
the current state of other nodes.

We consider distributed clock synchronization algorithms in the following set-
ting. Given an arbitrary graph G = (V, E) in which nodes can communicate di-
rectly with all other node to which they are directly connected in G. The nodes
that are directly connected to a node v are referred to as the neighboring nodes
of v. The communication between neighboring nodes is assumed to be reliable,
but all messages can have variable delays in the range [0, 1]. The distance be-
tween nodes i and j is defined as the length of the shortest path between i and j,
and the diameter D of G is the maximum distance between any two nodes.

We assume that each node is equipped with a hardware clock H(·) whose
value at time t is H(t) :=

∫ t

0 h(τ) dτ , where h(τ) is the hardware clock rate at
time τ . Furthermore, we make the assumption that the hardware clocks have
bounded drift, i.e., there is a constant 0 ≤ ε < 1 such that 1 − ε ≤ h(t) ≤ 1 + ε
at all times t.

In addition to the hardware clock, each node i is further equipped with a
second, so-called logical clock L(·). The logical clock also increases steadily, just
like the hardware clock, but potentially at a different rate. However, the deviation
between the hardware and the logical clock rate is lower and upper bounded by
specific constants, e.g., the logical clock rate has to be at least half and at most
twice the hardware clock rate at any given time. This restriction ensures that the
logical clock can neither be slowed down nor sped up arbitrarily, which would
trivialize the problem and destroy the relation between the hardware and the
logical clock.

Due to different clock rates the hardware clocks of different nodes might drift
apart. As the hardware clocks cannot be manipulated, the goal is therefore to
minimize the clock skew of the logical clocks. At any point in time, a node may
inform its neighboring nodes about its current logical time. A node receiving such
an update can decide to increase its own logical clock in order to counterbalance
the skew between the clocks. However, the logical clock is not allowed to run
backwards.

A desirable goal is to guarantee that the clock skew between any two nodes
in the network is as small as possible. The bound achievable for this goal is de-
noted the global property of the clock synchronization algorithm. It can be shown



34 T. Locher, P. von Rickenbach, and R. Wattenhofer

that the skew between two nodes at distance d cannot be synchronized better
than Ω(d) by using simple indistinguishability type arguments. Srikanth and
Toueg [57] presented a clock synchronization algorithm, which is asymptotically
optimal in the sense that it guarantees a clock skew of at most O(D) between
any two nodes in a network of diameter D. However, there are executions of this
algorithm causing a clock skew of Θ(D) even between neighboring nodes.

For several distributed applications, such as, e.g., media access control or
event detection, it is mandatory that the clocks between any node and partic-
ularly all nodes in its vicinity are closely synchronized. This is known as the
gradient property of the algorithm that requires a minimal clock skew between
all neighboring nodes. This property was introduced in [58] where a surprising
lower bound on the worst-case clock skew of Ω( log D

log log D ) between neighboring
nodes is proven. If the logical clocks are allowed to remain constant for a certain
period of time, the clock skew between neighboring nodes can in fact be kept
constant [59]. In general, the best known clock synchronization algorithm with a
non-trivial gradient property guarantees that the worst-case skew between any
two neighbors at distance d is at most O(d +

√
D) [60]. Obviously, the gap be-

tween the lower and the upper bound is still fairly large and the goal is to close
this gap.

Problem 5. Nodes in an arbitrary graph are equipped with an unmodifiable
hardware clock and a modifiable logical clock. The logical clock must make progress
roughly at the rate of the hardware clock, i.e., the clock rates may differ by a
small constant. Messages sent over the edges of the graph have delivery times in
the range [0, 1]. Given a bounded, variable drift on the hardware clocks, design
a message-passing algorithm that ensures that the logical clock skew of adjacent
nodes is as small as possible at all times.

The algorithm that guarantees a skew of O(
√

D) [60] between neighboring nodes
requires that a large amount of messages are sent. Another natural question is
whether a good gradient property can also be ensured if bounds on the message
complexity are imposed. Further future work might include faulty or even byzan-
tine nodes which deliberately try to hinder the correct nodes from synchronizing
their clocks.

7 Conclusions

In this paper, we presented five open problems in the field of sensor networks, all
with an algorithmic flavor. Craving for progress, we offer a bag of Swiss chocolate
to anybody who solves one of our problems. As stated before, our selection is
rather random, and other authors for sure would promote other problems at least
equally worthy of being studied. Actually, we would also be quite keen to learn
about these other problems and encourage you to tell us about them. An official
repository of open problems could ignite a fresh way of organizing research in
this area—a way that actually uses the Internet—and could help keeping track
of progress.
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Abstract. The current state of the art of workflow composition over web 
services employ a centralized composite process to coordinate the constituent 
web services. Therefore, the coordinator process is complex, less scalable, and 
bulky. This paper introduces an architecture and associated techniques for 
distributed coordination of these workflows, and a prototype system, namely 
BondFlow system, with capability to control workflow execution using a 
handheld device. We distribute the centralized coordination logic of traditional 
workflows by (i) extending the stateless web services into self-coordinating 
entities using coordinator proxy objects, and (ii) creating the workflow over 
these entities by interconnecting them into a distributed network of objects 
using web bond primitives. Previously, we have developed web bond primitives 
to enforce interdependencies among autonomous entities. The prototypedr 
BondFlow systeh provides a platform to configure such distributed workflows, 
producing coordination components with a footprint small enough to be 
executed on a handheld (footprint no larger than 150 KB). 

1   Introduction 

Web Services (WSs) based applications span domains as diverse as enterprise  
e-commerce applications [3], personal applications [1, 7, 10, 11], and scientific appli-
cations [4, 6]. Thus, the users and developers of these applications are usually non-
computer scientists. Efficient technologies are required to rapidly develop and deploy 
robust collaborative applications leveraging off the existing web services [15]. 
Several of these collaborative applications involve workflows [8], which is the focus 
of this paper.  

Fig. 1 illustrates a purchase order workflow presented in the WS-BPEL specifi-
cation (Web Services Business Process Execution Language) [16]. In Fig. 1a, dark 
arrows depict the control flow dependencies while dashed arrows depict data flow 
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dependencies. Fig. 1b illustrates the software architecture of the WS-BPEL based 
implementation of the workflow. Here, each workflow activity has been modeled as a 
web service. WS-BPEL models the composite workflow process as a separate state-
preserving web process encapsulating all the data flow and control flow requirements. 
This software architecture typically results in complex and centralized logic for 
workflow coordination. This model has two significant drawbacks: 

 

(a) A purchase order workflow 

 
(b) Architecture of traditional WS-BPEL Implementation 

Fig. 1. Web Service Workflow Development 

i) Centralized Coordination: There are both pros and cons in centralized coordination: 
the positive point is to have total control over the behavior of the web process at the 
cost of complex and intricate programming. However, distributed coordination has 
two kinds of advantages over centralized coordination: (i) due to security, privacy, or 
licensing imperatives, some web-based objects will only allow direct pair-wise 
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interactions without any coordinating third-party entity; and (ii) centralized 
workflows suffer from issues of scalability, performance, and fault tolerance [5]. In 
Section 6, we compare and contrast current efforts towards distributed workflow. 
 
ii) Deployment Platforms:  Executing and monitoring workflows over wireless devices 
has significant benefits [9, 10, 11, 12, 22]. Portions of long-running workflows can 
reside on handheld devices providing real-time monitoring and controlling capabilities. 
The current platforms consume significant amount of resources and are difficult to 
deploy on resource-constrained wireless devices. In Section 6, we also discuss 
handheld-based web service deployment and execution platforms. 

1.1   Our Approach and Contributions 

This paper discusses a two-layered software architecture for distributed coordination, 
and demonstrates a handheld-based execution capability of workflows using our 
prototype BondFlow system [13, 14]. 
 
i) Distributed Coordination: We propose a two-layered workflow software 
architecture, which greatly simplifies the workflow development task by distributing 
the complexity of the centralized workflow coordination logic over stateless web 
services of traditional systems such as BPEL. The stateless web services are 
empowered by “Coordinator Proxy Objects (CPOs)” into self-coordinating stateful 
entities. Next, the high-level web bond primitives are employed to interlink the 
coordinator proxy objects, capturing the workflow logic. Each CPO maintains and 
enforces its own dependencies during the execution of the workflow.  The workflows 
we create are inherently distributed. Details of our two-layered architecture are 
presented in Section 3.    
 
ii) Handheld-Based Execution: This was an exercise in engineering as well as in 
system design, given the limited capabilities of handhelds such as iPAQs. The 
footprint of the coordinator objects generated by Bondflow system is small (~10KB). 
The intermediate system-generated files are less than 100 KB for sufficiently large 
workflows. The footprint of the BondFlow runtime system is 24KB. Thus the byte 
size of our workflows are no more than 150KB. The additional third party software 
packages, such as those of SOAP client and XML parser, account for 115KB. The 
execution time workspace on a Java-enabled handheld used by the BondFlow system 
is 5.4 MB including JVM (Jeode 1.2 handheld Java version). Therefore, we have been 
able to execute our workflows on both wired and wireless infrastructures. For 
communication among the coordinator objects, we employed SOAP in wired devices 
and our SyD middleware in wireless devices. SyD is our recently prototyped 
middleware platform to develop and execute distributed applications over handheld 
devices [1]. Lightweight SyD Listener component enables handheld devices to host 
server objects. 

The remainder of the paper is organized as follows. Section 2 describes  
the background work on web coordination bonds, the SyD middleware framework, 
and the BondFlow system design and implementation details. Section 3 presents a 
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two-layered workflow software architecture and distributed workflow coordination 
methodology of the BondFlow system. Section 4 discusses the handheld-based 
execution of workflows. Section 5 presents details of our system evaluation. In 
Section 6, we discuss the related work. Finally, Section 7 presents our future plan of 
work and conclusions. 

2   Background 

Here, we briefly discuss web coordination bonds, SyD middleware platform, and the 
BondFlow system architecture. 

 
Web Bonds [13]: We have proposed the ideas of web bonds as a set of primitives for 
web service coordination/choreography. There are two types of web bonds: 
subscription bonds and negotiation bonds. The subscription bonds allow automatic 
flow of information and control from a source entity to other entities that subscribe to 
it. This can be employed for synchronization as well as for more complex changes, 
needing data or event flows. The negotiation bonds enforce dependencies and 
constraints among entities and trigger changes based on constraints satisfaction. A 
negotiation bond from A to B has two interpretations: pre-execution and post-
execution. In case of pre-execution, in order to start the activity A, B needs to 
complete its execution. In case of post-execution, in order to start the activity A, A 
needs to make sure that B can be completed afterwards. Both pre- and post-execution 
interpretations of negotiation bonds enforce atomicity. In this paper, unless specified, 
we have implicitly employed the pre-execution type of negotiation bonds.  

It has been established that web bonds have the modeling power of extended Petri 
nets. They can express all the benchmark patterns for workflow and for inter-process 
communication; a feat that almost all previously proposed artifacts and languages are 
not capable of comprehensively [13]. Here we illustrate the use of negotiation and 
subscription bonds for modeling workflow dependencies by modeling producer-
consumer scenario. 

Place Order ()Accept Order ( )

Dispatch Goods( ) Accept Delivery( )

Producer Web

Process

Negotiation Bond

(NB)Subscription

Bond (SB)

NB

Consumer Web

Process

NB: Negotiation
Bond

SB: Subscription
Bond  

Fig. 2. Coordinating Producer-Consumer web Processes 
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Modeling Dependencies Using Web Bonds  
Fig. 2 shows how a classic relationship of a producer and consumer web process can 
be modeled using two negotiation bonds.  The “Place_Order” method at a consumer 
process needs to ensure that the producer has enough inventories such that the 
corresponding “Accept_Order” method will get executed successfully.  Before 
guaranteeing this, the “Accept_Order” probably will check the current and projected 
inventory. A negotiation bond is created from consumer web process to producer web 
process. This is the basic situation for deploying a negotiation bond. Once order has 
been placed by the consumer and accepted by the producer, a subscription bond 
serves notice to “Dispatch_Goods” method.  Note that the web bonds are useful 
within a web process as well. Again before “Dispatch_Goods” executes, it needs to 
ensure that consumer’s “Accept_Delivery” method can be completed successfully 
(ensuring that enough space is available, for example). 

 
SyD Middleware [1]: The System on Mobile Devices (SyD) middleware platform 
addresses the key problems of heterogeneity of device, data format and network, and 
of mobility. Each device is managed by a SyD deviceware that encapsulates it to 
present a uniform and persistent object view of the device. One of the main 
components of the SyD middleware is SyD Directory service. The SyD Directory 
provides user/group/service publishing, management, and lookup services to SyD 
users and device objects. SyD deviceware consists of SyDListener and SyD Engine 
components. SyD Listener provides a uniform object view of device services, and 
receives and responds to clients’ synchronous or asynchronous XML-based remote 
invocations of those services.  It also allows SyD device objects to publish their 
services locally to the listener and globally through the directory service. SyD Engine 
allows users/clients to invoke individual or group services remotely via XML-based 
messaging and aggregates responses.  

 
BondFlow System [14]: The BondFlow system has been developed as a platform to 
configure and execute workflows over web services (Fig. 3). Workflow configuration 
module consists of web service interface module, coordinator proxy object generator 
module, and workflow configuration module. Workflow execution module consists of 
web bond manager, communication layer, and JVM runtime.  

 

Fig. 3. BondFlow System 
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The WS Interface module is the system’s interface to the web services. It deals 
with locating the web services of interest for the user and parsing those web service 
descriptions (WSDL) for desired data. Note that selecting a suitable web service itself 
is a significant research issue and in this paper we rely on available web services 
directories such as UDDI. We have used Apache-Axis implementation of the web 
services. The WSDL parser uses WSDL4J API for WSDL parsing. It parses the 
WSDL file for required components, and then the methods and parameter list is 
shown to the user for his/her reference. A parsed WSDL file is stored in the 
persistence storage if the user opts to save the web service. Data is stored in an XML 
format. Upon selection of a particular WS for the workflow, a coordinator proxy 
object is generated. The coordinator object code is generated based on the parsed 
WSDL file of the selected WS and the proxy generator template (Section 3.1). The 
responsibility of the configuration manager is twofold. First, it handles bond related 
operations such as creating, deleting, and updating web bonds, and generating the 
bond repository for each web service selected. Second, it allows expert users to add 
customized features to the workflow. This is one of the key modules in our system 
that guarantees high-level programmability for expert users. Collection of coordinator 
objects together with corresponding bond repository represents a configured 
workflow.  

The BondFlow execution module consists of two modules: web bond manager and 
the runtime information handler. The web bond manager enforces workflow 
constraints at runtime whilst runtime information handler stores method invocation 
information and other workflow related dynamic information for long-lived 
workflows (Section 3.2).  

3   A Two-Layered Workflow Software Architecture 

As shown in Fig. 4a, the architecture of the traditional workflow code is “single 
layered” where developer needs to program the workflow from scratch (ensure 
communication, workflow coordination, and intermediate data processing - Fig. 4a). 
In contrast, in the BondFlow system, workflow coordination has been encapsulated as 
a separate layer using web coordination bonds. In addition, the system generates Java-
based coordinator objects to represent participating web services in the workflow. The 
coordinator object encompasses all the coordination capabilities of web bond artifacts 
(Fig. 4b). Coordinator proxy object communicates with the web service through 
method invocations and is state preserving. Capabilities of web coordination bonds 
including modeling workflow dependencies is encapsulated in the upper layer  
(Fig. 4b). Developer’s responsibility is to configure the workflow using high level 
constructs by linking coordinator objects appropriately and specifying constraints. 
The idea of Web service coordinator proxy object together with underlying web bond 
primitives encapsulates the workflow coordination layer. This simple, but powerful 
idea empowers web services and makes workflow configuration less programming 
intensive. We believe this concept has enough potential to lead a fundamental shift in 
workflow development over web services. 
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(a) Architecture of workflow using traditional 
systems 

(b) Architecture of workflow using the 
BondFlow system 

Fig. 4. Two-Layered Workflow Software Architecture 

3.1   Web Service Coordinator Proxy Object (CPO) 

Fig. 5 illustrates components of the coordinator proxy object. The coordinator object 
provides the same interface as the web service provides to the outer world. Web 
service method invocations of the workflow take place through the coordinator object 
and the web bond coordination layer ensures that pre and post method invocation 
dependencies are satisfied. Each coordinator object has a bond repository, a set of 
user-defined constraints (if nay), and runtime information associated with it. The bond 
repository consists of all the workflow dependences related to the coordinator object 
(participating web service).      

 

Fig. 5. Web Service Coordinator Proxy Object 
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constraints represent the additional dependency conditions (dependencies not defined 
using web bonds) needed to be satisfied while enforcing workflow dependencies. 
User defined constraints have been discussed in section 3.2. As shown in Fig. 6, each 
web service method call is encapsulated by a negotiation and a subscription bond 
check. The negotiation bonds enforce pre-method invocation dependencies while the 
subscription bonds enforce post method invocation dependencies.  

Negotiation

Bonds (NB)?

Subscription

Bonds (SB)?

Enforce NB

Constraints

Web Service

Invocation

Enforce SB

constraints

Y

N

Y

N

 

Fig. 6. Flow within a Proxy Object 

This logic ensures that workflow dependencies are satisfied with associated WS 
method invocation. For example, upon receiving an invocation, CPO requests the 
“Execution Module” to enforce pre-execution dependencies (enforced using a 
network of negotiation bonds). Consequently, the “Web Bond Manager” checks the 
corresponding bond repository and informs other coordinator objects to enforce the 
dependency (Fig. 4). Here, enforcing dependency implies successful invocation of 
corresponding web service methods. Upon receiving the request, other objects check 
their runtime information (status of the method invocation - success or failure and 
intermediate data) and notify the status of the negotiation bond dependencies. The 
“Web Bond Manager” collects all the responses and informs the proxy about the 
outcome. Subsequently, the proxy object invokes the actual web service method, 
updates its runtime state information, and enforces post-execution dependencies 
(enforced using a network of subscription bonds). In this architecture, each proxy 
object maintains and enforces workflow dependencies locally, allowing decentralized 
workflow coordination. 

3.1.1   Bond Repository 
The workflow configuration process starts by creating bonds among methods of 
selected web services to reflect dependencies (negotiation and subscription bonds). 
Bond constraints are specified during the bond creation time and the bond 
configuration is stored in a persistent storage in XML format.  
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Fig. 7. Elements of a Typical “Bond” Repository 

Fig. 7 shows the structure of a typical bond repository. The bond data store 
(repository) consists of four elements. The first element is to identify the web service 
(hence the coordinator objects) the repository belongs to. The second element 
identifies the workflow/application to which the repository belongs. Source and 
destination methods and associated constraints among bonds are in the next two 
elements.  

3.2   Web Bond Layer 

Here, we illustrate the workflow configuration using high-level web coordination bond 
constructs using purchase order case study workflow. Fig. 8 illustrates the modeling of  
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purchase order workflow using a network of web coordination bonds. Five web 
services are involved in the workflow. The system generates coordinator proxy objects 
for each web service. Then a network of web bonds is created among methods of these 
coordinator objects to enforce the workflow constraints. For example, the “receive 
purchase order” web service needs to pass control to “price calculation”, “find 
shipper”, and “production and shipment web services” once it is completed. In order to 
model this split-dependency, Receive_PO() method has three subscription bonds to 
each of Initiate_PC(), Find_Shipper(), and Initiate_Production() methods. Similarly, 
rest of the dependencies are modeled using other negotiation and subscription bonds.  

3.2.1   High-Level Programmability 
Simple workflow constraints such as AND-split can easily be enforced using web 
coordination bonds [13]. However, complex control patterns such as “Sync-merge” 
and “Milestone” need developer designed selection criteria [13]. Such customizations 
can be incorporated by developing user-defined libraries (Java classes) and 
integrating them to the system library (typically complex workflow need such 
customizations). Then the triggers/constraints portion of the bond repository refers to 
the user-defined library (Figure 6). The BondFlow system is capable of extending the 
default web bond constraints allowing a plug-in architecture that extends the 
scalability of the system. Furthermore, it empowers the system’s ability not only to 
support the well known workflow patterns but also any arbitrary patterns to be created 
and deployed.  

The extended bond constraints (user defined constraints) define one or more 
“Roles.” Each role performs a set of coordinating activities in order to enforce the 
semantics of the role. Furthermore, these roles are to be assigned to specific web 
services (nodes) in the workflow, thus allowing distributed coordination among this 
web services. The BondFlow system provides a common interface where new web 
bond constraints can be plugged-in. The extended bond constraints define a JAR file. 
This package contains: (i) roles.xml: This file contains definition of all the roles and 
their binding to specific constraints classes:  (ii) Set of class files: These class files 
relate to each role defined in roles.xml. There are no restrictions as to the name of the 
class files. After preparing the JAR file, it is stored in the /plug-ins directory of the 
workflow configuration manager. 

Once the workflow has been configured, it can be deployed on a single device or it 
can be distributed among several devices. They communicate with each other to 
enforce workflow dependencies. If the workflow resides in a single device, then the 
communication among coordinator objects is local in-memory calls. If the coordinator 
objects are distributed in the network, then SOAP or other suitable communication 
protocol can be employed to facilitate inter-object communication. We have imple-
mented SOAP based communication in wired infrastructure and SyD middleware 
based communication in wireless infrastructure. 

4   Handheld-Based Execution  

The workflow applications have been executed on HP's iPAQ models 3600 and 3700 
with 32 and 64 MB storage running Windows CE. There are two possible deployment 
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strategies. First, the entire workflow can reside in a single wireless device. In this 
case, communication among coordinator objects is via local in-memory calls. Actual 
web service call is made using SOAP (kSOAP). Second, the workflow can be 
distributed among several iPAQ’s (Fig. 9). This scenario is important in cases where 
some portions of the workflow can be monitored and executed by a selected set of 
users on specific devices and/or with specific security settings.  

In this case, coordinator objects need to communicate using a remote messaging 
system to enforce dependences. We have employed the SyD Listener of the SyD 
middleware. The SyD Listener enables handheld devices to communicate among 
applications deployed on other peer devices (Fig. 9). SyD Listener is a lightweight 
module in our SyD middleware framework for enabling mobile devices to host server 
objects. In order to communicate using SyD Listener, first coordinator objects need to 
be registered in the SyD Directory. SyD Directory maintains its own database to store 
information about all the SyD application objects together with associated devices and 
delivers location information of devices and services (methods) dynamically. SyD 
objects can lookup remote objects through SyD Directory. The SyD Engine facilitates 
the object to actually invoke a remote object. SyD Listener keeps listening for any 
connection requests and delegates the control to the SyD Engine module.  
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Fig. 9. Workflow Distributed among Several iPAQ’s 

Coordinator Object Registration as a SyD Application Object [1]: The proxy objects 
register all the method names along with the list of parameters (their data types) with 
the registry. Initially, all the entities are converted into required XML format using 
SyD Doc and then the registration process with SyD Directory begins. Once bound in 
the registry, these coordinator objects wait for invocation from other proxies. In this 
scenario, the registered proxies act as servers waiting for invocation from clients.  

 
Coordinator Object Invocation through SyD Engine [1]: When a workflow containing 
SyD coordinator application object encounters the presence of web bonds with other 
applications, it looks up the desired web service proxy in the SyD Directory (Fig. 8). 
SyD Directory returns the list of parameters for the specified method. Depending 
upon the parameters, required values are passed to the SyD Engine as an XML 
document. The SyD Engine of the client (in this case the source web service) invokes 
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its SyD Listener that in turn calls the server’s SyD Listener by opening a socket 
connection. The result is returned to the client as an XML document. In this 
architecture, each device can act as both server and the client. They become capable 
of hosting server objects. As shown in Fig. 8, an actual web service call is made using 
SOAP (kSOAP).  

5   System Evaluation  

Hardware software setup: We ran our experiments on a high performance SunOS 
5.8 server. We built wrappers using JDK 1.4.2. The WSDL parser has been built 
using WSDL4J API. WSLD4J API is an IBM reference implementation of the JSR-
110 specification (JavaAPI’s for WSDL). NanoXML 2.2.1 is used as the XMLparser 
for JAVA. Various publicly available web services including Xmethod’s SOAP based 
web services (http://www.xmethods.net/) have been used for our experiments. For 
wireless device experiments we have used HP's iPAQ models 3600 and 3700 with 32 
and 64 MB storage running Windows CE/Pocket PC OS interconnected through IEEE 
802.11 adapter cards and a 11 MB/s Wireless LAN. Jeode EVM personal Java 1.2 
compatible has been employed as the Java Virtual Machine.  

Table 1. Workflow execution timings 

Workflow Total 
execution 
time (ms) 

BondFlow related 
timings (ms) 

BondFlow related (%) 
computation   

Purchase order  
# of NB= 4,  #of  

SB= 9 

7820 1048 13.4 

Online book 
purchase 

# of NB= 5  #of  
SB=  6 

2483 102 4.1 

Table 2. Footprint of the workflow 

 Workflow Bond repository 
(KB) 

Proxy objects 
(KB) 

Total workflow 
(KB) 

 Purchase order 7.10 25.4 32.5 

 Online book     
 purchase 

5.82 19.8 25.62 

System performance details: We have deployed and executed workflows from the 
above case studies including the purchase order workflow on both wired and wireless 
infrastructure. Table 1 shows that the workflow execution timings for the two case 
study workflows for both wired and wireless settings. Bond related time for both 
workflows are approximately ~10% of the time without the BondFlow system. The 
bond related time accounts for times taken to check workflow dependencies in bond 
repository and initiate appropriate method calls on remote web services (coordinator 
objects). Table 2 shows the footprints of two workflows. The coordinator objects and 
corresponding bond repositories accounts for ~25% and ~75% respectively. The 



 Distributed Coordination of Workflows over Web Services 51 

footprint of the proxy object is small (~10KB) and typically increases by 0.3 KB per 
additional operation (method) of the web service. Intermediate system generated files 
are less than 100 KB for a sufficiently large workflow. Typically the footprint of the 
bond repository increases 0.3 KB per each additional bond. Thus, within a very small 
amount of additional storage for the proxy objects, we have been able to get 
substantial gains in the speed of the workflow.  

6   Related Work and Discussion 

Several approaches have been proposed toward distributed web service coordination 
and peer-to-peer interaction among web services. Among such systems, IBM 
symphony [5] decentralizes the coordination by partitioning centralized workflow 
specification into separate modules so that they can run in a distributed setting. 
However, there are limitations to such efforts. First, it is necessary to develop the 
centralized BPEL code and then partition and distribute it among participant entities. 
Second, usually, there are problems partitioning the code in complex application 
scenarios such as long-running transactional applications without proper infra-
structure support. The Self-Serv project presented in [15] proposes a peer-to-peer 
orchestration model for web services. It introduces a “coordinator,” which can act as a 
scheduler for participating web services. Several coordinators can control the 
execution of the workflow in peer-to-peer fashion. In [17] authors propose a 
distributed and decentralized process approach called OSIRIS that allows peer-to-peer 
communication among participating web services. However, their approach needs 
meta information to be stored in a central location. Also, in order to enforce fork/join 
dependencies they introduce a new join node exclusive from workflow nodes. In 
contrast to the Self-Serv and OSIRIS approaches, our coordinator proxy object is 
dynamically generated based on the description of participating web service and it 
encapsulates all the coordination capabilities. The proxy object enforces its own 
dependencies. This enhances each web service facilitating more fine-grained 
decentralization of the coordination. In [19] authors propose a system to distribute the 
execution of business applications using web services by adding business rules into 
the SOAP messages. Business rules encoded in the SOAP header specify the order of 
execution. Messages are decoded and processed by special processing units called 
SOAP intermediaries. In [18] authors propose a service-oriented distributed business 
rules system and its implementation based on WS-Coordination. Web Service 
Resource (WSRF) framework is another proposal towards stateful web services. It 
provides standardization representation to stateful resources and the web service 
interface provides functionalities to access (read, update and query) state information. 
This state information is used to process web service messages [21]. Comparative 
study of various implementations of WSRF is presented in [20]. In contrast to WSRF 
approach, the BondFlow system maintains state information of workflow execution 
and processes messages. State is attached to the coordinator proxy object. Web 
service interface need not be changed and web service is relieved from state handling 
functionalities.  

In [2, 22], authors describe issues related to service composition in mobile environ-
ments and evaluate criteria for judging protocols that enable such composition. The 



52 J. Balasooriya et al. 

composition protocols are based on distributed brokerage mechanisms and utilize a 
distributed service discovery process over ad-hoc network connectivity. In [7] authors 
present an architecture for mobile device collaboration using web services. In [10] 
authors present a rapid application development environment for mobile web services. 
Authors of [11, 12] present web service based mobile application integration 
framework. However, a key limitation of most of these technologies is that they treat 
handheld devices only as clients. However, our SyD middleware gives the server 
capabilities to small hanheld device. The BondFlow system uses the SyD middleware 
to facilitate device to device communication and coordination among devices. Also, 
the small footprint (~150 KB) of our software system make it easily deployable on 
handheld devices.   

7   Conclusions and Future Work 

In this paper, we presented the decentralized workflow coordination architecture of 
the BondFlow system. The concept of the coordinator proxy object is central to our 
decentralized architecture. A preliminary study of implementation prototype shows 
that the bond related time is less than ~10% of the workflow execution time. Also, the 
small footprint of coordinator proxy object (~10KB) enables them to reside on Java-
enabled handheld devices. In contrast to other systems such as Self-Serv, the idea of 
the coordinator proxy object enhances each web service facilitating more fine-grained 
decentralization of the coordination. Our goal is to use this infrastructure to model 
and implement actual workflows in typical biological and E-commerce applications to 
help biological researchers on one hand and international supply-chain technology 
users on the other.  
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Abstract. Consensus is an important building block for building repli-
cated systems, and many consensus protocols have been proposed. In
this paper, we investigate the building blocks of consensus protocols and
use these building blocks to assemble a skeleton that can be configured
to produce, among others, three well-known consensus protocols: Paxos,
Chandra-Toueg, and Ben-Or. Although each of these protocols specifies
only one quorum system explicitly, all also employ a second quorum sys-
tem. We use the skeleton to implement a replicated service, allowing us
to compare the performance of these consensus protocols under various
workloads and failure scenarios.

1 Introduction

Computers will fail, and for many systems it is imperative that such failures
be tolerated. Replication, a general approach for supporting fault tolerance, re-
quires a protocol so replicas will agree on values and actions. The agreement
or consensus problem was originally proposed in [1]. Many variants and corre-
sponding solutions have followed (see [2] for a survey of just the first decade,
containing well over 100 references).

This paper focuses on protocols for Internet-like systems — systems in which
there are no real-time bounds on execution or message latency. Such systems
are often termed asynchronous. The well-known FLP impossibility [3] result
proved that consensus cannot be solved even if only one process can fail. Prac-
tical consensus algorithms sidestep this limitation using one of two approaches:
i) leader-based algorithms use a failure detector that captures eventual timing
assumptions, and ii) randomized algorithms solve a non-deterministic version of
consensus and eventually decide with probability 1.

Guerraoui and Raynal [4] point out similarities between different consensus
protocols. They provide a generic framework for consensus algorithms and show
that differences between the various algorithms can be factored out into a func-
tion called Lambda. Each consensus algorithm employs rather different imple-
mentations of Lambda. Later, Guerraoui and Raynal [5] show that leader-based
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algorithms can be factored into an Omega module and an Alpha module, where
all differences are captured by differences in Omega.

This paper is a next step in unifying consensus algorithms. By breaking down
consensus algorithms into building blocks, we show that different consensus al-
gorithms can be instantiated from a single skeletal algorithm:

– Going beyond the work reported in [5], we present the building blocks of con-
sensus algorithms and how they can be used to build a skeletal consensus
algorithm. The skeletal algorithm provides insight into how consensus pro-
tocols work, and we show that consensus requires not one but two separate
quorum systems;

– We show that both leader-based and randomized algorithms can be instan-
tiated from our skeletal algorithm by configuring the two quorums systems
that are used and the way instances are started. This approach can be used
to instantiate three well-known consensus protocols: Paxos [6], Chandra-
Toueg [7], and Ben-Or [8];

– The skeleton provides a natural platform for implementation of multiple
consensus protocols from a single code base;

– And we present a performance comparison of these protocols under varying
workload and crash failures. The implementation reveals interesting trade-
offs between various design choices in consensus algorithms.

The rest of this paper is organized as follows. Section 2 describes the con-
sensus problem and proposes terminology. Next, we present the building blocks
of consensus protocols in Section 3; these building blocks are used to build a
skeletal consensus algorithm in Section 4. Section 5 illustrates the instantiation
of particular consensus algorithms using the skeletal algorithm. Section 6 de-
scribes the implementation of the skeleton and compares the performance of
three well-known consensus protocols. Section 7 concludes.

2 The Consensus Problem

Computers that run programs – nodes – are either honest, executing programs
faithfully, or Byzantine [9], exhibiting arbitrary behavior. We will also use the
terms correct and faulty, but not as alternatives to honest and Byzantine. A
correct node is an honest node that always eventually makes progress. A faulty
node is a Byzantine node or an honest node that has crashed or will eventually
crash. Note that honest and Byzantine are mutually exclusive, as are correct and
faulty. However, a node can be both honest and faulty.

We assume that each pair of nodes is connected by a link, which is a bi-
directional reliable virtual circuit and therefore messages sent on this link are
delivered, eventually, and in the order in which they were sent (i.e., an honest
sender keeps retransmitting a message until it receives an acknowledgment or
crashes). A receiver can tell who sent a message (e.g., using MACs), so a Byzan-
tine node cannot forge a message so it is indistinguishable from a message sent
by an honest node.
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Because our model is asynchronous, we do not assume timing bounds on
execution of programs or on latency of communication. We also do not assume
that a node on one side of a link can determine whether the node on the other
side of the link is correct or faulty. Timeouts cannot reliably detect faulty nodes
in an asynchronous system, even if only crash failures are allowed.

In the consensus problem nodes run actors that are either proposers, each of
which proposes a proposal, or deciders, each of which decides one of the proposals.
Assuming there exists at least one correct proposer (i.e., a proposer on a correct
node), the goal of a consensus protocol is to ensure each correct decider decides
the same proposal, even in the face of faulty proposers. A node may run both
a proposer and a decider—in practice a proposer often would like to learn the
outcome of the agreement.

Why is the consensus problem hard? Consider the following strawman proto-
col: each decider collects proposals from all proposers, determines the minimum
proposal from among the proposals it receives (in case it received multiple pro-
posals), and decides on that one. If no nodes were faulty, such a protocol would
work, albeit limited in speed by the slowest node or link.

Unfortunately, even if only crash failures are possible, deciders do not know
how long to wait for proposers. If deciders use time-outs, then each might time-
out on different sets of proposers, so these deciders could decide different propos-
als. Thus, each decider has no choice but to wait until it has received a proposal
from all proposers. But if one of the proposers is faulty, such a decider will wait
forever and never decide.

In an asynchronous system with crash failures (Byzantine failures include
crash failures), there exists no deterministic protocol in which correct deciders
are guaranteed to decide eventually [3]. We might circumvent this limitation by
allowing some correct deciders not to decide. Instead, we will embrace a slightly
stronger requirement: that the consensus protocol never reach a state in which
some correct decider can never decide. Since the strawman protocol of deciding
the minimum proposal can reach a state in which deciders wait indefinitely for a
faulty proposer, it is not a consensus protocol, even with respect to the relaxed
requirement.

Formally, a protocol that solves the consensus problem must satisfy:

Definition 1. Agreement. If two honest deciders decide, then they decide the
same proposal.

Definition 2. Unanimity. If all honest proposers propose the same proposal v,
then an honest decider that decides must decide v.

Definition 3. Validity. If a honest decider decides v, then v was proposed by
some proposer.

Definition 4. Non-Blocking. For any run of the protocol that reaches a state in
which a particular correct decider has not yet decided, there exists a continuation
of the run in which that decider does decide on a proposal.
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Agreement is a safety property that captures what is informally meant by
“consensus;” Unanimity and Validity are non-triviality properties; and Non-
Blocking is a weaker version of the non-triviality requirement that all correct
deciders eventually decide. Non-Blocking makes consensus solvable without
trivializing the problem. Such a weakening of the problem is present in all algo-
rithms that “solve” the consensus problem, since there cannot exist a solution
to consensus with a strong liveness requirement [3].

3 Building Blocks

The strawman (viz., decide the minimum proposal) protocol presented in Sec-
tion 2 is not a solution to the consensus problem because a faulty proposer can
cause correct deciders to wait indefinitely, violating Non-Blocking. To remedy
this, a consensus protocol might invoke multiple instances, where an instance is
an execution of a sub-protocol that itself might not decide. Such instances have
also been called rounds, phases, or ballots. Ensuring consistency among decisions
made by multiple instances is central to the design of consensus protocols. In
this section, we give building blocks in common to different consensus protocols;
in the next section, we show how these building blocks can be combined to create
full consensus protocols.

3.1 Instances

Instances may run in parallel with other instances. An instance decides a pro-
posal if an honest decider in that instance decides a proposal. All honest deciders
that decide in an instance must be guaranteed to decide the same proposal. An
instance may not necessarily decide any proposals. If multiple instances decide,
they must decide the same proposal.

Instances are identified by instance identifiers r, ... from a totally ordered
set N̄ (which can be, but does not have to be, the set N on naturals). Instance
identifiers induce an ordering on instances, and we say that one instance is before
or after another instance, even though instances may execute concurrently.

We name proposals v, w, ... . Within an instance, proposals are paired with
instance identifiers. A pair (r, v) is called a suggestion, if v is a proposal and r
an instance identifier. A special suggestion ⊥ is used to indicate the absence of
a specific proposal.

3.2 Actors

We employ two new types of actors in addition to proposers and deciders:
archivers and selectors.1 A proposer sends its proposal to the selectors. Selec-
tors and archivers exchange messages and occasionally archivers inform deciders
about potential values for decision. Deciders apply a filter to reach a decision.
1 A node may run multiple actors, although each node can run at most one archiver

and at most one selector.
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Selectors select proposals, and archivers archive suggestions. Each archiver re-
members the last suggestion that it has archived. The initial archived suggestion
of an archiver is ⊥.

The objective of selectors is to reach a decision within an instance, while the
objective of archivers is to maintain a collective memory that ensures decisions
are remembered across instances and therefore conflicting decisions are avoided.

At any point in time, a selector or archiver executes within a single instance; it
sends and receives messages that are part of the instance execution. Selectors can
lose their state on a crash and subsequently join any instance upon recovery, even
a prior one. Archivers can switch instances but must progress to later instances,
and therefore keep their state on non-volatile storage.

3.3 Extended Quorum Systems

In order to ensure consistency in decisions, actors in a consensus protocol use
quorums. An extended quorum system is a quadruple (P , M, Q, G). P is a set
of nodes called the participants. M, Q, and G are each a collection of subsets of
participants (that is, each is a subset of 2P). M is the collection of maximal-wait
sets, Q the collection of quorum sets, and G the collection of guarded sets. Each
is defined below.

Crashed or Byzantine participants might never respond to requests. In an
instance, an actor tries to collect as many responses to a broadcast request as
possible; it stops awaiting responses when it is in danger of waiting indefinitely.
M characterizes this — it is a set of subsets of P , none contained in another,
such that some M ∈ M contains all the correct nodes.2 An actor stops waiting
for responses after receiving replies from all participants in M .

A quorum set is a subset of P such that the intersection of any two quorum
sets must contain at least one correct node. A subset of P is a guarded set if
and only if it is guaranteed to contain at least one honest participant. Note, a
guarded set may consist of a single participant that could be crashed but is not
Byzantine.

An extended quorum system must satisfy the follow properties:

Definition 5. Consistency. The intersection of any two quorum sets (including
a quorum set with itself) is guaranteed to contain a correct participant.

Definition 6. Opaqueness. Each maximal-wait set contains a quorum consist-
ing entirely of honest participants.

The simplest example of extended quorum system are threshold quorum systems;
Table 1 summarizes requirements for P , M, Q, and G in (n, t)-threshold systems.
Other quorum systems may be more appropriate for particular applications.
See [11] and [10] for advantages and disadvantages of various quorum systems
for crash and arbitrary failure models respectively.
2 For those familiar with Byzantine Quorum Systems [10], M is the set of complements

of the fail-prone system B. For the purposes of this paper, it is often more convenient
to talk about maximal-wait sets.
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Table 1. Size requirements for Threshold Quorum Systems
that satisfy consistency and opaqueness

Crash Byzantine
guarded set (in G) > 0 > t
quorum set (in Q) > n/2 > (n + t)/2
maximal-wait set (in M) = n − t = n − t
set of participants (P) > 2t > 5t

One degenerate
extended quorum
system, used in
some well-known
consensus protocols,
is a leader extended
quorum system: it
involves one partic-
ipant (the leader),
and that partici-
pant by itself forms the only maximal-wait set in M, quorum in Q, and guarded
set in G. Because quorum sets have to satisfy consistency, the leader has to be
honest.

3.4 Guarded Proposal

Selectors in some instance r must be careful about selecting proposals that can
conflict with decisions of instances earlier than r. Before selecting a proposal in
an instance, a selector obtains a set L of suggestions from each participant in a
maximal-wait set of archivers. A proposal v is considered a potential-proposal if L
contains suggestions containing v from a guarded set and, therefore, at least one
honest archiver sent a suggestion containing v. The selector identifies a guarded
proposal of L, if any, as follows:

1. Consider each potential-proposal v separately:
(a) Consider all subsets of suggestions containing v from guarded sets of

archivers. The minimum instance identifier in a subset is called a guarded-
instance-identifier ;

(b) The maximum among the guarded-instance-identifiers for v is called
the associated-instance-identifier of v. (Note, because v is a potential-
proposal, at least one guarded-instance-identifier exists and thus the
maximum is well-defined.) The support-sets for v are those subsets of
suggestions for which the guarded-instance-identifier is the associated-
instance-identifier;

2. Among the potential-proposals, select all proposals with the maximal
associated-instance-identifier. If there is exactly one such potential-proposal
v′, and v′ �= ⊥, then this is the guarded proposal. Otherwise there is no
guarded proposal.

If a decider obtains suggestions (r, v) from a quorum of archivers (and conse-
quently decides), then any honest selectors in instances at least r are guaranteed
to compute a guarded proposal v′ such that v′ = v (unless they crash). If a
selector fails to compute a guarded proposal in a particular instance, then this
is both evidence that no prior instance can have decided and a guarantee that
no prior instance will ever decide. However, the reverse is not true. If a selector
computes a guarded proposal v′, it is not guaranteed that v′ is or will be decided.
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4 Assembling the Pieces

The building blocks described in the previous section can be used to populate
a skeletal algorithm, which in turn can be instantiated to obtain particular con-
sensus algorithms. The skeletal algorithm specifies the interaction between the
actors. It does not, however, define the quorums that are used, the mechanisms
for invoking new instances, or other protocol-specific details. A consensus pro-
tocol must specify these details, and some options are described in Section 5.

4.1 The Skeletal Algorithm

The skeletal algorithm defines actions by actors in each instance. Figure 1 shows
the behavior of each actor.

Each selector, archiver, and decider participates in an extended quorum sys-
tem and exchanges messages of the form

〈message-type, instance, source, suggestion〉

An extended quorum system E = (P , M, Q, G) has the following interface:

- E .broadcast(m): send message m to all participants in P ;
- E .wait(pattern): wait for messages matching the given pattern (specifies, for

example, the message type and instance number). When the sources of the
collected messages form an element or a superset of an element of M, return
the set of collected messages;

- E .uni-quorum(set of messages): if the set of messages contains the same sug-
gestion from a quorum, then return that suggestion.3 Otherwise, return ⊥;

- E .guarded-proposal(set of messages): return the guarded proposal among
these messages, or ⊥ if there is none.

The skeletal algorithm uses two separate extended quorum systems. Archivers
form an extended quorum system A that is the same for all instances; selectors
use A to find the guarded proposal, preventing selection of proposals that conflict
with decisions in earlier instances. Selectors form a second extended quorum
system Sr , which may be different for each instance r; archivers in instance r
use quorums of Sr to prevent two archivers from archiving different suggestions
in the same instance.

Deciders, although technically not part of an instance, try to obtain the same
suggestion from a quorum of archivers in each instance. For simplicity of presen-
tation, we associate deciders with instances and have them form a third extended
quorum system, D.

Returning to Figure 1, archivers start a new instance by sending their cur-
rently archived suggestion ci to the selectors (A.1). Each selector awaits select
messages from a maximal wait set (S.1) and determines if one of the suggestions
it receives could have been decided in a previous instance (S.2). If so, it selects

3 Quorum consistency ensures at most one such suggestion.
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the corresponding proposal. If not, it selects one of the proposals issued by the
proposers (S.3). The selector composes a suggestion from the selected proposal
using the current instance identifier, and sends that suggestion to the archivers
(S.4).

At the start of instance r, each archiver i executes:

(A.1) send ci to all participants (selectors) in Sr:
Sr.broadcast(〈select, r, i, ci〉)

Each selector j in Sr executes:

(S.1) wait for select messages from archivers:
Lr

j := A.wait(〈select, r, ∗, ∗〉);
(S.2) see if there is a guarded proposal:

vr
j := A.guarded-proposal(Lr

j );
(S.3) if not, select from received proposals instead:

if vr
j = ⊥ then vr

j := Pj .pick(r) fi;
(S.4) send a suggestion to all archivers:

A.broadcast(〈archive, r, j, (r, vr
j )〉);

Each archiver i (still in instance r) executes:

(A.2) wait for archive messages from selectors:
Mr

i := Sr.wait(〈archive, r, ∗, ∗〉);
(A.3) unanimous suggestion from a quorum?

qr
i := Sr.uni-quorum(Mr

i );
(A.4) archive the suggestion:

ci := if qr
i = ⊥ then (r, ⊥) else qr

i fi;
(A.5) send the suggestion to all deciders:

D.broadcast(〈decide, r, i, ci〉)

Each decider k executes:

(D.1) wait for decide messages from archivers:
Nr

k := A.wait(〈decide, r, ∗, ∗〉);
(D.2) unanimous suggestion from a quorum?

dr
k := A.uni-quorum(Nr

k );
(D.3) if there is, and not ⊥, decide:

if ( dr
k = (r, v′) and v′ �= ⊥ )

then decide v′ fi;

Fig. 1. The skeletal algorithm of consensus protocols

If an archiver
receives the same
suggestion from a
quorum of selec-
tors (A.3), it (i)
archives that sug-
gestion (A.4), and
(ii) broadcasts the
suggestion to the
deciders (A.5). If
a decider receives
the same sugges-
tion from a quorum
of archivers (D.2),
the decider decides
the corresponding
proposal in those
suggestions (D.3).

Each selector i
maintains a set Pi

containing propos-
als it has received
(across instances).
A selector waits for
at least one pro-
posal before par-
ticipating in the
rest of the proto-
col, so Pi is never
empty during exe-
cution of the proto-
col. (Typically, Pi

first contains a pro-
posal from the pro-
poser on the same
node as selector i.) For simplicity, we assume an honest proposer sends a single
proposal. The details of how Pi is formed and used differ across consensus pro-
tocols, so this is discussed below when full protocols are presented. Pi has an
operation Pi.pick(r) that returns either a single proposal from the set or some
value as a function of r. Different protocols use different approaches for selecting
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that value, and these too are discussed below. Note, selectors may lose their
state, starting again with an empty Pi.

Archivers’ states survive crashes and recoveries. So, an archiver j running on
an honest node maintains: rj , the current instance identifier and cj , the last
archived suggestion, which is initialized with the value ⊥.

Note that steps (A.1), (S.1), and (S.2) can be skipped in the lowest numbered
instance, because ci is guaranteed to be ⊥ for all archivers. This is an important
optimization in practice and eliminates one of the three message rounds necessary
for a proposal to be decided in the normal (failure-free) case.

4.2 Agreement

We now show that the skeletal algorithm satisfies Agreement, that is, if two
honest deciders decide, then they decide the same proposal. We omit the proofs
of lemmas that are relatively straightforward. For complete proofs please refer
to [12].

Lemma 1. In the skeletal algorithm of Figure 1:

(a) if any honest archiver i computes a suggestion qr
i �= ⊥ in Step (A.3) of

instance r, then any honest archiver that computes a non-⊥ suggestion in
that step of that instance, computes the same suggestion.

(b) if any honest decider k computes a suggestion dr
k �= ⊥ in Step (D.2) of

instance r, then any honest decider that computes a non-⊥ suggestion in
that step of that instance, computes the same suggestion.

Note that Step (S.2) does not satisfy (a) and (b) of Lemma 1. because selectors
do not try to obtain a unanimous suggestion from a quorum.

Corollary 1. In the skeletal algorithm of Figure 1, if any honest archiver archives
a suggestion (r, v) with v �= ⊥ in Step (A.4) of instance r, then any honest
archiver that archives a suggestion with a non-⊥ proposal in that step of that
instance archives the same suggestion.

Lemma 2. In the skeletal algorithm of Figure 1, if any honest archiver sends a
suggestion (r̄, v) with v �= ⊥ in Step (A.1) of instance r then any honest archiver
that sends a suggestion (r̄, v′) with v′ �= ⊥ in that step of that instance, sends
the same proposal, i.e., v = v′.

Lemma 3. In the skeletal algorithm of Figure 1:

(a) if each honest selector that completes Step (S.4) of instance r sends the
same suggestion, then any honest archiver that completes Step (A.3) of that
instance computes the same suggestion;

(b) if each honest archiver that completes Step (A.4) of instance r sends the
same suggestion, then any honest decider that completes Step (D.2) of that
instance computes the same suggestion;
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(c) if each honest archiver that completes Step (A.1) of instance r sends the
same suggestion, then any honest selector that completes Step (S.2) of that
instance computes the same proposal.

The most important property we need to prove is:

Lemma 4. In the skeletal algorithm of Figure 1, if r′ is the earliest instance
in which a proposal w is decided by some honest decider, then for any instance
r, r > r′, if an honest archiver archives a suggestion in Step (A.4), then it is
(r, w).

Proof. Since instances are totally ordered, any subset of them are totally or-
dered. The proof will be by induction on all instances, past instance r′, in which
eventually some honest archiver archives a suggestion.

Let w �= ⊥ be the proposal decided by an honest decider in Step (D.4) of
instance r′. Let Qr′ ∈ A be the quorum in instance r′ whose suggestions caused
the decider to decide w.

Let r1 > r′ be the first instance past r′ at which some honest archiver even-
tually completes Step (A.4). Since this archiver completes Step (A.4), it must
have received archive messages from a maximal-wait set of selectors following
Step (A.2) of instance r1. Each honest selector that sent such a message received
select messages from a maximal-wait set of archivers sent in their Step (A.1) of
instance r1. Each honest archiver that completes Step (A.1) did not archive any
new suggestion in any instance r′′ where r′ < r′′ < r1 holds, because r1 is the
first such instance. Moreover, the archiver will not archive such a suggestion in
the future, since all such instances r′′ aborted before sending select messages
in Step (A.1) of instance r1.

In Step (A.1), an archiver sends the last suggestion it archived. Some archivers
may send suggestions they archived prior to instance r′ while other archivers
send suggestions they archived in Step (A.5) of instance r′. Each honest selector
j awaits a set of messages Lj from a maximal-wait set in Step (S.1). Lj contains
suggestions from a quorum Qr1 consisting entirely of honest archivers (by the
opaqueness property of A). By the consistency property of A, the intersection
of Qr1 and Qr′

contains a guarded set, and thus Qr1 contains suggestions from a
guarded set of honest archivers that archived (r′, w). There cannot be such a set
of suggestions for a later instance, prior to r1. By Corollary 1 and Lemma 2, there
cannot be any suggestions from a guarded set for a different proposal in instance
r′. Thus, each honest selector will select a non-⊥ proposal and those proposals
are identical. By Lemma 3, every honest archiver that completes Step (A.4) will
archive the same suggestion. Thus the proof holds for r1.

Now assume that the claim holds for all instances r′′ where r′ < r′′ < r holds;
we will prove the claim for instance r. There is an honest archiver that completes
Step (A.4) in instance r and archives (r, w). Following Step (A.2) of instance r,
it must have received archive messages from a maximal-wait set of selectors.
Each honest selector that sent such a message received select messages from a
maximal-wait set of archivers in Step (S.1) of instance r.
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Each honest archiver sends the last suggestion it archived. Some honest
archivers might send suggestions they archived prior to instance r′, while other
honest archivers send suggestions archived in Step (A.4) of instance r′′, where
r′ ≤ r′′ < r holds. By the induction hypothesis, all honest archivers that send a
suggestion archived by an instance ordered after instance r′ use proposal w in
their suggestions.

In instance r, each honest selector j awaits a set of messages Lj from a
maximal-wait set in Step (S.1). Lj has to contain suggestions from a quorum
Qr consisting entirely of honest archivers (by the opaqueness property of A). By
the consistency property of A, the intersection of Qr and Qr′

contains a guarded
set, so Qr has to contain suggestions from a guarded set of honest archivers that
archived (r′, w) in instance r′ and that might have archived (r′′, w) in some later
instance. Therefore, selector j obtains w as a possible potential-proposal. Since
all honest archivers that archive a suggestion past instance r′ archive the same
proposal, there is a support-set for w with associated-instance-identifier r̄ ≥ r′.

There cannot be any other possible potential-proposal with an associated-
instance-identifier ordered larger than r′ since, by induction, no honest archiver
archives a suggestion with a different proposal later than r′. Therefore, each
honest selector selects proposal w. By Lemma 3, every honest archiver that
completes Step (A.4) archives the same suggestion. Thus, the proof holds for r.

Theorem 1 (Agreement). If two honest deciders decide, then they decide the
same proposal.

Proof. If the deciders decide in the same instance, the result follows fromLemma 1.
Say one decider decides v′ in instance r′, and another decider decides v in in-
stance r, with r′ < r. By Lemma 4, all honest archivers that archive in instance
r archive (r, v′). By the consistency property of A, an honest decider can only
decide (r, v′) in instance r, so v = v′.

5 Full Protocols

The skeletal algorithm described above does not specify how instances are cre-
ated, how broadcasts are done in steps (A.1), (S.4), and (A.5), what specific
extended quorum systems to use for A and Sr, how a selector j obtains propos-
als for Pj , or how j selects a proposal from Pj . We now show how Paxos [6],
the algorithm by Chandra and Toueg [7], and the early protocol by Michael
Ben-Or [8] resolve these questions.

5.1 Paxos

Paxos [6] was originally designed only for honest systems. In Paxos, any node
can create an instance r at any time, and that node becomes the leader of the
instance. The leader creates a unique instance-identifier r from its node identifier
along with a sequence number per node that is incremented for each new instance
created on that node. The leader runs both a proposer and a selector. Sr is a
leader extended quorum system consisting only of that selector.
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The leader starts the instance by broadcasting a prepare message containing
the instance identifier to all archivers. Upon receipt, an archiver i checks that
r > ri, and, if so, sets ri to r and proceeds with Step (A.1). Since there is only
one participant in Sr, the broadcast in (A.1) is actually a point-to-point message
back to the leader, now acting as selector. In Step (S.3), if the leader has to pick
a proposal from Pj , it selects the proposal by the local proposer. Thus, there is
no need for proposers to send their proposals to all selectors.

Unanimity and Validity follow directly from the absence of Byzantine par-
ticipants. To support Non-Blocking, Paxos has to assume that there is always
at least one correct node that can become a leader and create a new instance.
Consider a state in which some correct decider has not yet decided. Now con-
sider the following continuation of the run: one of the correct nodes creates a
new instance with an instance identifier higher than used before. Because there
are always correct nodes and there is an infinite number of instance identifiers,
this is always possible. The node sends a prepare message to all archivers. All
honest archivers start in Step (A.1) of the instance on receipt, so the selector at
the leader will receive enough select messages in Step (S.1) to continue. Due
to Lemma 3 and there being only one selector in Sr, all honest archivers archive
the same suggestion in Step (A.4). The deciders will each receive a unanimous
suggestion from a quorum of archivers in Step (D.1) and decide in Step (D.3).

5.2 Chandra-Toueg

The Chandra-Toueg algorithm [7] is another consensus protocol designed for
honest systems. It requires a coordinator in each instance; the role of the coordi-
nator is similar to the leader in Paxos. Unlike Paxos, Chandra-Toueg instances
are consecutively numbered 0, 1, ... . The coordinator of each instance is deter-
mined by the instance number modulo the number of nodes in the system, so
the role of the coordinator shifts from node to node at the end of each instance.
Each node in the system is both a proposer and a archiver. For each instance r,
selector quorum Sr is the extended quorum consisting only of the coordinator
of that instance.

To start the protocol, a proposer sends a message containing a proposal to
all nodes. Upon receiving the first proposal, an archiver starts in instance 0 and
executes (A.1). The coordinator of each instance starts (S.1) upon receiving a
select message for that instance. In (S.3), Pi.pick(r) returns the first proposal
received by the coordinator. Archivers that successfully complete (A.2-5) move
to the next instance. Archivers must be prepared to time-out while awaiting an
archive message from the selector of a particular instance, because the selector
can fail. When this happens, archivers proceed to (A.1) in the next instance.
When an archiver receives an archive message with a larger instance number
than it has thus far received, it aborts the current instance and skips forward to
the instance identified in the archive message.

In the original description of the Chandra-Toueg algorithm, the coordinator
for an instance is the only decider for that instance. This necessitates an addi-
tional round of communication, where the coordinator broadcasts a decision so
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that all nodes become aware of the decision. The Chandra-Toueg algorithm can
be changed so that all nodes are deciders in all instances without affecting the
rest of the protocol. This eliminates one round of communication while increas-
ing the number of messages sent in (A.5) of the skeletal algorithm. This is similar
to the algorithm proposed in [13]. A comparison of the original Chandra-Toueg
algorithm and this modified version is given in [14].

As in the case of Paxos, Unanimity and Validity follow directly from the
absence of Byzantine participants. Non-blocking follows from that fact that a
honest, correct selector can always receive sufficient select messages in (S.1) to
continue. All honest archivers will always receive the same suggestion in (A.3),
since there is only one selector in each instance. If the coordinator for an in-
stance fails, then archivers for that instance will time-out and move to the next
instance.

5.3 Ben-Or

In this early protocol [8], each node runs a proposer, a selector, an archiver, and
a decider. Instances are numbered with consecutive integers. Proposals are either
“0” or “1” (that is, this is a binary consensus protocol), and each Pi = {0, 1}.
Pi.pick(r) selects the local proposer’s proposal for the first instance, or a random
one in later instances.

Each of the selectors, archivers, and deciders starts in instance 1 and loops.
The loop at selector j consists of steps (S.1) through (S.4), with rj incremented
right after Step (S.4). The loop at archiver i consists of steps (A.1-5), with ri

incremented after Step (A.4). The broadcasts in steps (A.1) and (A.5) are to the
same destination nodes and happen in consecutive steps, so they can be merged
into a single broadcast, resulting in just two broadcasts per instance. Finally,
the loop at decider k consists of steps (D.1) through (D.3), with rk incremented
after Step (D.3).

Sr is the same extended quorum system as A for every instance r; both consist
of all nodes and use a threshold quorum system. Ben-Or works equally well in
honest and Byzantine environments as long as opaqueness is satisfied. It is easily
shown that if a decider decides, then all other deciders decide either in the same
or the next instance.

Unanimity follows from the rule that selectors select the locally proposed
proposal in the first instance: if all selectors select the same proposal v, then by
Lemma 3 the archivers archive v, and, by opaqueness of A, the deciders decide
v. Validity is ensured by the rule that selectors pick the local proposal in the
first instance and random proposals in subsequent instances. Selectors have to
pick random proposals in an instance iff there was not a unanimous suggestion
computed in (A.3) of the previous instance. This can only happen if both of the
binary proposals have been proposed by some proposer. Non-Blocking follows
from the rule that honest selectors pick their proposals at random in all but the
first instance, so it is always possible that they pick the same proposal, after
which a decision in Step (D.3) is guaranteed because of opaqueness for A.
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6 Implementation and Evaluation

The descriptions of the Paxos, Chandra-Toueg, and Ben-Or protocols above
show that these protocols share common building blocks. Having observed their
similarities, we now investigate how their differences affect their performance. To
do this, we implemented the skeletal algorithm, and built each of the three pro-
tocols using different configurations of the algorithm. In this section, we present
the implementation and the performance of the three instantiations.

6.1 Implementation

We built a simple replicated logging service, consisting of a set of servers that
use epochs of consensus to agree on the sequence of values to add to the log.
Clients submit values to any server; that server then attempts to have that value
decided in the current epoch by proposing that value. When a value is decided
in an epoch, the client that submitted the value is informed of the epoch number
in which the value was decided, and servers move to the next epoch. Each server
maintains an internal queue of values it has received from clients but that are
not yet decided, and attempts to get the values decided in FIFO order.

Paxos requires a leader election mechanism that was not described in the
original protocol [6]. We explored two different leader election mechanisms. First,
we built a version of Paxos where each node that wants to propose a value simply
makes itself the leader. By having each node pick instance numbers for instances
where it is the leader from a disjoint set of instance numbers, we ensure that
each instance can only have one unique leader. We call this version of Paxos
GreedyPaxos.

We also built a variant of Paxos that uses a token-passing mechanism to
determine the leader. We call this version of Paxos TokenPaxos. The current
leader holds a token that is passed to other nodes when the leader no longer
has any local requests to commit. Token request and token passing messages are
piggy-backed on select and archive messages. Further details of this protocol
are outside the scope of this paper.

For the implementation of Chandra-Toueg, we modified the original algorithm
to have all nodes be deciders in all instances. As described in Section 5.2, this
avoids requiring deciders to broadcast a decision when a value is decided, thus
improving the performance of our particular application where all servers need
to learn about decisions.

All of our implementations use a simple threshold quorum system for the
archiver and decider quorums, as well as for Ben-Or’s selector quorums.

6.2 Experimental Setup

We evaluate the protocols using simulation. In our experiments, the logging
service consists of a set of 10 servers. 10 clients generate the workload. Each
client sends requests to the servers according to a Poisson distribution with a
mean λc requests per minute. Each client chooses a server at random and sends
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Fig. 2. Mean time (left) and median time (right) to decide under varying request rates

its requests to that server. All client to server and server to server messages
have a latency that is given by a lognormal distribution with mean 100 ms and
standard deviation 20 ms. For each set of experiments, we measure the elapsed
time between when a server first receives a value from a client until the time
that the server learns the value has been decided.

6.3 Results

In the first set of experiments, we run the service with varying loads until 100
values are decided by the logging service. We vary the request rate λc from each
client from 0.5 requests per minute to 14 requests per minute. We report the
mean and median values of 100 decisions averaged over 8 runs of each experiment.
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Fig. 3. Communication overhead under varying request rates (left) and failure rates
(right)

Figure 2 shows the mean and the median latency for a single value to be
decided. The graphs show that as load increases, the time it takes for a value
to be decided increases gradually. At low loads, the performance of all four
algorithms is quite close. This is because in the ideal case, all four algorithms
take four rounds of communication for a value to be decided.

As load increases, performance degrades, because of contention between
servers trying to commit different values. GreedyPaxos consistently outperforms
TokenPaxos latency, particularly under heavy load. This is because selectors in
GreedyPaxos do not need to wait for the token before creating a new instance.
Under heavy load, each GreedyPaxos leader sends a prepare message in the
beginning of each epoch without having to wait. The leader with the largest in-
stance number wins and gets its value decided. TokenPaxos, on the other hand,
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Fig. 4. Mean time (left) and median time (right) to decide under varying failure rates

will always decide values of the node with the token before passing the token to
the next node with requests. This has two implications: i) if the leader keeps get-
ting new requests, other nodes can starve, and ii) one round of communication
overhead is incurred for passing the token.

The left graph in Figure 3 shows the number of messages that each protocol
uses to commit 100 values under different request rates. Ben-Or incurs a larger
overhead than the other protocols. This is because Ben-Or uses a selector quorum
that consists of all nodes rather than just a leader/coordinator, so (A.1) and (S.4)
of the skeletal algorithm send n2 messages in each instance, rather than just n
messages in Paxos and Chandra-Toueg.

Also observe that compared to TokenPaxos, GreedyPaxos sends more mes-
sages as load increases. Under heavy load, each GreedyPaxos node broadcasts a
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prepare message to all other nodes in the beginning of every round. This results
in n2 messages being sent rather than the n prepare messages that are sent in
the case of TokenPaxos.

Next we investigate the performance of each protocol under crash failures. We
model failure event occurrences as a Poisson distributed rate of λf failures per
minute. When a failure event occurred, we failed a random server until the end
of the epoch. To ensure that the system is able to make progress, we limit the
number of failures in an epoch to be less than half the number of servers in the
system in order to satisfy the threshold assumption of the quorum systems that
we use. Keeping the request rate from clients steady at 7 requests per minute
per client, we vary the failure rate from 0.5 failures per minute to 12 failures per
minute.

Figure 4 shows the mean and median decision latency for the four protocols
under varying failure rates. Note that GreedyPaxos and Ben-Or are not affected
significantly by server failures. Chandra-Toueg and TokenPaxos, on the other
hand, see significant performance degradation as the failure rate increases. This
is because Chandra-Toueg and TokenPaxos both depend on time-out to recover
from failures of particular nodes. In the case of Chandra-Toueg, failure of the
coordinator requires that all archivers time-out and move to the next instance;
in the case of TokenPaxos, if the node that is holding the token crashes, then a
time-out is required to generate a new token.

A comparison study presented by Hayabashibara et al. [15] found that Paxos
outperforms Chandra-Toueg under crash failures. We find that this result de-
pends on the leader election protocol used by Paxos. In our experiments, Greedy-
Paxos outperforms Chandra-Toueg, but TokenPaxos performs worse under cer-
tain failure scenarios.

The right graph in Figure 3 shows the message overhead of each protocol
under varying failure rates, clearly showing that the number of messages sent is
not significantly affected by failures.

7 Conclusion

We investigated several well-known consensus protocols and showed that they
share the same basic building blocks. We used the building blocks to develop
a skeletal algorithm that can be instantiated to obtain Paxos, Chandra-Toueg,
and Ben-Or consensus protocols simply by configuring the quorum systems that
are used, the way instances are started, and other protocol-specific details. We
implemented the skeletal algorithm and used it to instantiate Ben-Or, Chandra-
Toueg, and two variants of the Paxos algorithm. Simulation experiments using
those implementations allowed the performance differences between these algo-
rithms to be measured for different workloads and crash failures. This approach
thus provides a basis for understanding consensus protocols and comparing their
performance. The skeletal algorithm also provides a novel platform for exploring
other possible consensus protocols.
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Abstract. Continuous consensus (CC) is the problem of maintaining an identi-
cal and up-to-date core of information about the past at all correct processes in
the system [1]. This is a primitive that supports simultaneous coordination among
processes, and eliminates the need of issuing separate instances of consensus for
different tasks. Recent work has presented new simple and efficient optimum pro-
tocols for continuous consensus in the crash and (sending) omissions failure mod-
els. For every pattern of failures, these protocols maintain at each and every time
point a core that subsumes that maintained by any other continuous consensus
protocol. This paper considers the continuous consensus problem in the face of
harsher failures: general omissions and authenticated Byzantine failures. Com-
putationally efficient optimum protocols for CC do not exist in these models if
P �= NP. A variety of CC protocols are presented. The first is a simple protocol
that enters every interesting event into the core within t + 1 rounds (where t is
the bound on the number of failures), provided there are a majority of correct
processes. The second is a protocol that achieves similar performance so long as
n > t (i.e., there is always guaranteed to be at least one correct process). The final
protocol in the general omissions model makes use of active failure monitoring
and failure detection to include events in the core much faster in many runs of
interest. Its performance is established based on a nontrivial property of minimal
vertex covers in undirected graphs. The results are adapted to the authenticated
Byzantine failure model, in which it is assumed that faulty processes are mali-
cious, but correct processes have unforgeable signatures. Finally, the problem of
uniform CC is considered. It is shown that a straightforward version of uniform
CC is not solvable in the setting under study. A weaker form of uniform CC is
defined, and protocols achieving it are presented.

Keywords: Distributed computing, fault tolerance, consensus, continuous
consensus.

1 Introduction

Fault-tolerant systems often require a means by which independent processes or pro-
cessors can arrive at an exact mutual agreement of some kind. As a result, reaching
consensus is one of the most fundamental problems in fault-tolerant distributed com-
puting, dating back to the seminal work of Pease, Shostak, and Lamport [2]. When
the independent processes need to reach compatible decisions at the same time, they
often need to reach simultaneous consensus about particular aspects of the execution.
While early protocols in the synchronous model achieved consensus at the same round
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(e.g. [2]), it was noticed by Dolev et al. [3] that non-simultaneous solutions are some-
times advantageous. Later work showed that simultaneous consensus required common
knowledge and this is a nontrivial requirement [4]. Nevertheless, the need for simulta-
neous decisions to be compatible is very natural in many cases: E.g., when different
processes need to access distinct physical resources ‘at the same time, or when one dis-
tributed algorithm ends and another one begins, and the two use similar message texts
for different purposes.

We consider a synchronous message-passing system in which processes receive ex-
ternal inputs from the outside world at various times. Suppose that we are interested
in maintaining a simultaneously consistent view regarding a set of events E in the sys-
tem. The particular events that would be of interest is application-dependent, but it will
typically record events such as inputs that processes receive at various times, values
that certain variables obtain at given times, and faulty behavior in the form of failed or
inconsistent message deliveries. A continuous consensus (CC) protocol maintains at all
times k ≥ 0 a core Mi[k] of events of E at every site i. In every run of this protocol the
following properties are required to hold, for all nonfaulty processes i and j.

Accuracy: All events in Mi[k] occurred in the run.
Consistency: Mi[k] = Mj[k] at all times k.
Completeness: If the occurrence of an event e ∈ E is known to process j at any point,

then e ∈ Mi[k] must hold at some time k.

Decisions performed by different correct processes in the same round can be chosen
in a consistent manner if they are based on the core of a CC protocol. Indeed, once an
event recording a particular value or vote enters the core, the processes automatically
have simultaneous consensus regarding it. Finally, a CC protocol can replace the need
for initiating separate instances of a consensus protocol. By monitoring different events
in E , the protocol can automatically ensure consensus on a variety of issues.

The continuous consensus problem was introduced in [1], where it was studied in the
crash and sending omissions failure models. This generalized and simplified the earlier
related work in [5]. The main results of [1] are simple and efficient optimum CC proto-
cols for both crash and sending omissions failures, in the synchronous message-passing
model and assuming an upper bound of t < n − 1 on the total number of failures. The
core provided by their protocol at time k given a particular behavior of the adversary is
the union of all the cores provided by all correct CC protocols under the same adver-
sarial conditions.

In this paper we extend the study of the continuous consensus problem to more
problematic failure models: General omissions and Authenticated Byzantine failures.
In the former, a faulty process may fail to send a subset of the messages prescribed by
its protocol, as well as failing to receive a subset of the messages sent to it in a given
round. In the authenticated Byzantine failure model, faulty processes are malicious, but
correct processes have unforgeable signatures. This ability to sign messages implies that
correct processes cannot be misquoted about messages that contain their signatures. As
a result, the two failure models are actually quite similar. One property that they share
is the fact that when a process i reports not having received a message that another
process j was supposed to have sent it, this is proof that one of them is faulty. But this
proof is ambiguous regarding which one of them is the culprit. This is in contrast to
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the situation in the crash and sending omissions models. In those models, an unreceived
message provides unambiguous proof that the intended sender is faulty. This distinction
turns out to have significant implications on the efficiency of solutions to the continuous
consensus problem. While the optimum protocols in [1] for the simpler failure models
can be implemented using linear-time computations and O(n)-bit messages, we adapt a
result of [5] to show:

Lemma 1. If P �= NP then there exists no polynomial-time protocol implementing an
optimum solution to continuous consensus in the general omission (resp. in the authen-
ticated Byzantine) failure model.

This result is not detrimental, since optimum solutions are rare in general. For eventual
consensus, for example, it has been shown in [5] that no optimum protocol exists at all,
even in the crash failure model. Moreover, searching for continuous consensus protocols
that are not optimum is still quite subtle in the presence of failures. Finding relatively
efficient ones (and proving their correctness) turns out to be a nontrivial task.

The further contributions of this paper are:

– We present a simple CC protocol that enters every interesting event into the core
within t +1 rounds (where t is the bound on the number of failures), provided there
are a majority of correct processes (i.e., n > 2t).

– We improve this protocol to one that achieves similar performance so long as n > t
(i.e., there is always guaranteed to be at least one correct process).

– Finally, we use fault monitoring and failure detection to obtain a protocol that in
many runs will include events in the core within much fewer than t + 1 rounds
of their discovery by a correct process. This protocol (called VC-CC) is based on
the construction of a conflict graph [5,6,7] and an analysis of failures in such a
graph. Intuitively, this is a graph whose nodes are process names, and where an
edge appears if there is an inconsistency between the two nodes implying that at
least one of them must be faulty.The faulty processes must at all times form a vertex
cover of the (edges of the) conflict graph. The correctness of the VC-CC protocol
depends on a nontrivial graph-theoretical result that shows the following: If the size
of the minimal vertex cover of a graph is b, then the size of the union of all minimal
vertex covers of G is at most 2b (see Appendix C).

To this end, we present two types of protocols. One type consists of compu-
tationally efficient protocols that have good behavior in the best case, and more
theoretical protocols that make use of an NP oracle and produce good performance
much more often.

– We then turn to consider the problem of obtaining uniform solutions to CC. In the
simpler crash and sending omission failure models [1], the basic optimum protocol
is enhanced to yield an optimum solution for uniform CC. The resulting protocol
guarantees that all processes—both faulty and nonfaulty—have the same core at
all times. Moreover, the core contains exactly what it would under the optimal
(non-uniform) protocol. In the general omission and the authenticated Byzantine
models, solutions to CC in which all processes have the same core are shown to
be impossible. Essentially, if a faulty process might be blocked from receiving any
messages for arbitrarily long periods, then there is no way to ensure that it will
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maintain a growing core with useful and up-to-date information. We define weaker
notion of uniformity that requires the cores of the faulty processes to always be a
subset of those of the nonfaulty ones, and show that this version is attainable.

2 Continuous Consensus in the Generalized Omission Model

Using Authentication

Our analysis of the CC problem in the generalized omission model uses an authen-
tication scheme. Pease, Shostak and Lamport [2] presented an algorithm that reaches
agreement in a fault-prone system using authentication. Since the generalized omis-
sions model is in fact a simplified private case of the authenticated Byzantine model,
this analysis is valid in the generalized omissions model as well. Thus, our algorithms
in this section are presented for the authenticated Byzantine model.

We assume that all messages sent in the system are authenticated by unforgeable
signatures that enable processes to verify the source of the information they send and
receive. Since there are no “liars” in the generalized model, a process may sign a mes-
sage by simply adding its name to the message. In the authenticated Byzantine model,
it is assumed that the signatures are unforgeable despite the fact that some of the pro-
cesses may be “liars”, and thus the signatures are also used to verify the reliability of
the information.1

Adding signatures to the data sent in the system enables each process to keep track
of the knowledge of other processes. When a process receives a piece of information, it
can deduce about which processes have received and signed this piece of information
by observing the signatures added to this information by other processes.

Notation

We now present some terminology and definitions referring to the usage of authenti-
cation in our system. Similar to the notation in [1], our logical language consists of
propositions referring to a set of monitored events in our system. For simplicity, we
identify the set of monitored events E with a subset ΦE ⊆ Φ, and restrict monitored
events to depend only on the external inputs in the current run.

Define SENTi(k) as the message that process i sends in round k to each of the other
processes. We assume that each message is a sequence of atomic messages called data-
grams. A datagram is either a proposition, ϕ ∈ ΦE , or a signed proposition. A signed
proposition consists of a proposition and a list of process signatures. Denote by Ψ as
the set of all possible datagrams in the system. Clearly, ΦE ⊂ Ψ. We also define the
operation signi : Ψ → Ψ for a process i, so that if α ∈ Ψ then signi(α) is a datagram
containing the information in α signed by process i. Notice that Ψ is defined inductively
with primitive elements ΦE , and is closed under the operations signi(·) for all i ∈ P. In
a given run, we denote by RCVDi(k) the set of datagrams received by i in round k.

1 In practice, by having a public-key infrastructure in our system, one may produce crypto-
graphic signatures which are unforgeable with a very high degree of probability.
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Let α be a datagram such that α = signpd (. . .signp2(signp1(ϕ))) with d ≥ 1. If
p1, ..., pd are pairwise distinct processes, then α is a d-signed datagram, and ϕ is d-
authenticated by α. We further define a function F : Ψ → ΦE . Intuitively, F (α) is
the proposition embedded in the datagram α. Formally, for every datagram α, we have
F (α) = ϕ if there exists a sequence of processes (not necessarily distinct), 〈p1, ..., ps〉,
such that α = signps(. . . signp2(signp1(ϕ))).

A CC Protocol with Authentication

In this subsection we present two protocols that solve the continuous consensus problem
in the generalized omissions model using Authentication.

In Figure 1 we present the first protocol, ACC (which stands for Authenticated Con-
tinuous Consensus). Each process i runs the protocol individually, and computes a core
Mi[k] in every round k. The core is guaranteed to be shared among the nonfaulty pro-
cesses. Process i places a proposition ϕ in its core when it receives a (t + 1)-signed
datagram, α, such that F (α) = ϕ. Every process sends and receives messages accord-
ing to a protocol we call SFIP, which is a full-information protocol in which signatures
are used to authenticate every piece of information delivered in the system. In SFIP ev-
ery process broadcasts its information adding its signature to it. More formally, an SFIP

is a protocol with the following properties:

– An SFIP is, in particular, a FIP, i.e., in every round, every process sends a message
encoding all of its information to all other processes.

– Every primitive proposition p ∈ ΦE , sent by process i is signed by i.
– In every round k, each process i relays all datagrams received in the previous round,

adding its own signature to every datagram.

ACC(i)

Mi[k] ← /0 for all k ≥ −1
for k ≥ 0 in round k

do
1 send and receive messages according to SFIP

2 for α ∈ RCVDi(k)
3 if α is a (t +1)-signed datagram then
4 Mi[k] ← Mi[k]∪F (α)
5 end for
6 Mi[k] ← Mi[k −1]∪Mi[k]

end for

Fig. 1. The ACC protocol for process i

Intuitively, once a process receives a sequence of t + 1 signatures for ϕ, it is guar-
anteed that at least one nonfaulty process has received information about ϕ, and has
forwarded it to all nonfaulty processes. These, in turn, are able to sign and forward the
datagram. Thus, as stated in Lemma 2, all nonfaulty processes will add ϕ to their cores
simultaneously.
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Lemma 2. Let R be a system with n > 2t. Then ACC solves the continuous consensus
problem in R.

In Figure 2 we present ACCD, which is a slight variant of ACC. In ACCD, for every
datagram ϕ that i receives, it computes the round in which ϕ is expected to become a
(t +1)-authenticated proposition. In a way, this is a bit similar to the concept of horizon
presented in [1]: in each round of the CONCON protocol presented there every process
i tries to compute a horizon based on the number of processes known to be faulty.
The idea in ACCD also uses a “horizon,” which is defined and computed differently.
While in CONCON the core is uniquely determined by a critical time and a critical set,
our approach in ACCD is different; The “horizon” is computed for each proposition
individually, and thus the core cannot be represented by a particular critical time.

ACCD(i)

Mi[k] ← /0 for all k ≥ −1
for k ≥ 0 in round k

do
1 send and receive messages according to SFIP

2 for α ∈ RCVDi(k)
3 if α is a d-signed datagram for some 1 ≤ d ≤ t +1 then
4 Mi[k +(t +1)−d] ← Mi[k +(t +1)−d]∪F (α)
5 end for
6 Mi[k] ← Mi[k −1]∪Mi[k]

end for

Fig. 2. The ACCD protocol for process i

Lemma 3. Let R be a system with n > t. Then ACCD solves the continuous consensus
problem in R.

Discussion of ACC and ACCD

Lower Bound on n. Notice that while ACC requires n > 2t, ACCD requires just n > t.
The reason we require n > 2t for ACC is that a proposition is included in the core
once it is signed by t + 1 signatures. Thus, as the proof of Lemma 2 shows, once
a proposition reaches a nonfaulty process, it is forwarded sequentially to other non-
faulty processes, and within at most t + 1 rounds it is bound to become a (t + 1)-
authenticated proposition. Specifically, an event that occurs at a nonfaulty process i,
must be forwarded through a sequence of t different nonfaulty processes in order for
it to be included in the core. It must therefore by assumed that there are at least t + 1
nonfaulty processes. ACCD, on the other hand, does not require n > 2t, since if a d-
signed datagram α reaches a nonfaulty process at time m, it forwards the datagram to
all nonfaulty processes in round m + 1, enabling them to include F (α) in the core at
m+(t + 1)− d.
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More efficient implementations of SFIP. We previously defined a full-information pro-
tocol with signatures, SFIP, as a protocol similar to FIP except that it authenticates all
messages using signatures. While it has been shown in [1] that a FIP in our context may
be implemented quite efficiently, a first glance at SFIP shows that the overhead added
by the authentication mechanism may by quite high. Since every datagram in SFIP is
relayed by every process i, adding its own signature, it is easy to see that if a primitive
proposition p is sent by some process i at time 0, then the number of datagrams regard-
ing p in round k is O(nk). If every signature has length sl, and every datagram has O(k)
signatures, then a message regarding p requires a length of O(sl · k ·nk). Since we have
n such messages in round k, we obtain communication complexity of O(sl ·k ·n ·nk) of
signatures regarding every proposition p in every round. It is possible, though, to derive
a more efficient implementation of SFIP, by applying the following techniques:

(i) Avoid multiple instances: In order to avoid multiple datagrams for every propo-
sition, we can have each process i, relay at most one datagram corresponding to
every primitive proposition, p, in every round. In particular, for every such p,
process i chooses a datagram corresponding to p with the maximal number of
signatures. In addition, i completely ignores datagrams which already include i’s
signature, since they have already been sent by i. Avoiding multiple instances of
the same proposition helps reduce the communication complexity of signatures
regarding p to O(n2) in every round.

(ii) Early stopping: Since in ACC we are not interested in datagrams with more than
t +1 signatures, once process i receives a (t +1)-signed datagram α, it stops send-
ing any datagrams containing F (α). This reduces the communication complexity
of sending p to O(n · t) in every round. As for ACCD, once process i receives a
message containing a datagram α, it relays the datagram just once. In all future
rounds, process i ignores all datagrams β with F (α) = F (β), which reduces the
communication complexity of signatures about p to O(n).

(iii) Nominating relay processes: In ACC it is possible to nominate 2t + 1 processes
to sign the data they send, while the rest of the processes follow the standard FIP.
This allows for a communication complexity of O(t2), while still enabling the
protocol to work correctly. Similarly, in ACCD we can nominate t + 1 processes,
reducing the comm. complexity to O(t).

Uniformity. The uniform continuous consensus (UCC) problem was presented in [1].
UCC requires all processes, including the faulty ones, to have the same core at all times.
It is an interesting observation that in the crash and omission models, the protocol ACC

that we presented above solves UCC. Since in these models a faulty process is assumed
to receive all messages sent to it, it is easy to verify that every faulty process receives
a (t +1)-signed datagram α at the exact same time that the nonfaulty processes receive
it, and can thus include α in its core. On the other hand, ACCD is not uniform, since
its correctness depends on the process i running the protocol being nonfaulty; only a
nonfaulty process may assume that a d-signed datagram is guaranteed to be relayed to
all the nonfaulty processes, and become common knowledge in t + 1 − d rounds.

In the generalized omissions model, however, we do not have uniformity for ACC,
since a faulty process may fail to receive many or even all of the messages sent to
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it, keeping its core from growing as it should. Consequently, no protocol can guarantee
both Completeness (which is defined for nonfaulty processes) and Uniform Consistency
in the generalized omission model (see [1]). It is possible, however, to obtain a weaker
variant of the Uniform Consistency property. Let j be a nonfaulty process, and let z be
an arbitrary process, then:

Weak Uniform Consistency: Mz[k] ⊆ Mj[k] at all times k.

We say that a protocol solves the weak UCC problem (WUCC for short), if it satisfies
Accuracy, Consistency and Completeness, and in addition it also satisfies Accuracy for
the cores of faulty processes and Weak Uniform Consistency, which is related to the
cores of faulty and nonfaulty processes. It is easy to see that ACC solves the WUCC
problem in the generalized omissions model.

3 CC in the Generalized Omission Model - Improved Protocols

In the previous section we presented ACCD and ACC. Both of these protocols solve
the CC problem in the generalized model. However, in both of these protocols no event
may be included in the core earlier than t + 1 rounds after it occurs. In this section we
discuss different solutions to the CC problem, which provide a richer core, and enable
some propositions to join the core earlier than they would in either of the two protocols
above.

Similar to the protocols in the previous section, our protocol uses message authenti-
cation. The idea is that if in round k it is confirmed that a subset S(k) ⊂ P contains at
least s faulty processes, then we know that S(k), the complement of S(k), contains at
most t − s faulty processes, allowing us to add (t − s+1)-authenticated propositions to
the core.

The Conflict Graph

In [5] Moses and Tuttle prove that the problem of testing for common knowledge in
the generalized omission model is NP-hard by showing a Turing reduction from the
Vertex Cover problem to the problem of testing for common knowledge. It follows by
their analysis that information about the number and identities of faulty processes can
be obtained by a Vertex Cover computation, as we shall now describe.

Assume that at the end of every round k, process i constructs a graph, G i(k) =
(V,Ei(k)). V consists of n vertices, each labelled by a unique process name. Ei(k) con-
tains an edge {p j, ps} i knows at the end of round k that at least one message between
p j and ps has not been delivered successfully. G i(k) is called a Conflict Graph, since
each of its edges stands for a conflict between its adjacent nodes: At most one of them
is nonfaulty. It is thus easy to see that the nodes representing the processes which have
displayed faulty behavior up to round k form a vertex cover of G i(k). It follows that if
G i(k) has a minimum vertex cover of size s, then there must be at least s faulty processes
in r. Our protocol, VC-CC is based on these properties of the conflict graph.

The analysis in this section uses the conflict graph to solve the CC problem. As we
shall see, since the conflict graph represents information about potential failures in the
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ACCI(i)

Mi[k] ← /0, BM[k] ← /0 for all k ≥ −1
for k ≥ 0 in round k

do
1 repeat iteratively until BM [k] stabilizes
2 send and receive messages according to SFIP

3 for α ∈ RCVDi(k)
4 if α is (t −|BM[k]|+1)-signed by P\BM [k] then
5 Mi[k] ← Mi[k]∪F (α)
6 end for
7 Mi[k] ← Mi[k −1]∪Mi[k]
8 for all j ∈ P

9 BM[k] ← j if Mi[k] implies that j is faulty
10 end repeat

end for

Fig. 3. The ACCI protocol for process i in the generalized omission model

system, this information may be used to include some facts in the core earlier than they
would in either ACC or ACCD.

A Simple Protocol Using the Conflict Graph

We first present a very simple protocol, which is an extension of ACC. The protocol is
called ACCI (short for Improved ACC). The idea is that instead of defining the core as
all t + 1-signed facts, we allow the information in the core to reduce this t + 1 round
margin. For example, if the fact that process z is faulty is included in the core, then the
fact that there are at most t −1 faulty processes among P\{z} is also in the core. Thus,
receiving t signatures from processes in the set P \ {z} should be enough to include a
fact in the core.

In ACCI, in every round, each process constructs a conflict graph according to the
information in the core. We define BM[k] as the set of processes that are confirmed to be
faulty according to information in Mi[k]. Specifically, once the conflict graph contains
edges from a process z to at least t + 1 different processes, z is confirmed to be faulty,
and thus z ∈ BM[k]. More generally, if a process z has at least t − BM[k] + 1 conflicts
with processes from P \ BM[k], then z must be faulty, and thus we can include z in
BM[k]. Notice that updating BM[k] may require iterative repetition of the steps above,
until BM[k] stabilizes. It is important to note that ACCI has polynomial running time,
since it requires counting the number of edges connected to each node, which requires
polynomial computations.

VC-CC

We now present VC-CC. In each round, every process computes a conflict graph,
G i(k). It is essential that the conflict graphs constructed by all processes are the same in
every round, since the computation of the core is based on the information in the con-
flict graph, G i(k). Thus we require that G i(k) is constructed by i according to Mi[k−1],
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VC-CC(i)

0 Mi[k] ← /0 for all k ≥ −1
for k ≥ 1 in round k do

1 send and receive messages according to SFIP

2 Mi[k] ← Mi[k −1]
3 � ← 0

4 compute G (�)
i (k)

repeat
5 for α ∈ RCVDi(k)
6 if F (α) �∈ Mi[k] and AUTHENTICATEDVC(G (�)

i (k),α) then Mi[k] ← Mi[k]∪F (α)
7 � ← �+1

8 compute G (�)
i (k)

9 until G (�)
i (k) =G (�−1)

i (k)
end for

Fig. 4. The VC-CC protocol for process i in the generalized omission model

which guarantees a consistent conflict graph for all nonfaulty processes. The subrou-
tine AUTHENTICATEDVC(G,α) (used on line 6 in the protocol) performs a test on
α according to G, and returns TRUE if α is to be included in the core, and FALSE
otherwise.

After updating the core Mi[k] at time k (lines 5 and 6), a new conflict graph, G i(k)
may now be constructed (line 8), based on recent information. Thus we iteratively up-

date Mi[k] according to G (�)
i (k), and construct G (�)

i (k) according to the recent compu-

tation of Mi[k], until a fixed-point of G (�)
i (k) is reached (line 9).

The subroutine AUTHENTICATEDVC(G,α) performs a test on α according to G, the
conflict graph. It returns TRUE if the conflict graph G and the signatures in α verify
that F (α) should be included in the core.

Lemma 4. VC-CC solves the Continuous Consensus problem for n > 3t.

We will now briefly discuss the intuition behind the proof of Lemma 4. The challeng-
ing part of the proof is to show that VC-CC satisfies Consistency. There are three
locations where the subroutine AUTHENTICATEDVC(G,α), returns TRUE, indicating
that α should be included in the core. We consider each of these cases separately:

(i) α is a d-signed datagram by a set of processes D, and it is guaranteed that at
least one of the processes in D is nonfaulty (lines 2 to 5 in the AUTHENTICAT-
EDVC subroutine). For every α which is d-signed by a set of processes, D, we
compute the min-VC of the set P\D. If the size of the min-VC is b, then the set D
contains at most t − b faulty processes, and thus any if d > t − b, then at least one
nonfaulty process exists in D. In this case α is inserted into the core at k+t +1−d,
i.e., to Mi[k + t + 1 − d]. Proving consistency for this case is the delicate part of
the proof. It depends on the following graph-theoretical property:2

2 As with all claims in this paper, the proof of Lemma 5 is deferred to the full paper.
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Lemma 5. If the size of the minimum vertex cover of an undirected graph is b, then
the union of all its vertex covers has size 2b at most.

(ii) α is (t − c + 1)-signed by processes from P \C (lines 6 to 8 in the protocol).
AUTHENTICATEDVC computes all vertex covers of G with at most t nodes. Let

ν1, . . . ,νs be these VC’s. Define C �
m⋂

j=1
ν j , and c � |C|. The set C is the conjunc-

tion of all vertex covers of size t, and thus includes all nodes which are guaran-
teed to represent a faulty process. It follows that the set P \C contains at most
t − c faulty processes, and thus t − c + 1 signatures are enough to authenticate a
datagram and return TRUE.

(iii) α is t + 1-signed (lines 9 and 10).
We note that proving the consistency property in cases (ii) and (iii) above, is

very similar to proving the consistency of ACC.

4 Byzantine Continuous Consensus

So far we discussed the generalized omission model. However, since we are using an
authentication scheme, a natural extension to our analysis is to consider the authenti-
cated Byzantine model. Our assumption in this model is that although faulty processes
may be “liars,” they can only lie about their own local states and inputs, and cannot alter
any relayed information.

When analyzing the CC problem in the context of the authenticated Byzantine model,
we find that satisfying the Accuracy property may prove a bit problematic: a faulty pro-
cess, z, may falsely claim that an event e occurred, without any process ever realizing
that z is faulty. In this case including e in the core would spoil its Accuracy. We solve
this problem by modifying the sets of primitive propositions and monitored events, Φ
and E(V), defined above. Let ΦB be a set of primitive propositions of the form “pro-
cess i claims that p” for i ∈ P and p ∈ Φ. Similar to our definition in Section 2, we
restrict our analysis to a set EB of monitored events that is identified with ΦB

E ⊆ ΦB,
such that monitored events depend only on what processes claim about their inputs.

AUTHENTICATEDVC(G,α)

1 compute C and c according to G
2 if α is d-signed by a set of processes D such that d ≤ t then
3 G ′ ← G � P\D
4 b ← size of min-VC of G ′

5 if d ≥ t −b+1 then return TRUE
6 h ← t −c
7 if α is signed by a sequence of processes, at least h+1 of which are from P\C then
8 return TRUE
9 if α is a t +1-signed datagram then

10 return TRUE
11 return FALSE

Fig. 5. The AUTHENTICATEDVC procedure used in VC-CC



84 T. Mizrahi and Y. Moses

When using authentication, propositions from ΦB
E cannot be forged, since when a pro-

cess receives a proposition p ∈ ΦB
E , it may verify its signature. Thus, in this context the

Accuracy property does not present a problem in the authenticated Byzantine model.
By restricting the core to the set EB of monitored events, it is easy to verify that

both the protocols shown in Section 2, as well as the ones shown in Section 3 provide
a solution to the CC problem. The usage of authentication eliminates the possibility of
forging relayed messages, while a message produced by a faulty process j regarding
a proposition q is not considered a lie in our context, since it is indeed true that “ j
claims that q”. Notice, however, that the core may still contain both “ j claims that q”
and “ j claims that ¬q”, provided that j is faulty. Such inconsistencies may be settled by
protocols for Byzantine agreement that are beyond the scope of this work.

5 Conclusion

In this paper we discussed the continuous consensus problem in the generalized omis-
sion model. We presented two very simple protocols, ACC and ACCD, that solve the
CC problem in this model by using an authentication. We showed that these protocols
may be implemented quite efficiently. Whereas ACC requires n > 2t, we have shown
that ACCD applies for n > t. In addition, we have shown that ACCD is early stopping,
and that ACC, on the other hand, satisfies the weak uniformity property.

While ACC and ACCD both solve the CC problem in the crash and omission models,
none of them is optimal. In both protocols it takes at least t + 1 rounds from the time
that an event takes place until it is included in the core. As shown in [1], in the crash
and in the sending omission models, some events may enter the core much sooner than
this, by using a protocol called CONCON.

It was shown that by maintaining a conflict graph of the system, processes obtain
information about failures in the run, which allows them to add facts to the core sooner
than t +1 rounds after their occurrence. We showed a very simple protocol called ACCI,
which uses the conflict graph to identify a set of confirmed faulty processes, thus en-
abling processes to include in the core datagrams with less than t + 1 signatures.

Finally, we presented VC-CC, which, in addition to the techniques used by the pre-
viously described protocols, uses a subtle vertex-cover computation to obtain further
information about failures in the system. While this solution produces a richer core, it
is computationally problematic, since it requires computing the minimal vertex-cover,
which is an NP-hard computation.
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Abstract. An important problem in the fault tolerant distributed sys-
tems is reaching a consensus among a set of non faulty processes, even
in the presence of some corrupted processes. The problem is couched
in terms of generals attempting to decide on a common plan of attack.
This is in fact the well known Byzantine Generals Problem. We present a
consensus protocol of O(ln) communication complexity in asynchronous
networks (there is no common global clock and message delivery time
is indefinite) with a small error probability where n is the number of
players and l is the length of message, given l is sufficiently large, such
that l ≥ n3. This improves the previous result with O(ln2) communica-
tion complexity[5]. Further more, we have proposed a reliable broadcast
protocol in asynchronous networks with the assumption that messages
delivery time is finite. Both of our protocols can tolerate up to t < n

3
corrupted players and is computationally secure.

Keywords: Distributed computing, byzantine agreement problem, fault
tolerance, computationally bounded byzantine adversary.

1 Introduction

The Problem of Byzantine agreement was proposed by Lamport, Pease and
Shostak[11] in 1980. It was formulated to solve the problem of Byzantine gener-
als, in which, the generals, some of whom may be faulty, try to decide whether or
not to carry out an attack. Some traitorous generals may lie about whether they
will support a particular plan or what other generals told them. Formally, each
player starts with an input value, from a finite set, V and decides on an output
value from same set. The players have to attain the consensus, given the fact
that some of the players may be faulty and may behave in a malicious manner.
The conditions for consensus are specified as follows.

1. Agreement: No two non faulty players decide on different values.
2. Validity: If all non-faulty players start with the same initial value, v ∈ V,

then v is the only possible decision value for non-faulty player.
3. Termination: The termination condition requires that all non-faulty play-

ers must eventually decide.
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Another variant of this problem is the broadcast problem, which aims at achieving
broadcast in the distributed environment. The protocol for solving this problem
is known as the reliable broadcast. A unique player, known as the sender begins
the protocol by sending the message to other players. The reliable broadcast
protocol aims at broadcasting this value to all the players, so that each player
decides on an output value. For broadcast, the agreement and the termination
conditions remain the same but validity condition differs. The conditions for
broadcast are specified as follows.

1. Agreement: No two non faulty players decide on different values.
2. Validity: The players must decide on the sender’s value, if the sender is

honest.
3. Termination: The termination condition requires that all non-faulty play-

ers must eventually decide.

Byzantine fault is an arbitrary fault that occurs during the execution of a pro-
tocol in a distributed system. There are a variety of byzantine faults, like, the
byzantine adversary may not follow the protocol. He may choose either not to
send any values or to send different values to different players. The synchronous
model of underlying network assumes the presence of global clock and has fixed
bound on message delivery times. The asynchronous model assumes no such
bounds. So, messages can be arbitrarily delayed. An adversary can be static
(chooses its victims before the start of the protocol) or dynamic (can chose its
victims during the course of execution of the protocol). Attaining security against
a dynamic adversary is often much harder than against a static adversary.

Related Work
A fundamental result in this area is the impossibility of the byzantine agree-
ment[9] in asynchronous networks which rules out the existence of determinis-
tic protocol. So, to solve the consensus, the asynchronous distributed systems
have to be enriched with additional power. Common coins[12], randomization[1]
(probabilistic protocols) and unreliable failure detectors[7] are some examples of
such additions that make it possible to solve the consensus, despite asynchrony
and failures. Several protocols[2,3,5] in the literature are of O(ln2). Recently,
Ramasamy[13] proposed atomic broadcast protocol of O(ln), but the worst case
complexity is O(ln2) and it works only for static adversary. The atomic broad-
cast protocol can be reduced to consensus[7].

Motivation and Contribution
We attempt to solve the open problem left by Fitzi and Hirt[10]. Their paper
extends the synchronous short message broadcast protocol to the long message
multivalued consensus protocol. We propose the long message multi-valued con-
sensus protocols in the asynchronous networks (there is no common global clock
and messages delivery time is indefinite) using the asynchronous short message
broadcast protocol as a black box. The asynchronous reliable broadcast proto-
col with an assumption that messages delivery time is finite is proposed. The
communication complexity of our protocol is O(ln) with a negligibly small error
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probability, given l is sufficiently large, such that l ≥ n3. We used the reliable
broadcast protocol proposed by Cachin[4] as a black box. Our reduction protocol
works for byzantine failures, dynamic adversary and is computationally secure.

Model
We propose a solution for the agreement problem in the asynchronous networks.
We assume that underlying network is completely connected and the communi-
cation channel between every pair of players is secure. The Adversary is dynamic,
this means the adversary can choose corrupted players at any time of the pro-
tocol execution. The Adversary is computationally bounded and the byzantine
faults are considered (messages can be delayed, wrongly sent or may not be sent
at all). Adversary controls at most t number of players, in other words there are
at most t malicious players among n players.

Paper Organization
The paper is organized as follows. Section 2 explains the components used by the
protocol: black box, universal hash functions and threshold broadcast() protocol.
Section 3 presents an overview of the proposed protocol. Section 4 elaborates the
consensus protocol and analyzes the security of each stage. Section 5 presents the
reliable broadcast protocol. Sections 6 discusses the communication complexity
of the protocol and finally, Section 7 concludes the paper.

2 Preliminaries

Black box
Any asynchronous reliable broadcast protocol[3,4] with order of O(ln2) can be
used as black box. We use the protocol proposed by Cachin et.al.[4] for asyn-
chronous networks as a black box. The communication complexity of this pro-
tocol is O(ln2). The Adversary is dynamic, computationally secure and the
protocol works for byzantine faults. Optimal resilience (n ≥ 3t + 1) is achieved.

Universal Hashing[6]
It is a randomized algorithm for selecting a hash function G with the following
property: for any two distinct inputs x1 and x2, the probability that G(x1) =
G(x2) (i.e., there can be a hash collision between x1 and x2) is 1

r , where G has
function values in a range of size r.

2.1 Cryptographic Primitives

We use well known digital signature schemes and non-interactive dual threshold
signatures[14]. The Dealer distributes the keys at the beginning of the protocol.

2.1.1 Non-interactive Dual-Threshold Signatures
The (n, κ, t)-dual threshold signature scheme[8,14] has n players and at most t
malicious players. Every player holds the share of the secret key of the signature
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scheme, and generates the signature share on individual messages. κ is the thresh-
old of the signature shares required to construct the signature, t < κ ≤ n − t.

Generation of keys
Let p1, p2, · · · pn be the set of players. The dealer sets up the system, generates a
public key PK, a global verification key V K, the secret key shares SK1, . . . , SKn

and the local verification keys V K1, . . . , V Kn. Initially, each player pi has the
secret key SKi along with the public key PK. The sender sends the message
to all the players at the beginning of the threshold broadcast protocol. The
sender additionally has the verification keys. A practical scheme that satisfies
these definitions in the random-oracle model was proposed by Shoup[14]. In a
non-interactive dual threshold signature scheme, generation and verification of
signatures is non-interactive.

Algorithms involved in (n, κ, t)-dual threshold signature scheme

1. The signing algorithm (run by Pi)
Input : A message m.
Output : A signature share s′i on the submitted message signed by secret key

share SKi.
2. The share verification algorithm (run by sender)

Input : A message m, a signature share s′i on the submitted message signed
by SKi and other keys PK, V Ki, V K.

Output : TRUE if and only if the signature share s′i is valid.
3. The share combining algorithm SCA() (run by sender)

Input : A message m, κ valid signature shares on the message, PK, V K,
{V Ki, 1 ≤ i ≤ n}.

Output : A valid signature on the message m.
Let shares = { set of all κ valid signatures s′i }
m′ = SCA(m, s′1, s

′
2, · · · s′n, V K1, · · · V Kn)

4. The signature verification algorithm (run by Pi other than sender)
Input : A message m, a signature m′ (generated by the share-combining

algorithm), PK.
Output : TRUE iff the signature is valid. Verified by V K.

Security Requirements
1. Robustness: It is computationally infeasible for an adversary to produce κ
valid signature shares such that the output of the share combining algorithm is
not a valid signature.
2. Non − forgeability: It is computationally infeasible to output a valid signa-
ture on a message that was submitted as a signing request to less than κ − t
honest players.

2.1.2 The Threshold broadcast() Protocol
We briefly explain the Threshold broadcast() protocol in this section. To ob-
tain a signature on a message m, the sender broadcasts the message through
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the Threshold broadcast() protocol to all the players and obtains the mes-
sage m′ with threshold signature. In the proposed protocol, whenever a player
wants to broadcast his value, he obtains signature on the message through
Threshold broadcast(m) protocol. The protocol is similar to consistent broad-
cast protocol found in the literature[4]. The Threshold broadcast(m) protocol
returns the signed message m′. The steps involved in the protocol are as follows:

1. The sender broadcasts the message m to all the players.
2. Every player pi upon receiving the message m from the sender, signs the

message with his secret key share SKi and obtains the signature share s′i on
the message m using signing algorithm and sends his share s′i to the sender.

3. The Sender waits for the arrival of s′i and checks the validity of message once
received using share verification algorithm.

4. As soon as the sender receives �n+t+1
2 � valid shares, he generates valid sig-

nature on the message m using share combining algorithm.
m′ = SCA(m, shares, V K1, . . . , V Kn).

5. return(m′).

Lemma 1: The sender definitely gets the message with threshold signature, m′

if he is honest.

Proof: As the sender is honest, he sends the correct message to all the players.
All honest players generate a signature share on m as soon as they receive it
from sender and send back to the sender. Since, at least �n+t+1

2 � honest play-
ers return their share to the sender, sender can correctly obtain the m′. Hence
proved. �

Lemma 2: The sender can obtain at most one message with threshold signature
irrespective of whether he is honest or dishonest.

Proof: From lemma 1, if the sender is honest, he can obtain m′. We prove
that even if the sender is dishonest he obtains at most message with threshold
signature, m. We prove this by contradiction. Suppose the sender obtains two
messages with threshold signature, say m′1, m′2. So, there should be at least
�n+t+1

2 � signature shares for each of the messages, that is totally (n + t + 1).
Since there are (n − t) honest players, at most n − t signature shares can be
obtained from distinct honest players. The adversary controls at most t players
and therefore they can contribute at most 2t signature shares. Totally, at most
n − t + 2t = n + t signature shares can be obtained. As sender obtained both
messages, at least one honest party might have signed both m′1 and m′2 signature
shares, which is impossible according to protocol. Hence, m′1 = m′2. �

Communication Complexity
Given the length of the signature is T and length of the message is l, the com-
munication complexity is (l + T )n.
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3 The Byzantine Agreement Protocol Overview

We briefly discuss the major parts of the protocol in this section.
Let P be the set of all players and Phonest be the set of all honest players. The

protocol has 3 important stages: First Stage, Set Creating Stage and Final Stage.

First Stage
Initially, the sender sends the message m and the signature m′ to all the players.
This stage acts as a supporting stage to the set creating stage.

Set Creating Stage
The goal of the set creating stage is to identify a set A ⊆ P of size at least
�n+t+1

2 �, such that all the players in A hold the same input message m.

– Each player sends the hash value of his message to other players and com-
pares his message with other players and jointly determines the subset.

– If at least �n+t+1
2 � players do not have the same message, then all the players

are set to the predefined default value.

Final Stage
In the Final Stage, every player pi ∈ A distributes his message to all the players in
the set (P −A). In order to keep the communication cost low, every honest player
is distributing only part of the message rather than the full-length message. This
stage will never be aborted. After the final stage all the honest players will have
the same message and the protocol execution completes.

4 The Consensus Protocol

The set creating stage and final stage together will act as the consensus proto-
col. We name our protocol as Hash consensus. Initially, every player pi has his
own value as input, that is mi has some random value at the beginning of the
protocol. The set creating stage and final stage protocols are described below in
detail.

4.1 Set Creating Stage

The goal of the set creating stage is to identify a set A ⊆ P of size at least
(n − t), such that all the players in A hold the same input message m. For
the players to mutually agree on the fact that both the players have the same
message, we use universal hash function. We are considering ε - almost two
universal hash functions introduced by Carter[6]. This is a family U = {Uk,
k = 0 to 2q − 1 , q ≥ 1}, where each hash function Uk maps arbitrary strings
(0, 1)∗ to constant length q-bit strings. As we are using universal hash function[6],
given two distinct messages, the probability that they have the same hash value
is negligibly small. In other words, for two distinct messages m1 and m2, the
probability that Uk(m1) is equal to Uk(m2) is l

2−q , for given message length l
and random key k, q = |Uk(mi)|.
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The Set Creating Stage Protocol

1. Every player pi ∈ P using the key k for a universal hash function Uk, com-
putes hash value of the message, h(mi) = (k, Uk(mi)).

2. By using the reliable broadcast protocol (black box B()), player pi broadcasts
his hash value and other players agree on < k, h(mi) > value, if he is honest.
Otherwise they agree on the default value.

3. All the players agree on the same set of hash values.
4. For every player, out of the received values, if there are at least �n+t+1

2 �
players with same hash value, then those players belong to the set A and
remaining players belong to the set B. Each player knows, to which set he
belongs to and to which set every other player belongs to. Thus, the set
creating stage succeeds.

5. If there are less than �n+t+1
2 � players with same hash value, then all the

players agree on the default value. Hence, the protocol execution terminates.

In the next stage, every player belonging to A should send their value to every
player belonging to B. A player belonging to the set B trusts a received value
only if it is sent by at least (t + 1) players. But if |A| = t + 1, there can be
t dishonest players in the set A and they may not send correct values to the
players of the set B. So, the size of the set A should be at least (2t + 1). In the
above case, the size of the set A is �n+t+1

2 � which is greater than (2t + 1).

Lemma 3: In the consensus protocol, at the end of the set creating stage, at
least �n+t+1

2 � players agree on a common message, m or all the honest players
agree on the default value.

Proof: In the set creating stage, if at least �n+t+1
2 � players start with the same

value, then their hash values will be equal (as mi = mj, h(mi) = h(mj)). Hence,
a set A of players of size at least �n+t+1

2 � will be created, such that all players
agree on a common value. If at least �n+t+1

2 � players do not start with the same
value, then at the end of the set creating stage, all the players agree on the
default value. �

4.2 Final Stage

The players belonging to the set B know the hash value on which the players
belonging to the set A agreed, but they do not know the corresponding message.
In this stage, the players of the set A send the message to the players of the set
B. Let mA be the value agreed by all the players belonging to the set A. We use
the same universal hash function mentioned in set creating stage.

Every player pi ∈ A sends a share of the message mA to every player pj ∈ B.
This is done in the following manner. The message mA is divided into d pieces
(each of length � l+1

d �) and by using these d values as coefficients, every player
forms a unique polynomial fm of degree (d − 1), calculates fm(i) and sends it
to every player pj ∈ B. As the value of i varies from 1 to |A|, x can take a
maximum value of |A|. Let us denote fm(i) by yi. The maximum length of yi is
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� l+1
d � + d log |A|. A player pj ∈ B needs d points to compute the polynomial, so

we set d = |A| − t (as at most t players can be malicious). For eg., the message,
a1a2a3a4a5a6 can be divided into 3 pieces and by using them as coefficients, a
polynomial like, a1a2x

2 + a3a4x + a5a6 can be formed.

The Final Stage Protocol

Exponential Solution

1. Every player pi ∈ A computes |yi|, d and fm as described above, and sends
the |yi| bit length piece yi to every player pj belonging to the set B.

2. Every player pj ∈ B waits for the arrival of at least d values of yi from
players pi belonging to A.

3. As soon as every player pj ∈ B receives the d values, he forms the polynomial,
retrieves the message m and computes the hash value of message.

4. If this hash value matches with the hash value received in the set creating
stage, that is, h(mA), then received message is correct, otherwise there is at
least one wrong value of yi, so the player waits for arrival of one more yi.

5. Every player pj ∈ B, after receiving one more value, forms polynomials
for all combinations of d values. From every combination he retrieves the
message and calculates its hash value and checks whether this hash value
equals to h(mA) value. If all values fails, he waits for the arrival of one more
yi value. For checking all possible combinations it takes exponential time.
Players repeat step 5 until they retrieve the correct message.

Polynomial Solution

1. Every player pi ∈ A computes d and fm as described above, and sends piece
yi to every player pj ∈ B

2. Every player pi ∈ A selects random key k for a universal hash function Uk,
computes the hash values Hi = (k, Uk(y1), . . . , Uk(y|A|)), and sends them to
every player pj ∈ B.

3. Every player pj ∈ B waits for arrival of d number of yi values, and (t + 1)
number of H values as every H includes Uk(yi)

4. If
at least (t + 1) number of Uk(yi) hash values match with
hash value of yi then the received value is correct.

else
If

at least (t + 1) number of Uk(yi) hash values do not
match with hash value of yi then the received value
yi is wrong, so wait for arrival of one more yi value.

else
wait for arrival of one more Uk(yi) hash value. In
other words, wait for arrival of one more Hi value.



94 A. Shareef and C. Pandu Rangan

5. Step. 3 and Step. 4 are repeated till d number of correct yi values are obtained
and the message is retrieved. The hash value of this message is equal to the
hash value received in set creating stage. It takes polynomial time as we are
not checking all combinations.

Lemma 4: At the end of final stage, all the honest players agree on a common
value.

Proof: The goal of this stage is to transfer the the message agreed by the players
of the set A to the players of the set B. From lemma 3, at least �n+t+1

2 � players
agree on the message m. As �n+t+1

2 � ≥ (2t + 1), it is possible for the players of
set A to send their value to B.

Case 1: Exponential Solution
After this stage, all the players belonging to the set B checks whether the value
obtained in final stage is equal to h(mA) or not, and they retrieve the correct
value with high probability.

Case 2: Polynomial Solution
Every good piece yi of an honest player, pi ∈ A will be confirmed by at least
(t + 1) players (i.e. at least one honest player). Then, every player belonging
to the set B receives d number of correct yi values. All these points indeed lie
on a polynomial and a unique polynomial of degree (d − 1) can be obtained by
interpolation. Hence, the message m is retrieval. �

Theorem 1: The Hash consensus protocol solves the consensus problem with
a small arbitrary error, l

2q and can tolerate at most n
3 dishonest players, where

l is the length of the message and q is the length of the hash message.

Proof: As we are using universal hash function, we have a small arbitrary error
probability of l

2q . We prove that the protocol follows all conditions of the con-
sensus.

Agreement: From lemma 3, at the end of the set creating stage, either all of the
players agree on the default value or there will be a set A, of size at least �n+t+1

2 �
such that all the honest players ∈ A have the same value. From lemma 4, this
value will be sent to the remaining players. Hence, all the honest players agree
on the same value.

Validity: If all the honest players start with the same value, then there will be a
set A, of size at least (n − t) such that all the players ∈ A have the same value
(as m1 = m2, h(m1) = h(m2)). From lemma 3, at least �n+t+1

2 � players agree on
the message m. From lemma 4, it is successfully transmitted to the remaining
players. Hence, all the non faulty players agree on m.

Termination: The protocol terminates after either set creating stage or final
stage. �
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5 The Reliable Broadcast Protocol

The reliable broadcast protocol consists of three consecutive stages, first stage,
set creating stage and final stage. The first stage and the set creating stage
together construct a set of players, A of size at least �n+t+1

2 � such that all the
players of set A have the same value. In final stage, this message is sent to the
remaining players. We name our protocol as Byz-hash. The description of each
of the stages is given below.

5.1 First Stage

This stage uses the sub-protocolThreshold broadcast(), mentioned in section 2.3.2,
to obtain the threshold signature on the message m.

The First Stage Protocol

1. Initially every player pi sets his value mi to default value.
2. The sender obtains threshold signature m′ on his message m.

m′ = Threshold broadcast(m)
3. The sender sends the messages < m, m′ > to all the players.
4. If a player pi receives the value < m, m′ >, he checks its validity. If it is valid

then he sets his message mi to m′.

The set creating stage is similar to section 4.1 except that at beginning of the
set creating protocol players assign their message to the value obtained in first
stage. The final stage is similar to section 4.2.

Lemma 5: If the sender is honest, at the end of the first stage all the honest
players learn the message m′ and set their value to m′ (m′ is the message with
the threshold signature).

Proof: If the sender is honest, from lemma 1, he gets m′ (message with the
threshold signature) and sends the message m′ to all the players. Because of
finite time message delivery, all the players receives m′ in fixed amount of time
from sender (it is valid as sender is honest). In this way, all the honest players
set their value to m′. �

Lemma 6: If the sender is honest, then after the set creating stage there will
be a set A of size at least (n − t) such that all the honest players ∈ A have the
same value.

Proof: If the sender is honest, then from lemma 5, after the first stage at least
(n − t) players holds the message m′. In the set creating stage, their hash values
will be equal (as m1 = m2, h(m1) = h(m2)). Hence, all the honest players agree
on the value m′. �
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Lemma 7: In the reliable broadcast protocol, at the end of set creating stage,
either there will be set A of size at least �n+t+1

2 � such that all of them agree on
same message or all honest players agree on default value.

Proof: If the sender is honest from lemma 6, there will be a set A of size at
least (n− t). If the sender is dishonest, from lemma 2, at most he can obtain one
message with threshold signature. Worst case, sender may not send the messages
in threshold broadcast() protocol or first stage, in that case all players agree on
default value. The sender may sends m′ to few players only, if at least �n+t+1

2 �
players do not have the same value, then all the players agree on default value. �

Theorem 2: The Hash broadcast protocol solves the Asynchronous Multival-
ued Byzantine Agreement problem with a small arbitrary error l

2−k and tolerates
at most n

3 dishonest players (l and k are lengths of message and hash message
respectively).

Proof: We prove that the protocol follows all conditions of reliable broadcast.
Agreement:From lemma 7, after set creating stage either all honest players agree
on default value or there will be set of players of size at least �n+t+1

2 � such that
all the honest players have same value. From lemma 4, this value sent to all the
remaining players. Hence all the honest players agree on same value.

Validity: From lemma 6, if the sender is honest, then after set creating stage
there will be a set A of size at least (n − t) such that all the honest players ∈ A
have the same value. From lemma 4, this value sent to all the remaining players.
Hence all the honest players agree on same value.

Termination: The protocol terminates after either set creating stage or final
stage. �

6 Communication Complexity of the Protocol

For the message length l, number of players n and q is hash value which is of
constant length.

The communication complexity of first stage: O(ln).

The communication complexity of set creating stage:
The protocol communicates 2nB(q) bits, where B(b) denotes the communication
complexity for broadcasting a b bit message with the short-message broadcast
protocol. B(q) is of O(nq2). The complexity is O(2n2q2). As l ≥ n3 and q is of
constant length, the communication complexity is of O(ln).

The communication complexity of final stage:
The length of the point yi is � l+1

d � + d log |A|
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Case 1: Exponential Solution
As every player pi ∈ A sends yi to every player pi ∈ B, overall communication
complexity is |A|(n−|A|)(� l+1

d �+d log |A|). It is of order O
(
(l+1+d2 log |A|)n

)
.

As l ≥ n3, the complexity is O(ln).

Case 2: Polynomial Solution
Additionally to the exponential solution every player pi ∈ A sends hash values,
Hi = (k, Uk(y1), . . . , Uk(y|A|)). Its communication complexity is nq and q is of
constant length. Hence, the overall communication complexity is

|A|(n − |A|)(� l+1
d � + d log |A|) + |A|(n − |A|)nq.

As l ≥ n3, the complexity is O(ln). As the communication complexity of each
stage is O(ln), the communication complexity of the entire protocol is O(ln).

7 Conclusion

We have proposed an asynchronous (there is no common global clock and mes-
sages delivery time is indefinite) long message consensus protocol using the asyn-
chronous short message reliable broadcast protocol as a black box. The asyn-
chronous reliable broadcast protocol is proposed with an assumption that mes-
sages delivery time is finite. The communication complexity of both the protocols
is O(ln), with a small error probability, for l ≥ n3. The reduction can tolerate
up to n

3 corrupted players and is computationally secure. In the Final stage, at
least �n+t+1

2 � players who agree on a common message, send their message to
all the other players with communication complexity of O(ln).
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Abstract. The k-set agreement problem is a generalization of the uniform con-
sensus problem: each process proposes a value, and each non-faulty process has
to decide a value such that a decided value is a proposed value, and at most k
different values are decided. It has been shown that any algorithm that solves
the k-set agreement problem in synchronous systems that can suffer up to t crash
failures requires � t

k
�+1 rounds in the worst case. It has also been shown that it is

possible to design early deciding algorithms where no process decides and halts
after min

(
� f

k
� + 2, � t

k
� + 1

)
rounds, where f is the number of actual crashes in

a run (0 ≤ f ≤ t).

This paper explores a new direction to solve the k-set agreement problem in
a synchronous system. It considers that the system is enriched with base objects
(denoted [m, �] SA objects) that allow solving the �-set agreement problem in a
set of m processes (m < n). The paper has several contributions. It first proposes
a synchronous k-set agreement algorithm that benefits from such underlying base
objects. This algorithm requires O( t�

mk
) rounds, more precisely, Rt = � t

Δ
� + 1

rounds, where Δ = m�k
�
� + (k mod �). The paper then shows that this bound,

that involves all the parameters that characterize both the problem (k) and its en-
vironment (t, m and �), is a lower bound. The proof of this lower bound sheds
additional light on the deep connection between synchronous efficiency and asyn-
chronous computability. Finally, the paper extends its investigation to the early
deciding case. It presents a k-set agreement algorithm that directs the processes
to decide and stop by round Rf = min

(
� f

Δ
� + 2, � t

Δ
� + 1

)
. These bounds gen-

eralize the bounds previously established for solving the k-set problem in pure
synchronous systems.

1 Introduction

Context of the work. The k-set agreement problem generalizes the uniform consen-
sus problem (that corresponds to the case k = 1). That problem has been introduced
by S. Chaudhuri to investigate how the number of choices (k) allowed to the pro-
cesses is related to the maximum number (t) of processes that can crash during a
run [4]. The problem can be defined as follows. Each of the n processors (processes)
defining the system starts with a value (called a “proposed” value). Each process that
does not crash has to decide a value (termination), in such a way that a decided value

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 99–111, 2008.
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is a proposed value (validity), and no more than k different values are decided
(agreement)1.

When we consider asynchronous systems, the problem can trivially be solved when
k > t. Differently, it has been shown that there is no solution in these systems as soon as
k ≤ t [3,14,23]. (The asynchronous consensus impossibility, case k = 1, was demon-
strated before using a different technique). Several approaches have been proposed to
circumvent the impossibility to solve the k-set agreement problem in asynchronous sys-
tems (e.g., probabilistic protocols [20], unreliable failure detectors with limited scope
accuracy [12,19], or conditions associated with input vectors [17]).

The situation is different in synchronous systems where the k-set agreement problem
can always be solved, whatever the respective values of t and k. This has an inherent
cost, namely, the smallest number of rounds (time complexity measured in communi-
cation steps) that have to be executed in the worst case scenario is lower bounded by
� t

k�+1 [5]. (That bound generalizes the t+1 lower bound associated with the consensus
problem [1,7].)

Although failures do occur, they are rare in practice. For the uniform consensus prob-
lem (k = 1), this observation has motivated the design of early deciding synchronous
protocols [6,15], i.e., protocols that can cope with up to t process crashes, but decide
in less than t + 1 rounds in favorable circumstances (i.e., when there are few failures).
More precisely, these protocols allow the processes to decide in min(f + 2, t + 1)
rounds, where f is the number of processes that crash during a run, 0 ≤ f ≤ t, which
has been shown to be optimal (the worst scenario being when there is exactly one crash
per round).

In a very interesting way, it has also been shown that the early deciding lower bound
for the k-set agreement problem is min(� f

k � + 2, � t
k � + 1) [10]. This lower bound,

not only generalizes the corresponding uniform consensus lower bound, but also shows
an “inescapable tradeoff” among the number t of faults tolerated, the number f of
actual faults, the degree k of coordination we want to achieve, and the best running time
achievable. It is important to notice that, when compared to consensus, k-set agreement
divides the running time by k (e.g., allowing two values to be decided halves the running
time).

Related work. To our knowledge, two approaches have been proposed and investigated
to circumvent the min(� f

k �+2, � t
k �+1) lower bound associated with the synchronous

k-set agreement problem.
The first is the fast failure detector approach that has been proposed and developed

in [2] to expedite decision in synchronous consensus. That approach assumes a special
hardware that allows a process to detect the crash of any process at most d time units
after the crash occurred, where d < D, D being the maximum message delay provided
by the synchronous system. Both d and D are a priori known by the processes. A fast
failure detector-based consensus algorithm that terminates in D + fd is proposed in
[2], where it is also shown that D + fd is a lower bound for any algorithm based on a

1 This paper considers the crash failure model. The reader interested by the k-set agreement
problem in more severe send/receive/general omission failure models can consult the intro-
ductory survey [22].
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fast failure detector2. To our knowledge, this approach has been considered only for the
consensus problem.

A second approach that has been proposed to circumvent the min(f +2, t+1) lower
bound is the use of conditions [18]. That approach considers that the values proposed by
the processes define an input vector with one entry per process. Basically, a condition
Cd

t (t and d are two parameters that allow defining instances of the condition) is a set
of input vectors I such that ∀I ∈ Cd

t , there is a value that appears in I more than t − d
times. A deterministic way to define which value has to appear enough times in a vector
I (e.g., the maximal value of the vector [16]) allows defining a hierarchy of conditions
such that C0

t ⊂ · · · ⊂ Cx
t ⊂ · · · ⊂ Ct

t (where Ct
t is the condition including all the input

vectors).
[18] presents two main results. Let I be the input vector of the considered run, and

Cd
t be a condition. The first result is a synchronous consensus algorithm that allows the

processes to decide in (1) one round when I ∈ Cd
t and f = 0, (2) two rounds when

I ∈ Cd
t and f ≤ t−d, (3) min(d+1, f +2, t+1) rounds when I ∈ Cd

t and f > t−d,
and (4) min(f + 2, t + 1) when I /∈ Cd

t . The second result is a proof showing that
min(d + 1, f + 2, t + 1) rounds are necessary in the worst case when I ∈ Cd

t (and
I /∈ Cd−1

t ).

Problem addressed in the paper. The paper is on the efficiency (measured as the number
of rounds required to decide) of synchronous set agreement algorithms. As it has just
been shown, fast failure detectors and conditions are two ways to circumvent the syn-
chronous lower bound. The paper investigates a third approach. That approach is based
on base objects that allow narrowing the set of proposed values. Their aim is to play a
part similar to fast failure detectors or conditions, i.e., allow expediting consensus.

Let us consider as a simple example a test&set object. This object has consensus
number 2 [11], which means that it allows solving consensus in an asynchronous system
made up of two processes (where one of them can crash), but not in a system made up
of n > 2 processes (where up to n−1 can crash)3. Is it possible to use such base objects
to speed up synchronous set agreement in a system made up of n processes where up
to t may crash? More generally, let [m, �] SA denote an object that allows solving �-
set agreement in a synchronous system of m processes. As fast failure detectors or
conditions, these objects are assumed given for free. So, the previous question becomes:

– Is it possible to benefit from [m, �] SA objects to build a t-resilient synchronous
[n, k] SA object (i.e., a k-set agreement object that has to cope with up to t process
crashes)?

– If such a construction is possible, is its cost smaller than � t
k� + 1, or smaller than

min(� f
k � + 2, � t

k � + 1) if we are interested in an early deciding [n, k] SA object?

If m, �, n and k are such that there is an integer a with n ≤ am and a� ≤ k, it is
possible to solve the k-set agreement problem without exchanging any value (i.e., in 0

2 Without a fast failure detector, the cost would be D × min(f + 2, t + 1).
3 The consensus number of a concurrent object type is the maximum number of processes that

can solve consensus (despite any number of process crashes) using only atomic registers and
objects of that type. The consensus number of test&set objects, queues, and stacks is 2 [11].
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round!) whatever the value of t. This is trivially obtained by partitioning the n processes
into a subsets of at most m processes, and using in each subset a [m, �] SA object in
order that each process be provided with a decided value. So, the interesting cases are
when the values m, �, n and k do not allow a trivial partitioning such as the previous
one.

Another way to present the previous question is the following: how much crashes
can we tolerate when we want to build a synchronous [10, 3] SA object from [2, 1] SA
objects, if one wants to decide in at most one round? In at most two rounds? In at most
three rounds?

From a more practical point of view, we can see the system as made up of clusters
of m processes, such that an operation involving only processes of a given cluster can
be performed very efficiently, i.e., in a time that is smaller than the maximal message
transfer delay involving processes belonging to different clusters. That is the sense in
which the sentence “the [m, �] SA objects are given for free” has to be understood.

Results. The paper presents the following results.

– It first presents a synchronous message-passing algorithm that builds a [n, k] SA
object from [m, �] SA objects. This algorithm works for any values of n, k, m, and
� (assuming, of course, n > k and m > �).

– The paper then shows that the number of rounds (Rt) of the previous algorithm
varies as O( t�

mk ). This means that Rt (1) decreases when the coordination degree
k increases (i.e., when less synchronization is required), or when the number of
processes m involved in each underlying object increases, and (2) increases when
the underlying object is less and less powerful (i.e., when � increases) or when
the number of process crashes that the algorithm has to tolerate increases. More
precisely, we have:

Rt =
⌊ t

m�k
� � + (k mod �)

⌋
+ 1.

When we consider the previous example of building, in a synchronous system, a
[10, 3] SA object from [2, 1] SA objects, we can conclude that Rt = 1 requires
t < 6, while Rt = 2 allows t = 9. Moreover, as there are only n = 10 processes,
there is no value of t that can entail an execution in which Rt = 3 are required (for
it to occur, we should have 12 ≤ t < 18 and n > t).
To have a better view of Rt, it is interesting to look at special cases.

• Case 1. Build a consensus object in a synchronous system from [1, 1] SA base
objects or [m, m] SA objects (i.e., from base objects that have no power). It is
easy to see that Rt = t+1 (that is the well-known lower bound for synchronous
t-resilient consensus).

• Case 2. Build a [n, k] SA object in a synchronous system from [1, 1] SA base
objects or [m, m] SA objects (base objects without power). It is easy to see
that Rt = � t

k� + 1, (that is the lower bound for synchronous t-resilient k-set
agreement).

• Case 3. Build a synchronous consensus from [m, 1] SA base objects (i.e., con-
sensus objects). In that case Rt = � t

m� + 1.
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• Case 4. Build a synchronous [n, �] SA object from [m, �] SA base objects. In
that case, Rt = � t

m� + 1.
• Case 5. Build a synchronous [n, k] SA object from [m, 1] SA base objects (i.e.,

consensus objects). We then have Rt = � t
mk � + 1.

These particular instances show clearly how the coordination degree and the size of
the base objects (measured by the value m) affect the maximal number of rounds
executed by the algorithm and consequently allow expediting the decision.

– The paper then shows that the value Rt is optimal when, one wants to build, in a
synchronous system, an [n, k] SA object from [m, �] SA base objects. This opti-
mality result generalizes previous lower bounds proved for special cases such as
consensus [1,7,15], and set agreement [5].

The optimality proof relies on two theorems, one from Gafni [9], the other from
Herlihy and Rajsbaum [13]. Gafni’s theorem establishes a deep connection between
solvability in asynchronous system and lower bounds (efficiency) in synchronous
systems. Herlihy and Rajsbaum’s theorem is on the impossibility to solve some set
agreement problems in asynchronous systems.

– Finally, the paper extends the algorithm to the early decision case. More specifi-
cally, the maximal number of rounds of the early deciding version of the algorithm
is the following:

Rf = min
(
� f

Δ
� + 2, � t

Δ
� + 1

)
where Δ = m�k

�
� + (k mod �).

It is easy to see that this early decision bound generalizes the lower bounds that are
known for the special consensus and set agreement cases.

This paper is an endeavor to capture the essence of the synchronous set agreement
and provide the reader with a better understanding of it. To that end, it considers design
simplicity as a first-class citizen when both designing algorithms and proving lower
bound results4.

As already noticed, the lower bound proof relies on previous theorems. We do think
that Gafni’s theorem [9] (that states that an asynchronous system with at most t′ crashes
can implement the first � t

t′ � rounds of a synchronous system with up to t failures) is a
fundamental theorem of fault-tolerant distributed computing. The lower bound proof of
this paper paper shows an application of this powerful theorem.

Roadmap. The paper is made up of 5 sections. Section 2 introduces the system model
and definitions. Section 3 presents the algorithm that builds an [n, k] SA object from
[m, �] SA objects in Rt synchronous rounds. Section 4 proves that Rt is a lower bound
on the number of rounds for any synchronous algorithm that builds an [n, k] SA object
from [m, �] SA objects. Section 5 considers the early decision case.

2 Computation Model and the Set Agreement Problem

The k-set agreement problem. The problem has been informally stated in the Introduc-
tion: every process pi proposes a value vi and each correct process has to decide on

4 The paper strives to modestly follow Einstein’s advice “Make it as simple as possible, but no
more”.
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a value in relation to the set of proposed values. More precisely, the k-set agreement
problem [4] is defined by the following three properties (as we can see 1-set agreement
is the uniform consensus problem):

– Termination: Every correct process eventually decides.
– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No more than k different values are decided.

Process model. The system model consists of a finite set of n processes, namely, Π =
{p1, . . . , pn}. A process is a sequence of steps (execution of a base atomic operation).
A process is faulty during an execution if it stops executing steps (after it has crashed a
process executes no step). As already indicated, t is an upper bound on the number of
faulty processes, while f denotes the number of processes that crash during a particular
run, 0 ≤ f ≤ t < n. (Without loss of generality we consider that the execution of a
step by a process takes no time.)

In the following, we implicitly assume k ≤ t. This is because k-set agreement can
trivially be solved in synchronous or asynchronous systems when t < k [4].

Communication/coordination model. The processes communicate by sending and re-
ceiving messages through channels. Every pair of processes pi and pj is connected by
a channel. The sending of a message and the reception of a message are atomic opera-
tions. The underlying communication system is assumed to be failure-free: there is no
creation, alteration, loss or duplication of message.

In addition to messages, the processes can coordinate by accessing [m, �] SA ob-
jects. Such an object is a one-shot object that can be accessed by at most m processes.
Its power is to solve the �-set agreement problem among m processes. Let us observe
that, for 1 ≤ m ≤ n, an [m, m] SA object is a trivial object that has no coordination
power.

Round-based synchrony. The system is synchronous. This means that each of its runs
consists of a sequence of rounds. Those are identified by the successive integers 1, 2,
etc. For the processes, the current round number appears as a global variable r that they
can read, and whose progress is given for free: it is managed by an external entity. A
round is made up of two main consecutive phases:

– A send phase in which each process sends zero or one message to each other pro-
cesses. If a process crashes during the send phase of a round, an arbitrary subset of
the processes to which it sent messages will receive these messages.

– A receive phase in which each process receives messages. The fundamental prop-
erty of the synchronous model lies in the fact that a message sent by a process pi to
a process pj at round r, is received by pj at the very same round r.

Before or after a phase, a process can execute local computations (e.g., process the mes-
sages it received during the current round). It can also invokes an underlying [m, �] SA
base object.
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3 A Synchronous [n, k] SA Algorithm

This section presents a simple algorithm that, when at most t processes may crash,
builds an [n, k] SA object if the system provides the n processes with round-based
synchrony and [m, �] SA base objects.

Notation. In all the rest of the paper we are using the following notations:

– k = α� + β with α = �k
� � and β = k mod �.

– Δ = α m + β and Rt = � t
Δ� + 1 =

⌊
t

m� k
� �+(k mod �)

⌋
+ 1.

3.1 The Algorithm

The algorithm is pretty simple. It is described in Figure 1. A process pi invokes the
operation proposek(vi) where vi is the value it proposes. That value is initially stored
in the local variable esti (line 01), that afterwards will contain the current estimate of
pi’s decision value (line 10). The process terminates when it executes the return(esti)
statement.

Each process executes Rt rounds (line 02). During any round r, only Δ processes
are allowed to send their current estimates. These processes are called the senders of
round r. When r = 1, they are the processes p1, . . . , pΔ, during the second round the
processes pΔ+1, . . . , p2Δ, and so on (lines 04-05).

The Δ senders of a round r are partitioned into � Δ
m	 subsets of m processes (the last

subset containing possibly less than m processes), and each subset uses an [m, �] SA
object to narrow the set of its current estimates (lines 06-07). After this “narrowing”,
each sender process sends its new current estimate to all the processes. A process pi ac-
cesses an [m, �] SA object by invoking the operation propose(esti). The � Δ

m	 [m, �] SA
objects used during a round r are in the array SA[r, 0..� Δ

m	−1] 5. Finally, when during
a round, a process pi receives estimates, it updates esti accordingly (line 10).

It is important to see that, if during a round, at least one sender process does not
crash, at most k = α� + β estimates are sent during that round, which means that k-set
agreement is guaranteed as soon as there is a round during which an active process does
not crash.

3.2 Proof of the Algorithm

Lemma 1. Let nc[r] be the number of processes that crash during the round r. There
is a round r such that r ≤ Rt and nc[r] < Δ.

Proof. Let t = α′Δ + β′ with α′ = � t
Δ� and β′ = t mod Δ. The proof is by contra-

diction. let us assume that, ∀ r ≤ Rt, we have nc[r] ≥ Δ. We then have:

Rt∑

r=1

nc[r] ≥ Δ × Rt = Δ
(
� t

Δ
� + 1

)
= Δ

(
α′ + �β′

Δ
� + 1

)
= Δ × α′ + Δ > t.

5 Actually, only Rt� Δ
m

� base [m, �] SA objects are needed. This follows from the following
observation: during each round r, if β �= 0, the “last” β sender processes do not need to use
such an [m, �] SA object because β ≤ �. (Let us recall that 0 ≤ β < � and Δ is defined as
α m + β.)
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Function proposek(vi)
(01) esti ← vi;
(02) for r = 1, 2, . . . , Rt do % r: round number %
(03) begin round
(04) first sender ← (r − 1)Δ + 1; last sender ← rΔ;
(05) if first sender ≤ i ≤ last sender then % pi is “sender” at round r %
(06) let y such that first sender + ym ≤ i < last sender + (y + 1)m;

% y is index of the [m, �] SA object used by pi %
(07) esti ← SA[r, y].propose(esti);
(08) for each j ∈ {1, . . . , n} do send (esti) to pj end do
(09) end if;
(10) esti ← any est value received if any, unchanged otherwise
(11) end round;
(12) return(esti)

Fig. 1. [n, k] SA object from [m, �] SA objects in a synchronous system (code for pi)

Consequently, there are more than t processes that crash: a contradiction. ��

Lemma 2. At any round r, at most k different estimate values are sent by the processes.

Proof. Let us recall that k = α � + β (Euclidean division of k by �) and the value Δ is
α m + β.

Due to the lines 04-05, at most Δ processes are sender at each round r. These Δ
sender processes are partitioned into � Δ

m� sets of exactly m processes plus a set of β
processes. As each underlying [m, �] SA object used during the round r outputs at most
� estimates values from the value it is proposed, it follows that at most α�+β estimates
values can be output by these objects, which proves the lemma. ��

Lemma 3. At most k different values are decided by the processes.

Proof. At any round the number of senders is at most Δ (lines 04-05). Moreover, due to
lemma 1, there is at least one round r ≤ Rt during which a correct process is a sender.
If follows from Lemma 2, line 08 and line 10, that, at the end of such a round r, the
estimates of the processes contain at most k distinct values. ��

Theorem 1. The algorithm described in Figure 1 is a synchronous t-resilient k-set
agreement algorithm.

Proof. The termination property follows directly from the synchrony of the model: a
process that does not crash executes Rt rounds. The validity property follows directly
from the initialization of the estimate values esti, the correctness of the underlying
[m, �] SA objects (line 07), and the fact that the algorithm exchanges only esti values.
Finally, the agreement property is Lemma 3. ��
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4 Lower Bound on the Number of Rounds

This section proves that the previous algorithm is optimal with respect to the number
of rounds. The proof of this lower bound is based on (1) a deep connection relating
synchronous efficiency and asynchronous computability in presence of failures [9], and
(2) an impossibility result in asynchronous set agreement [13].

4.1 Notation and Previous Results

– Sn,t[∅] denotes the classical round-based synchronous system model made up of n
processes, where up to t processes may crash.

– Sn,t[m, �] is the Sn,t[∅] system model enriched with [m, �] SA objects. This is the
model defined in Section 2 (n processes, at most t process crashes, coordination
possible through [m, �] SA objects).

– ASn,t[∅] denotes the classical asynchronous system model (n processes, up to pro-
cesses t may crash, no additional equipment).

– ASn,t[m, �] denotes the asynchronous system model ASn,t[∅] enriched with
[m, �] SA objects. (From a computability point of view, ASn,t[∅] is weaker than
ASn,t[m, �].)

The following theorems are central in proving that Rt is a lower bound.

Theorem 2. (Gafni [9]) Let n > t ≥ k > 0. It is possible to simulate in ASn,k[∅] the
first � t

k� rounds of any algorithm designed for Sn,t[∅] system model.

The next corollary is a simple extension of Gafni’s theorem suited to our needs.

Corollary 1. Let n > t ≥ k > 0. It is possible to simulate in ASn,k[m, �] the first � t
k �

rounds of any algorithm designed for Sn,t[m, �] system model.

Theorem 3. (Herlihy-Rajsbaum [13]) Let Jm,� be the function defined as follows: u →
�� u

m� + min(�, u mod m) − 1. There is no algorithm that solves the K-set agreement
problem, with K = Jm,�(t + 1), in ASn,t[m, �].

4.2 The Lower Bound

Theorem 4. Let 1 ≤ � ≤ m < n and 1 ≤ k ≤ t < n. Any algorithm that solves the
k-set agreement problem in Sn,t[m, �] has at least one run in which at least one process
does not decide before the round Rt =

⌊
t

m� k
� �+(k mod �)

⌋
+ 1.

Proof. The proof is by contradiction. let us assume that there is an algorithm A that
solves the k-set agreement problem in at most R < Rt rounds in Sn,t[m, �] (this means
that any process decides by at most R rounds, or crashes before). We consider two
cases.

– k < �. We have then R < Rt = � t
k � + 1.
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1. As k < �, the �-set agreement can be solved in in ASn,k[∅]. It follows that,
as far as set agreement is concerned, ASn,k[∅] and ASn,k[m, �] have the same
computational power.

2. It follows from the corollary of Gafni’s theorem that there is, in ASn,k[m, �], a
simulation of the first � t

k � rounds of any algorithm designed for the Sn,t[m, �]
system model. It is consequently possible to simulate in ASn,k[m, �] the R <
Rt = � t

k � + 1 rounds of the algorithm A. It follows that the k-set agreement
problem can be solved in in ASn,k[m, �].

3. Combining the two previous items, we obtain an algorithm that solves the k-set
agreement problem in ASn,k[∅]. This contradicts the impossibility to solve the
k-set agreement problem in ASn,k[∅] [3,14,23]. This proves the theorem for
the case k < �.

– k ≥ �. Let us recall the definition Δ = m�k
� � + (k mod �) = α m + β.

1. It follows from the corollary of Gafni’s theorem that at least � t
Δ� rounds of

any algorithm designed for the Sn,t[m, �] system model can be simulated in
ASn,Δ[m, �].

So, as the algorithm A solves the k-set agreement problem in Sn,t[m, �], in
at most R < Rt = � t

Δ� + 1, combining the simulation with A, we obtain an
algorithm that solves the k-set agreement problem in ASn,Δ[m, �].

2. Considering the argument used in Herlihy-Rajsbaum’s theorem we have the
following:

Jm,�(Δ + 1) = � �Δ + 1
m

� + min
(
�, (Δ + 1) mod m

)
− 1,

= � �α m + β + 1
m

� + min
(
�, (α m + β + 1) mod m

)
− 1,

= � (α + �β + 1
m

�) + min
(
�, (β + 1) mod m

)
− 1.

Let us observe that � ≤ m. Moreover, as β = k mod �, we also have β < �. To
summarize: β < � ≤ m. There are two cases to consider.
(a) m = β + 1. Observe that this implies that � = m and � − 1 = β.

Jm,�(Δ + 1) = � (α + 1) + min
(
�, m mod m

)
− 1,

= � α + � − 1 = � α + β = k.

(b) m > β + 1:

Jm,�(Δ + 1) = � α + min
(
�, (β + 1) mod m

)
− 1,

= � α + β + 1 − 1 = k.

In both cases, Jm,�(Δ + 1) = k. It follows from Herlihy-Rajsbaum’s theorem
that there is no algorithm that solves the Jm,�(Δ + 1)-set agreement problem
(i.e., the k-set agreement problem) in ASn,Δ[m, �].

3. The two previous items contradict each other, thereby proving the theorem for
the case k < �. ��
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Function ED proposek(vi)
(01) esti ← vi;
(02) for r = 1, 2, . . . , Rt do % r: round number %
(03) begin round
(04) first sender ← (r − 1)Δ + 1; last sender ← rΔ;
(05) if first sender ≤ i ≤ last sender then % pi is “sender” at round r %
(06) let y such that first sender + ym ≤ i < last sender + (y + 1)m;

% y is index of the [m, �] SA object used by pi %
(07) esti ← SA[r, y].propose(esti);
(08) for each j ∈ {1, . . . , n} do send (esti) to pj end do
(09) end if;
(A1) if (pi was a sender at round r − 1) then

for each j ∈ {1, . . . , n} do send (COMMIT) to pj end do end if;
(A2) if (COMMIT received) then return(esti) end if;
(10) esti ← any est value received if any, unchanged otherwise
(11) end round;
(12) return(esti)

Fig. 2. Early-deciding [n, k] SA object from [m, �] SA objects in a synchronous system (pi)

Corollary 2. When k < �, the underlying [m, �] SA objects are useless.

Proof. The corollary follows from the fact that k < � ⇒ Rt = � t
k� + 1, that is the

lower bound when no underlying base object is used. ��
This corollary means that no k-set agreement algorithm can benefit from [m, �] SA
objects when k < �.

5 Early Decision

This section extends the algorithm described in Figure 1 in order to obtain an early-
deciding algorithm that allows the processes to decide by round Rf = min

(
� f

Δ� + 2,

� t
Δ� + 1

)
, where Δ = m�k

� � + (k mod �).
This algorithm is described in Figure 2 (its proof can be found in [21]). It is obtained

from the base algorithm in a surprisingly simple way: only two new statements are
added to the base algorithm to obtain early decision. These are the new lines, named A1
and A2, inserted between line 09 and line 10. No statement of the base algorithm has to
be modified or suppressed.

The design principles of this algorithm are very simple. A process pi that is a sender
during a round r′ and participates in the next round r′ + 1 (so, it has not crashed by
the end of r′), sends to all the processes a control message (denoted COMMIT) during
the round r′ + 1 (additional line A1). In that way, pi informs all the processes that the
estimate value it sent during the previous round r′ was received by all the processes (this
follows from the communication synchrony property). Moreover, as at most k different
values are sent during a round (Lemma 2), and at least one process (namely, pi) sent a
value to all during r′, it follows from the fact that pi participates to the round r′ + 1
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that the estimates of all the processes contain at most k different values at the end of
r′. Consequently, a process that receives a COMMIT message during a round r′ + 1 can
decide the value of its estimate at the end of the round r′ and stops (additional line A2).

It is easy to see that if at least one process in p1, . . . , pΔ does not crash, the processes
decide in two rounds. If all the processes p1, . . . , pΔ crash and at least one process in
pΔ+1, . . . , p2Δ does not crash, the decision is obtained in at most 3 rounds. Etc. It is
interesting to observe that, when m = � = k = 1 we have Δ = 1 and we obtain a
remarkably simple uniform early deciding consensus algorithm for the classical round-
based synchronous model Sn,t[∅].

References

1. Aguilera, M.K., Toueg, S.: A Simple Bivalency Proof that t-Resilient Consensus Requires
t + 1 Rounds. Information Processing Letters 71, 155–178 (1999)

2. Aguilera, M.K., Le Lann, G., Toueg, S.: On the Impact of Fast failure Detectors on Real-Time
Fault-Tolerant Systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 354–369.
Springer, Heidelberg (2002)

3. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient Asyn-
chronous Computations. In: STOC 1993. Proc. 25th ACM Symposium on Theory of Dis-
tributed Computing, pp. 91–100. ACM Press, New York (1993)

4. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation 105, 132–158 (1993)

5. Chaudhuri, S., Herlihy, M., Lynch, N., Tuttle, M.: Tight Bounds for k-Set Agreement. Journal
of the ACM 47(5), 912–943 (2000)

6. Dolev, D., Reischuk, R., Strong, R.: Early Stopping in Byzantine Agreement. Journal of the
ACM 37(4), 720–741 (1990)

7. Fischer, M.J., Lynch, N.A.: A Lower Bound on the Time to Assure Interactive Consistency.
Information Processing Letters 14(4), 183–186 (1982)

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

9. Gafni, E.: Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony. In: PODC
2000. Proc. 17th ACM Symp. on Principles of Dist. Computing, pp. 143–152. ACM Press,
New York (1998)

10. Gafni, E., Guerraoui, R., Pochon, B.: From a Static Impossibility to an Adaptive Lower
Bound: The Complexity of Early Deciding Set Agreement. In: STOC 2005. Proc. 37th ACM
Symposium on Theory of Computing, pp. 714–722. ACM Press, New York (2005)

11. Herlihy, M.P.: Wait-Free Synchronization. ACM TOPLAS 13(1), 124–149 (1991)
12. Herlihy, M.P., Penso, L.D.: Tight Bounds for k-Set Agreement with Limited Scope Accuracy

Failure Detectors. Distributed Computing 18(2), 157–166 (2005)
13. Herlihy, M.P., Rajsbaum, S.: Algebraic Spans. MSCS 10(4), 549–573 (2000)
14. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal

of the ACM 46(6), 858–923 (1999)
15. Lamport, L., Fischer, M.: Byzantine Generals and Transaction Commit Protocols. Unpub-

lished manuscript, pages 16 (April 1982)
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Highly-Concurrent Multi-word Synchronization�

(Extended Abstract)

Hagit Attiya and Eshcar Hillel

Department of Computer Science, Technion

Abstract. The design of concurrent data structures is greatly facilitated by the
availability of synchronization operations that atomically modify k arbitrary lo-
cations, such as k-read-modify-write (kRMW). Aiming to increase concurrency in
order to exploit the parallelism offered by today’s multi-core and multiprocess-
ing architectures, we propose a software implementation of kRMW that efficiently
breaks apart delay chains. Our algorithm ensures that two operations delay each
other only if they are within distance O(k) in the conflict graph, dynamically
induced by the operations’ data items.

The algorithm uses double compare-and-swap (DCAS). When DCAS is not
supported by the architecture, the algorithm of Attiya and Dagan [3] can be used
to replace DCAS with (unary) CAS, with only a slight increase in the interference
among operations.

1 Introduction

Multi-word synchronization operations, like k-read-modify-write (kRMW), allow to read
the contents of several memory locations, compute new values and write them back, all in
one atomic operation. A popular special case is k-compare-and-swap (kCAS), where the
values read from the memory locations are compared against specified values, and if they
all match, the locations are updated. Multi-word synchronization facilitates the design
and implementation of concurrent data structures, making it more effective and easier
than when using only single-word synchronization operations. For example, removing a
node from a doubly-linked list and a right (or left) rotation applied on a node in an AVL
tree can easily be implemented with 3CAS and 4CAS, respectively.

Today’s multi-core architectures, however, support in hardware only single-word
synchronization operations like CAS or at best, double compare-and-swap (DCAS). Pro-
viding kRMW or kCAS in software has therefore been an important research topic.

It is crucial to allow many operations to make progress concurrently and complete
without interference, in order to utilize the capabilities of contemporary architectures.
Clearly, when operations need to simultaneously access the same words, an inherent
“hot spot” is created and operations must be delayed. A worse and unnecessary situa-
tion happens in typical kRMW implementations, when the progress of an operation is
hindered also due to operations that do not contend for the same memory words. In
these implementations [14,12,8,5,15], an operation tries to lock all the words it needs,
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one by one; if another operation already holds the lock on a word, the operation is
blocked and can either wait for the lock to be released (possibly while helping the con-
flicting operation to make progress) or reset the conflicting operation and try to acquire
the lock.

In these schemes, a chain of operations may be created, where each operation in the
chain is either waiting for a word locked by the next operation (possibly while helping
it), or is being reset by the previous operation in the chain. It is possible to construct
recurring scenarios where an operation repeatedly waits, helps, or is reset due to each
operation along the path. In these scenarios, an operation is delayed a number of steps
proportional to the total number of operations in these chains and their length, causing
a lot of work to be invested, while only a few operations complete. Evidently, it is
necessary to bound the length of the chains, in order to improve the concurrency of a
kRMW implementation.

We proceed more precisely, by considering the conflict graph of operations that over-
lap in time; in this graph, vertices represent data items, i.e., memory locations, and edges
connect data items if they are accessed by the same operation. The distance between
two operations in a conflict graph is the length of the path between the operations’ data
items. Thus, two simultaneous operations contending for a data item have zero distance
in the conflict graph. Algorithms of the kind described above guarantee that operations
in disconnected parts of the conflict graph do not delay each other; that is, operations
proceed in parallel if they access disjoint parts of the data structure; that is, they are
disjoint access parallel [12].

Even when operations choose their items uniformly at random, it has been shown [7],
both analytically and experimentally, that the lengths of such paths depend on the total
number of operations, and paths of significant length might be created in the conflict
graph. This means that the connected components have non-constant diameter, implying
that an operation in the typical multi-word synchronization algorithms can be delayed
by “distant” operations, even when an algorithm is disjoint access parallel.

The adverse effect of waiting and delay chains can be mitigated, greatly improv-
ing the concurrency, if operations are delayed only due to operations within constant
distance. Informally, an implementation is d-local nonblocking if whenever an opera-
tion op takes an infinite number of steps, some operation, within distance d from op,
completes. This implies that the throughput of the algorithm is localized in compo-
nents of diameter d in the conflict graph, and they are effectively isolated from oper-
ations at distance > d. This extends the notion of nonblocking (also called lock-free)
algorithms.

Our contribution. We present an algorithm for multi-word synchronization, specifi-
cally, kRMW, which is O(k)-local nonblocking. The algorithm is flexible and does not
fix k across operations. We store a constant amount of information (independent of k),
in each data item.

Our main new algorithmic ideas are first explained in the context of a blocking im-
plementation (Section 3), in which the failure or delay of an operation may block oper-
ations that access nearby data items; however, operations that access data items that are
farther than O(k) away in the conflict graph are not affected. (This is a slightly weaker
property than failure locality, suggested by Choy and Singh [6].)
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A key insight of our algorithm is that the length of waiting chains can be bounded,
yielding better concurrency, if an operation decides whether to wait for another
operation or reset it by comparing how advanced they are in obtaining locks on their
data items. If the conflicting operation is more advanced, the operation waits; other-
wise, the operation resets the conflicting operation and seizes the lock on the item.
While a similar approach has been used in many resource allocation algorithms, part of
our contribution is in bounding the locality properties of this approach. A particularly
intricate part of the proof shows that an operation cannot be repeatedly reset, without
some operation in its O(k)-neighborhood completing.

Another novelty of our algorithm is in handling the inevitable situation that happens
when overlapping operations that has made the same progress, that is, locked the same
number of items, create a chain of conflicts. The symmetry inherent in this situation
can, in principle, be broken by relying on operation identifiers, so as to avoid deadlocks
and guarantee progress. However, this can create delay chains that are as long as the
number of operations in this path (which can be n). Instead, we break such ties by
having the conflicting operations try to atomically lock the two objects associated with
the operations, using double compare-and-swap (DCAS). This easily and efficiently
partitions the above kind of path into disjoint chains of length 2, ensuring that operations
are delayed only due to close-by conflicts.

This scheme is made 3k-local nonblocking by helping a blocking operation that is
more advanced, instead of waiting for it to complete; we still reset conflicting opera-
tions that are less advanced (see Section 4). In this algorithm, helping chains replace
delay chains, which intuitively explains how the O(k) failure locality of the blocking
algorithm translates into O(k)-local nonblocking. (This intuition is made concrete in
the proof of the local nonblocking algorithm.)

Our algorithm demonstrates that DCAS provides critical leverage allowing to imple-
ment kRMW, for any k > 2, with locality that is difficult, perhaps impossible, to obtain
using only CAS. While few architectures provide DCAS in hardware, DCAS is an ideal
candidate to be supported by hardware transactional memory [10, 13], being a short
transaction with static data set of minimal size (two). Alternatively, DCAS can be sim-
ulated in software from CAS using the highly-concurrent implementation of Attiya and
Dagan [3], which is O(log∗ n)-local nonblocking. This yields kRMW implementation
from CAS, which is O(k + log∗ n)-local nonblocking.

Related work. Afek et al. [1] present a kRMW algorithm, for any fixed k, which can be
shown to be O(k + log∗ n)-local nonblocking. Their implementation works recursively
in k, going through the locations according to their memory addresses, and coloring
the items before proceeding to lock them; at the base of the recursion (for k = 2), it
employs the binary algorithm of Attiya and Dagan [3]. To support the recursion, their
implementation stores O(k) information per location. The recursive structure of their
algorithm makes it very complicated and infeasible as a basis for practical, dynamic
situations, as it requires that k must be hard-wired, uniformly for all operations. In con-
trast, our algorithm is more flexible, as each operation can access a different numbers of
data items. We store a constant amount of information, independent of k. More impor-
tantly, our algorithm can be modified not to require all the data items when the operation
starts, allowing to extend it to dynamic situations (see Section 5).
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Afek et al. [1] define two measures in order to capture the locality of nonblocking
algorithm in a more quantitative sense. Roughly, an implementation has d-local step
complexity if the step complexity of an operation is bounded by a function of the num-
ber of operations within distance d of it in the conflict graph; an implementation has
d-local contention if two operations accessing the same memory location simultane-
ously are within distance d. Their implementation has O(k + log∗ n)-local step com-
plexity and contention,1 matching the complexities of our algorithm, when the DCAS is
implemented as proposed in [3].

The first multi-word algorithms that rely on helping were the “locking without block-
ing” schemes [5, 15], where operations recursively help other operations, without re-
leasing the items they have acquired. These algorithms are O(n)-local nonblocking.
The static software transactional memory (STM) [14] also provides multi-word syn-
chronization. In this algorithm, operations acquire words in the order of their memory
addresses, and help only operations at distance 0; nevertheless, it is O(n)-local non-
blocking. Harris et al. [8] give an implementation of dynamic multi-word operations
with recursive helping, which is O(n)-local nonblocking.

2 Preliminaries

We consider a standard model for a shared memory system [4] in which a finite set of
asynchronous processes p1, . . . , pn communicate by applying primitive operations to
m shared memory locations l1, . . . , lm. A configuration is a vector describing the states
of processes and the values of memory locations. In the (unique) initial configuration,
every process is in its initial state and every location contains its initial value.

An event is a computation step by a process consisting of some local computation
and the application of a primitive to the memory. Besides standard READ and WRITE

primitives, we employ CAS(lj , exp, new), which writes the value new to location lj if its
value is equal to exp, and returns a success or failure flag. We also use a DCAS primitive,
which is similar to CAS, but operates on two memory locations atomically.

An execution interval α is an alternating sequence of configurations and events,
where each configuration is obtained from the previous configuration by applying an
event. An execution is an execution interval starting with the initial configuration.

An implementation of a kRMW operation specifies the data representation of opera-
tions and data items, and provides algorithms, defined in terms of primitives applied to
the memory locations, that processes follow in order to execute operations. The imple-
mentation has to be linearizable [11].

The interval of an operation op, denoted Iop, is the execution interval between the
first event and last event (if exists) of the process executing the algorithm for op. Two
operations overlap (in time) if their intervals overlap.

The conflict graph of a configuration C, is an undirected graph, in which vertices
represent data items and edges represent operations; it captures the distance between
operations overlapping in time. If C is a configuration during the execution interval
of an operation op, and op accesses the data items li and lj , the graph includes an

1 Afek et al. [1] state O(log∗ n)-local complexities, treating k as a constant.
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Fig. 1. The conflict graph of five overlapping operations: op1 = 3RMW(v1, v2, v6), op2 =
2RMW(v2, v5), op3 = 2RMW(v1, v3), op4 = 2RMW(v3, v4), op5 = 2RMW(v1, v4)

edge, labeled op, between the vertices vi and vj . (See Fig. 1.) The conflict graph of an
execution interval α is the union of the conflict graphs of all configurations C in α.

The distance between two operations, op and op′, in a conflict graph, is the length of
the shortest path between an item that is accessed by op and an item that is accessed by
op′. In particular, if the operations access a common item, then the distance between op
and op′ is zero; the distance is ∞, if there is no such path. The d-neighborhood of an
operation op contains all the operations within distance ≤ d from op.

We use the following variant on the failure locality definition [6]:

Definition 1. The failure locality of an algorithm is d if some operation in the d-
neighborhood of an operation op completes after a finite number of steps by the process
that invokes op, unless some operation in the d-neighborhood of op fails.2

The next definition is the nonblocking analogue of failure locality; it grantees progress
within every neighborhood of a small diameter, even when there are failures. This prop-
erty is stronger than requiring the implementation to be nonblocking [9].

Definition 2. An algorithm is d-local nonblocking if some operation in the
d-neighborhood of an operation op completes after a finite number of steps by the pro-
cess that invokes op.

3 A Blocking Algorithm with 3k Failure Locality

In this section, we present a general scheme for implementing kRMW with bounded
locality; several methods of the scheme are then implemented in a way that yields a
blocking implementation with 3k failure locality. In the next section, these methods are
implemented in a way that yields a local nonblocking implementation.

An operation first acquires locks on its data items, one item after the other, then
applies its changes atomically, and finally, release the locks. A contentious situation
occurs when an operation op is blocked since one of its items is locked by another,
blocking operation op′. Our algorithm uses the number of data items that are already
locked to decide whether to wait for or reset op′, i.e., release all the locks acquired by
op′, and seize the lock on the required item. That is, op waits for op′ only if op′ is more
advanced in acquiring its locks, i.e., op′ has locked more items. Otherwise, if op′ has
locked fewer items than op, op resets op′. Resetting another operation is synchronized

2 Choy and Singh [6] require an operation to complete if no operation fails in its d-neighborhood,
while we only guarantee that some operation in the neighborhood completes.
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through an operation object that can be acquired by operations; an operation resets
another operation only after acquiring ownership on its object.

The crux of the algorithm is in handling the symmetric case, when op and op′ have
locked the same number of items. In this case, the algorithms breaks the symmetry by
applying DCAS to atomically acquire ownership of the two operation objects (op and
op′); the operation that acquires ownership, resets its contender. This breaks apart long
hold-and-wait chains that would deteriorate the locality as well as hold-and-wait cycles
that can cause a deadlock.

Detailed description. Shared memory locations are grouped in contiguous blocks,
called item objects, which are accessed by the processes. Each item object contains
a data attribute and a lock attribute. For each operation, we maintain an operation ob-
ject containing a dataset, referencing the set of items the operation has to modify, a
count keeper, which is a tuple of a counter holding the number of items locked so far
(initially 0), and a lock referencing the owner of the operation object (⊥ if the object is
released). The object also contains a self pointer, initiator.

The psudocode for the general scheme appears in Algorithm 1, while the methods
for the blocking implementation appear in Algorithm 2. An operation acquires the lock
on its operation object (line 3) before proceeding to acquire the locks on its data items
(lines 8-9). When the operation succeeds in locking an additional item (line 10) it in-
creases the counter (line 11); when all the items are locked, i.e., the counter is equal to
the number of data items, the operation can apply its changes (line 15), and release the
locks on the data items (line 16). When op discovers that it is blocked by another op-
eration op′ (line 12), it calls handleContention, which compares the counters of op and
op′. If the counter of op is higher than (line 22) or equal to (line 27) the counter of op′,
op tries to reset op′ (lines 24, 29)so as to seize the lock on the item. For this purpose, op
needs to hold the locks on the operation objects of both op and op′. When the counter
of op is higher than the counter of op′, op keeps the lock on its operation object, and
tries to acquire the lock on the operation object of op′ (line 23), using CAS suffices in
this case (line 5 in Algorithm 2). When the counters are equal, op releases the lock on
its operation object (line 26)and tries to lock atomically both operation objects (line 28)
by applying DCAS (line 8 in Algorithm 2). If the counter of op is lower (line 31), then
op releases the lock on its operation object (line 26) and tries again.

Outline of correctness proof: Locks on items are acquired and released and counters
are changed either in the locking items loop (lines 9, 11), or during a reset (lines 36, 38,
45). In both cases, locks on data items and counters are modified only after the initiator
acquires the lock on its operation object (lines 3, 23, 28). Moreover, the operation holds
the lock on its operation object when it has locked all its items and cannot be reset. Thus,
changes are applied (line 15) in isolation, implying that the algorithm is linearizable.

Several types of blocking and delay chains might be created during an execution
of the algorithm. Some of these chains are created when an operation fails and causes
other operations to wait. It is intuitively clear why the length of these chains is in O(k).

More intricate delay chains are created when operations reset other operations. For
example, assume an operation op1 resets another operation op2, then, a third operation
resets op1. At some later time, op2 and op1 can reacquire their locks, and the same
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Algorithm 1 Multi-location read-modify-write: general scheme
1: run() {
2: while (c ← READ(initiator.countKeeper.counter)) < size do
3: if initiator.lockOperation(initiator, c) then // lock this operation object
4: initiator.execute()
5: }

6: execute() {
7: while (c ← READ(initiator.countKeeper.counter)) < size do // more items to lock
8: item ← READ(initiator.dataset[c])
9: CAS(item.lock, ⊥, initiator) // acquire lock on item

10: if READ(item.lock) = initiator then
11: CAS(initiator.countKeeper, 〈c,initiator〉, 〈c+1,initiator〉) // increase counter
12: else // initiator is not the owner of the item
13: initiator.handleContention(item)
14: return
15: write modified values to the memory locations
16: initiator.unlockDataset()
17: }

18: handleContention(Item item) {
19: if (conflict ← READ(item.lock)) = ⊥ then return // no conflict on item
20: 〈ic,iowner〉 ← READ(initiator.countKeeper)
21: 〈cc,cowner〉 ← READ(conflict.countKeeper)
22: if ic > cc then // conflict with an operation with a lower counter
23: if initiator.lockOperation(conflict, cc) then
24: initiator.reset(conflict, item)
25: return
26: CAS(initiator.countKeeper, 〈ic,initiator〉, 〈ic,⊥〉) // release this operation object
27: if ic = cc then // conflict with an operation with an equal counter
28: if initiator.lockTwoOperations(initiator, ic, conflict, cc) then
29: initiator.reset(conflict, item)
30: return
31: if ic < cc then // conflict with an operation with a higher counter
32: initiator.handleHigherConflict(conflict)
33: }

34: reset(Operation conflict, Item item) {
35: c ← READ(initiator.countKeeper.counter)
36: CAS(item.lock, conflict, initiator) // seize lock on item
37: if READ(item.lock) = initiator then
38: CAS(initiator.countKeeper, 〈c,initiator〉, 〈c+1,initiator〉) // increase counter
39: conflict.unlockDataset()
40: }

41: unlockDataset() {
42: 〈c,owner〉 ← READ(initiator.countKeeper)
43: for i = 0 to c do
44: item ← READ(initiator.dataset[i])
45: CAS(item.lock, initiator, ⊥) // release lock on item
46: CAS(initiator.countKeeper, 〈c,owner〉, 〈0,⊥〉) // reset counter, release operation object
47: }

.
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Algorithm 2 Multi-location read-modify-write: methods for the blocking algorithm
1: handleHigherConflict(Operation conflict) {
2: nop // (blocking) busy wait
3: }

4: boolean lockOperation(Operation op, int c) {
5: return CAS(op.countKeeper, 〈c,⊥〉, 〈c,initiator〉)
6: }

7: boolean lockTwoOperations(Operation iop, int ic, Operation cop, int cc) {
8: return DCAS(iop.countKeeper,cop.countKeeper,〈ic,⊥〉,〈cc,⊥〉,〈ic,initiator〉,〈cc,initiator〉)
9: }

.
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Fig. 2. A recurring resets scenario. The number below an operation indicates its counter; solid
arrows indicate blocking and dashed arrows indicate reset.

scenario may happen over and over again. It may even seem as if a livelock can happen
due to a cycle of resetting operations.

Since this behavior is the least intuitive, we start with the most delicate part of the
proof, bounding the number of times an operation can be reset, before some operation
completes in its k-neighborhood.

Fig. 2 presents an example where the superscript r denotes an operation that applies
(and suffers from) recurring resets, and b denotes blocking operation that cause the
operations in the recurring reset chain to release the locks on their operation objects.
In the example, opr

0 is blocked by opb
1 with equal counter, 1, holding the lock on the

item t1. So, opr
0 releases the lock on its operation object (in order to try and reset opb

1
and seize the lock on t1). opr

1 is blocked by opr
0 holding the lock on the item s0. opr

1
resets opr

0, seizes the lock on s0, and increases its counter to 2. At this point, opr
1 is

blocked by opb
2 with equal counter, 2. In a similar way, opr

2 resets opr
1 (holding the lock

on the item s1) after it releases the lock on its operation object, and opr
3 resets opr

2. Then
opr

0 and opr
1 are able to reacquire the locks on s0 and s1 respectively. This scenario is

repeated with longer chains of resets each time. Inspecting the example reveals that
after k/2 resets of opr

0, opr
k−1 at distance k − 2 from opr

0 locks all its data items, and it
can complete.
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Fig. 3. The operations opI
j create an increasing chain; each opI

j operation is blocked by the opera-
tion opI

j+1 holding the lock on the data item ti+1. The operations opD
i create a decreasing chain;

each opD
i operation is blocked by the operation opD

i−1 holding the lock on its operation object.

Let c(op) be the counter of op in a given configuration. For an operation op, k is
the maximal number such that some operation that overlaps op in time, is within the
3k-neighborhood of op and accesses k data items; nk is the number of operations in the
k-neighborhood of op.

Since an item is seized during a reset, we can prove a lemma stating that after each
time an operation is reset, some operation makes progress. This serves as the base case
for another lemma, proving that some set of operations make progress after each reset.
This is used to prove the following lemma, arguing that after an operation is reset a
bounded number of times, some operation in its (k − 1)-neighborhood completes.

Lemma 1. If the operation object of op is released (and re-acquired) (nk)2k times,
then some operation completes in the (k − 1)-neighborhood of op.

We next describe how to bound the blocking chains created due to failures.
Consider an operation op that fails while holding the lock on its operation object and

a data item. Another operation op′ needing this item cannot complete without resetting
op. If c(op′) > c(op), op′ continues to hold the lock on its operation object, thus it
may block a third operation with higher counter that cannot reset op′, and so on. Fig. 3
shows such a chain, called a decreasing chain.

A decreasing chain consist of stuck operations, either initiated by a failed process or
unable to increase their counter beyond some value. An operation op considers another
operation op′ stuck at m in an execution interval α, if in any configuration C during α
in which op needs to reset op′ (since op′ blocks op), c(op′) ≤ m, and some operation
(possibly op′) has the lock on the operation object of op′.

Consider, for example, the operation opD
2 in Fig. 3 that needs to acquire the lock on

a data item s1, is blocked by another operation opD
1 with a lower counter that has the

lock on its operation object. opD
1 does not complete either because it does not take steps

or because it is repeatedly being reset by other operations, and always before opD
2 has

a chance to acquire the lock on s1, opD
1 reacquires the lock on its operation object and

on s1. Thus opD
2 considers opD

1 stuck at 1. For every i, 1 < i < k − 1, the operation
opD

i+1 in Fig. 3 considers the operation opD
i stuck at i, since opD

i holds the lock on its
operation object while blocking opD

i+1, leading to the decreasing chain.
Another blocking scenario is when an operation op that needs to acquire a lock on a

data item is blocked by another operation whose counter is higher than c(op). Moreover,
op may block a third operation with a lower counter, and so on, creating an increasing
chain, also depicted in Fig. 3. Since each operation in an increasing chain has counter
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that is strictly higher than the counter of the operation that it blocks, the length of the
chain can easily be bounded by k.

Decreasing and increasing chains, together with recurring resets may create a longer
delay chain. We show that these are the only ways to combine delay chains. In an
increasing-decreasing chain of operations, every operation op is blocked either by the
next operation in the chain op′ with c(op′) > c(op) or by a decreasing chain that starts
at op′ with c(op′) ≤ c(op). The next lemma bounds the length of increasing-decreasing
chains and yields the bound on the failure locality.

Lemma 2. Let m, 0 ≤ m ≤ k, be the counter of an operation op, and assume no
operation on an increasing-decreasing chain idc from op fails, and all the operations
that reset an operation on idc complete the reset. Then some operation in the (3k −
m − 2)-neighborhood of op completes after a finite number of steps by op.

Theorem 1. Algorithm 1 with the methods of Algorithm 2 has 3k failure locality.

4 The 3k-Local Nonblocking Algorithm

A 3k-local nonblocking implementation is obtained by incorporating a recursive help-
ing mechanism, as in other multi-word synchronization algorithms [5,14,15,8]. When a
process p, executing an operation op, is blocked by another operation op′ with a higher
counter, p helps op′ to complete and release the item, instead of waiting for the process
p′ executing op′ to do so by itself (which may never happen due to the failure of p′).
Helping means that p executes the protocol of op′ via the helping method (we say that
op helps op′). Helping is recursive, thus if while executing op′, p discovers that op′ is
blocked by a third operation op′′, then p recursively helps op′′. Note that op still resets
op′ if the counter of op is equal or higher than the counter of op′. Special care is needed
since op can also be blocked while trying to lock an operation object; in this case also,
op helps the blocking operation.

The methods for the nonblocking algorithm appear in Algorithm 3. The first dif-
ference is that an operation op, blocked by another operation op′ with higher counter
(handleHigherConflict), helps op′ to complete and release its data items (line 2).

While trying to acquire the lock on an operation object (lockOperation or lockTwo-
Operations), an operation op may succeed (line 16) or be blocked by another operation
op′. If op′ is the initiator of this operation (line 18), then op helps op′ to complete,
and release the operation object (line 19); otherwise (line 20), op′ locked the operation
object in order to reset its initiator, so op only helps op′ to complete the reset (line 23).

In the helping scheme, several executing processes execute an operation. Helping is
synchronized with CAS primitives to ensure that only one executing process performs
each step of the operation, and the others have no effect.

The execution interval of an operation in the general scheme is divided into disjoint
rounds, each starting after the lock on its object is released. If an executing process
p discovers (while executing some operation op) that it is blocked by op′ in its r-th
round, it helps op′ only in the context of this round. If the round number of op′ changes,
then op′ released its operation lock, and the set of items locked by op′ might have
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Algorithm 3 Multi-location read-modify-write: methods for the nonblocking algorithm
1: handleHigherConflict(Operation conflict) {
2: conflict.execute() // help execute the operation
3: }

4: boolean lockOperation(Operation op, int c) {
5: CAS(op.countKeeper, 〈c,⊥〉, 〈c,initiator〉)
6: return initiator.verifyLock(op)
7: }

8: boolean lockTwoOperations(Operation iop, int ic, Operation cop, int cc) {
9: DCAS(iop.countKeeper, cop.countKeeper, 〈ic,⊥〉, 〈cc,⊥〉, 〈ic,initiator〉, 〈cc,initiator〉)

10: if initiator.verifyLock(iop) then
11: return initiator.verifyLock(cop)
12: return FALSE

13: }

14: boolean verifyLock(Operation op) {
15: 〈c,owner〉 ← READ(op.countKeeper)
16: if owner = initiator then
17: return TRUE // succeeded locking the operation object
18: if owner = op.initiator then // the initiator of the operation owns the operation object
19: op.execute() // help execute the operation
20: else // a third operation owns the operation object
21: oc ← READ(owner.countKeeper.counter)
22: item ← READ(owner.dataset[oc])
23: owner.reset(op,item) // help reset the operation
24: return FALSE // failed locking the operation object
25: }

.

changed. As in the blocking algorithm, we omit details such as round numbers and
ABA-prevention tags from the code, for clarity.

By showing that the executing processes are correctly synchronized by the round
numbers and ABA-prevention tags, we can prove that the algorithm is linearizable. The
locality properties of the algorithm are proved by reduction to the failure locality of the
blocking algorithm. The next lemma shows that if a process takes many steps, it will
eventually get to help any process that could be blocking it to make progress, thereby
alleviating the effect of their failure.

Lemma 3. If an executing process of an operation op takes an infinite number of steps,
then an executing process of each of the operations on any increasing-decreasing chain
idc from op takes an infinite number of steps and all the operations that reset an oper-
ation on idc complete the reset.

Lemmas 2 and 3 imply that the algorithm is local nonblocking; similar ideas show that
the algorithm has 3k-local step complexity and 4k + 1-local contention.

Theorem 2. Algorithm 1 with the methods of Algorithm 3, is 3k-local nonblocking.
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5 Discussion

We have presented a kRMW algorithm with improved throughput even when there is
contention. Like Afek et al. [1], we can make this algorithm be wait-free by applying a
known technique [2] while maintaining the locality properties of the algorithm.

Our algorithm has O(k)-locality properties, when using DCAS, and O(k + log∗ n)-
locality properties, when using only CAS. It is theoretically interesting to obtain locality
properties that are independent of n, without using DCAS. Even more intriguing is to
investigate whether O(k) is the best locality that can be achieved, even with DCAS.

Our algorithmic ideas can serve as the basis for dynamic STM. This is because our
algorithm needs to know the identity of a data item only as it is about to lock it and can
be adapted to work when data items are given one-by-one. Realizing a full-fledged STM
requires to address many additional issues, e.g., handling read-only data, and optimizing
the common case, which are outside the scope of this paper.

Acknowledgements. We thank Rachid Guerraoui, David Hay, Danny Hendler, Alex
Kogan and Alex Shraer for helpful comments.
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Abstract. Given a set of n di�erent deterministic finite state machines (DFSMs),
we examine the problem of tolerating k faults among them. The traditional ap-
proach to this problem involves replication, requiring n�k backup DFSMs. For
example, given two state machines, say A and B, to tolerate two faults, this ap-
proach maintains two copies each of A and B, thus resulting in a total of six DF-
SMs in the system. In this paper, we question the optimality of such an approach
and present another approach based on the ‘fusion’ of state machines allowing for
more eÆcient backups. We introduce the theory of fusion machines and provide
an algorithm which can generate fusion machines corresponding to a given set of
machines. Further, we have implemented this algorithm and tested it for various
examples. It is important to note that our approach requires only k backup DF-
SMs, as opposed to the n�k backup DFSMs required by the replication approach.

1 Introduction

In distributed systems, it is often necessary to maintain the execution state of a server
in the event of faults. Hence, designing fault tolerant systems remains an interesting
avenue for research in this field. Traditional approaches to this problem require some
form of replication. One commonly used technique, which forms the basis of the work
done in [1,2,3,4,5,6], involves replicating the server DFSMs and sending client requests
in the same order to all the servers. Another approach, seen in [7,8], involves designat-
ing one of the servers as the primary and all the others as backups. Client requests are
handled by the primary server, until it fails, and then one of the backups take over. In
both these approaches, given n di�erent DFSMs, in order to tolerate k faults, we need
to maintain k extra copies of each DFSM, resulting in a total of n�k backup DFSMs.

We propose an approach called fusion, that allows for more eÆcient backups. Given
n di�erent DFSMs, we tolerate k faults by having k backup DFSMs as opposed to the
n�k DFSMs required in the replication based approaches. We assume a system model
that has infrequent fail-stop faults [9]. The technique discussed in this paper deals with

� Supported in part by the NSF Grants CNS-0509024, Texas Education Board Grant 781, and
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recovering the state of the failed machines and not the entire DFSM (which, in almost
all cases, is stored on some form of failure-resistant permanent storage medium).

Figure. 1(i) and Fig. 1(ii) show two mod-3 counters, A and B, acting on di�erent
inputs, I0 and I1 respectively. For tolerating two failures, traditional approaches would
require two more copies of each DFSM requiring 6 DFSMs in all. The machine shown
in Fig. 1(iii) is the reachable cross product machine (defined formally in Sect. 3) corre-
sponding to the counters. Each state corresponding to this machine is a tuple, in which
the first element corresponds to the state of A, and the second element corresponds to
the state of B. A simple version of fusion would be to maintain the reachable cross
product of A and B.

In general, the reachable cross product may have a large number of states. However,
for recovery, along with the backup machines, if we use information from the machines
that have not failed, it is often possible to design backup DFSMs that are much smaller
than the reachable cross product.
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Fig. 1. Mod 3 Counters

In this specific example, we can intuitively see that, instead of two reachable cross
product machines (with nine states each), it is suÆcient to maintain just two machines
that compute (I0 � I1) ���3 and (I0 � I1) ���3 in order to tolerate two faults. These two
machines are called fusions of A and B and are illustrated in Fig. 1(iv) and Fig. 1(v).
We will generate the same machines using our algorithm, as shown in Sec. 5.

The work presented in [10] introduces the idea of fusible data structures. In this
paper, the authors show that commonly used data structures such as arrays, hash ta-
bles, stacks and queues can be fused into a single fusible structure, smaller than the
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combined size of the original structures. Our idea is similar to this approach, in the
sense that we generate a reachable cross product DFSM which contains the information
corresponding to all the DFSMs in our system. The work presented in this paper e�ec-
tively presents an algorithm to compute a fusion operation given a set of specific input
machines.

Extensive work has been done [11,12] on the minimization of completely specified
DFSMs. In these approaches, the basic idea is to create equivalence classes of the state
space of the DFSM and then combine them based on the transition functions. Even
though our approach is also focussed on reducing the reachable cross product corre-
sponding to a set of given n machines, it is important to note that the machines we
generate need not be equivalent to the combined DFSM. In fact, we implicitly assume
that the input machines to our algorithm are reduced a priori using these techniques.

In this paper, we develop the theory and algorithms for computing fusions. Note that,
in some cases the most eÆcient fusion could be the reachable cross product machine.
However, our experiments suggest that there exist eÆcient fusions for many of the prac-
tical DFSMs that we implemented. This can result in enormous savings in space, espe-
cially when a large number of machines need to be backed up. For example, consider
a sensor network with 100 sensors, each running a mod-3 counter counting di�erent
inputs (for example, parameters like temperature, pressure, humidity and so on). To tol-
erate a fault in such a system, replication would demand 100 new sensors for backup.
Fusion, on the other hand, can tolerate a fault by using only one new backup sensor
with exactly three states.

Summarizing, we make the following contributions through this paper:

– We introduce the idea and theory of the fusion of state machines.
– We present an algorithm to find fusion machines corresponding to a given set of

machines.
– We provide an implementation of this algorithm in Java. We have tested the imple-

mentation with many practical examples of DFSMs. This program is available for
download [13].

The proofs for all the theorems and lemmas presented in the paper, are provided in the
technical report [14].

2 Model and Notation

We now discuss in detail, the model and notation used in this paper. The system under
consideration consists of deterministic finite state machines (DFSMs) satisfying the
following conditions:

– The DFSMs execute independently with no shared state or communication between
them. Hence there is no way for one DFSM to independently determine the current
state in which any other DFSM is executing.

– The DFSMs act concurrently on the same set of events. If some event e is not
applicable for a certain DFSM, we assume that e is ignored by that DFSM.
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– The system model assumes fail-stop failures [9]. A failure in any of the DFSMs
results in the loss of the current state but the underlying DFSM remains intact. We
assume that this failure can be detected. Hence, if the current state can be regener-
ated, the machine can continue executing.

A DFSM in this system, denoted by A, is a quadruple, (X� �� �� a0), where,

– X is the finite set of states corresponding to A.
– � is the finite set of events common to all the DFSMs in the system.
– � : X � � � X, is the transition function corresponding to A. If the current state of

A is s, and an event � is applied on it, the next state can be uniquely determined as
�(s� �).

– a0 is the initial state corresponding to A.

A state, s � X, is reachable i� there exists a sequence of events, which, when applied
on the initial state a0, takes the machine to state s. Our model assumes that all the states
corresponding to the machines are reachable.

The size of a machine A, is the number of states in X, and is denoted by �A�.
We now define the concept of homomorphism and isomorphism [15] corresponding

to two machines.

Definition 1. (Homomorphism) A homomorphism from a machine A (XA� �� �A� a0)
onto a machine B (XB� �� �B� b0), is the mapping, � : XA � XB, satisfying the following
relationship:

– �(a0) � b0

– �s � XA��� � �� �(�A(s� �)) � �B(�(s)� �)

If such a homomorphism, �, exists from XA onto XB, B is said to be homomorphic to A
and we denote it as B � A. The mapping, �, is called an isomorphsim if it is both one-
one and onto. In this case, B is said to be isomorphic to A and vice-versa. We denote it
as B � A.

Consider the two machines F2(X2� �� �2� f 0
2 ) and �(��	)(X�� �� ��� r0) shown in

Fig. 1(v) and Fig. 1(iii) respectively. Let us define a mapping, � : Xr � X2, as follows:
�(r0) � �(r4) � �(r8) � f 0

2 ; �(r2) � �(r3) � �(r7) � f 1
2 ; �(r1) � �(r5) � �(r6) � f 2

2
For s � r0� � � I0,

�(��(r0� I0)) � �(r3) � f 1
2 and �2(�(r0)� I0) � �2( f 0

2 � I0) � f 1
2

It can be verified that,

�s � X���� � �� �(��(s� �)) � �2(�(s)� �)

Hence, F2 is homomorphic to �(��	) or F2 � �(��	). Based on the mapping �

defined above, we can represent the states of machine F2 as follows:

f 0
2 � 
r4� r0� r8�� f 1

2 � 
r2� r3� r7�� f 2
2 � 
r6� r1� r5�

Observation 1. Consider two machines A(XA� �� �A� a0) and B(XB� �� �A� b0), such
that, there exists a homomorphism � from XA onto XB. Every state, b � XB, can be
represented equivalently by a set of states specified by ��1(b).



128 B. Balasubramanian, V. Ogale, and V.K. Garg

Consider an event sequence “I1� I0” applied on the initial state of �(��	). �(��	)
reaches the state r4(r0 � r1 � r4). On applying the same event sequence on the initial
state of F2, F2 reaches state f 0

2 ( f 0
2 � f 2

2 � f 0
2 ). We know that, �(r4) � f 0

2 . This
property can be generalized for all event sequences.

Lemma 1. Consider two machines A(XA� �� �A� a0) and B(XB� �� �B� b0), such that,
there exists a homomorphism � from XA onto XB. On the application of any r events
on a0 and b0, if A and B reach states a and b respectively, then, �(a) � b.

0/1

0/1
0/1

0/1 0/1

0/1 0/1

〈a2, b1〉

0/1
a2

(ii) B

b0 b1

(iii) R(A, B)

(i) A

a0 a1

〈a0, b0〉 〈a1, b1〉

Fig. 2. Reachable Cross Product Machine

3 Reachable Cross Product Machine

In this section, we define the reachable cross product machine corresponding to a set of
machines.

Consider a set of n machines, � � 
A1� � � � � An�, where machine, Ai � �, is rep-
resented by the quadruple (Xi� �� �i� a0

i ). We now define the reachable cross product
machine corresponding to�, denoted�(�).�(�) is a quadruple (X�� �� ��� r0), where,

– X� is the finite set of states corresponding to �(�). We consider the set X of all
tuples as defined:

X :� 
 �a1� a2� � � � � an : ai � Xi �

X�, is the set of states in X, reachable from the initial state �a0
1� a0

2� � � � � a0
n.

Consider machines A, B and their reachable cross product �(A� B) shown in
Fig. 2.

X� :� 
� a0� b0 � � a1� b1 � � a2� b1 �

– � is the finite set of events common to all the machines in our system.
– �� : X� � � � X�, is the transition function corresponding to �(�), defined as

follows:

��a1� a2� � � � � an � X�� � � �� �(�a1� a2� � � � � an� �) :� ��1(a1� �)� � � � � �n(an� �)

– r0 is the initial state of �(�). As mentioned above, r0 :� �a0
1� a0

2� � � � � a0
n.

Consider machines B and �(A� B), shown in Fig. 2. We can define a homomorphic
mapping � from X� onto XB as follows:

�(�a0� b0) � b0; �(�a0� b1) � b1; �(�a2� b1) � b1

Lemma 2. Consider a set of n machines, � � 
A1� � � � � An�, where machine, Ai � �, is
represented by the quadruple (Xi� �� �i� a0

i ). For all Ai � �� Ai � �(�).
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4 Fusion of DFSMs

In this section, we explain the theory of fusion of DFSMs along with the relevant results.

Definition 2. (Fusion) Given a set of n machines, � � 
A1� � � � � An�, we call the set of
k machines, � � 
F1� � � � � Fk�, as the k-fusion of � i� the reachable cross product of
any n machines from �

�
� is isomorphic to the reachable cross product of all the

machines in �.

Henceforth, any 1-fusion machine is simply referred to as a fusion machine. Note that
the reachable cross product of �, �(�), is always a fusion machine.

Consider the example shown in Fig. 1. Machines A(XA� �� �A� a0) and B(XB� �� �B� b0)
are mod-3 counters each acting on inputs I0 and I1 respectively and�(A� B) is the reach-
able cross product machine corresponding to them. The machines F1(X1� �� �1� f 0

1 ) and
F2(X2� �� �2� f 0

2 ) are two independently executing machines computing (I0 � I1) ��� 3
and (I0 � I1) ��� 3 respectively. It can be verified that,

�(A� F1) � �(A� F2) � �(B� F1) � �(B� F2) � �(F1� F2) � �(A� B)

Hence, F1 and F2 form a 2-fusion of A and B. Since, �(F1� F2) � �(A� B), from
Lemma 2, both F1 and F2 are homomorphic to �(�). We generalize this result in the
following lemma.

Lemma 3. Given a set of n machines, � � 
A1� � � � � An� and a corresponding k-fusion,
� � 
F1� � � � � Fk�, every machine in � is homomorphic to �(A).

As explained in Sect. 3, the reachable cross product machine contains information cor-
responding to all the component machines. Given any two machines A and B, each state
corresponding to �(A� B) is a tuple in which the first state corresponds to the state of A
and the second state corresponds to the state of B. Hence, given the state of �(A� B), we
can uniquely determine the state of both A and B. The converse is trivially true.

Lemma 4. Given a set of n machines, � � 
A1� � � � � An�, we can uniquely determine
the state of all the machines in � � � , i� we can construct the corresponding state of
�(�).

The four machines (A� B� F1� F2) can tolerate up to two failures. For example, let us
assume that both A and B fail. Since �(F1� F2) � �(A� B), the state of �(A� B) can be
determined using the state of F1 and F2. From Lemma 4, the state of both A and B
can be determined. We now generalize this result to n original machines and k fusion
machines.

Theorem 1. Given a set of n machines, � � 
A1� � � � � An� and a set of k machines, � �


F1� � � � � Fk�, we can uniquely determine the state of any k failed machines belonging to
�
�
� , if � is a k-fusion of �.

In the example given in Fig. 1, we saw that,

�(A� F1) � �(A� F2) � �(B� F1) � �(B� F2) � �(F1� F2) � �(A� B)

Since, �(A� F1) � �(B� F1) � �(A� B), F1 is a 1-fusion of A and B. Similarly, F2 is also
a 1-fusion of A and B.
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Lemma 5. Given a set of n machines,� � 
A1� � � � � An�, and a corresponding k-fusion,
� � 
F1� � � � � Fk�, every subset of � of size k� is a k’-fusion of �.

Each state corresponding to �(�) is a n-tuple �a1� � � � � an, where ai is a state corre-
sponding to machine Ai. Since every fusion machine is homomorphic to �(�), it fol-
lows from Observation 1 that each state in any of the fusion machines can be represented
by a set of n-tuples. We call this the tuple-set of a state and denote it as, T � 
t1� � � � � tm�,
where ti (1 � i � m) is a n-tuple corresponding to a state in �(�).

In the example shown in Fig. 1, since F2 � �(�), each state can be represented as
follows:

f 0
2 � 
r4� r0� r8�� f 1

2 � 
r2� r3� r7�� f 2
2 � 
r6� r1� r5�

Consider a n-tuple set, T � 
r0� r1� r8�, where, r0
� �a0� b0, r1

� �a0� b1 and r8
�

�a2� b2. T can never be a state of any fusion machine F, because, given that F is in state
T and A is in state a0, we cannot uniquely determine whether �(A� B) is in state �a0� b0

or �a0� b1. From Lemma 4, �(A� F) � �(A� B). Hence, for n � 2, we cannot tolerate
even one common element among the states in T .

We now generalize this result to impose a condition on a tuple-set corresponding to
any state of a fusion machine. We use this condition in the algorithm to generate the
fusion machines by reducing the reachable cross product machine. The intersection of
two n-tuples, denoted by �, is the set containing all the elements common to both the
n-tuples. In the example above, �a0� b0 � �a0� b1 � 
a0�.

Lemma 6. Let, � � 
A1� � � � � An�, be a set of n machines and let F(XF � �� �F � f 0) be a
1-fusion of �.

For any tuple-set, T � 
t1� � � � � tm�, corresponding to a state from the machine F, for
all ti, t j � X�, the pairwise intersection of any ti, t j has less than n � 1 elements.

We now see the conditions which need to be imposed on fusion machines.

Theorem 2. Given a set of n machines, � � 
A1� � � � � An�, a machine F(XF � �� �F � f 0)
is a 1-fusion of � i� :

1. F � �(�).
2. For any tuple-set, T � 
t1� � � � � tm�, corresponding to a state from the machine F,

for all ti, t j � X�, the pairwise intersection of any ti, t j has less than n� 1 elements.

From Lemma 6, we can obtain an upper bound on the size of the tuple-set, T �


t1� � � � � tm�, corresponding to the state of any fusion machine. We refer to this size as
Tmax.

Consider the case where � contains two machines A and B, where, XA � 
a0� a1�

and XB � 
b0� b1� b2�. Let us assume that a machine F(XF � �� �F � f 0) is a 1-fusion
of A and B. From Lemma 6, the number of common elements between any two n-
tuples corresponding to any state, T � XF , is less than one. T can be 
�a0� b0� �a1� b1�

or 
�a0� b1� �a1� b0�. If T contained more than two n-tuples, then, either a0 or a1 is
repeated more than once. Hence, �T � � 2.

Lemma 7. Let, � � 
A1� � � � � An�, be a set of machines and let F(XF � �� �F � f 0) be a
1-fusion of �.
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Without loss of generality let us assume that the elements of � are enumerated in
increasing order of their sizes.

For any tuple-set, T � 
t1� � � � � tm�, corresponding to a state from XF, the size of T is
bound by the following expression:
�T � �

�n�1
i�1 �Ai�.

We now present a lower bound on the size of the fusion machines.

Theorem 3. Let, � � 
A1� � � � � An�, be a set of machines and let F(XF � �� �F � f 0) be a
1-fusion of �. The size of F is greater than or equal to ��(�)�

Tmax
.

5 Algorithm to Generate Fusion Machines

Consider a set of n machines, � � 
A1� � � � � An�, where, Ai � �, is represented by the
quadruple (Xi� �� �i� a0

i ). The reachable cross product corresponding to these machines,
�(�), is represented by the quadruple (X�� �� ��� r0).

The goal of the algorithm is to generate k-fusion ( 1 � k � n ) machines corre-
sponding to �. The algorithm generates �(�) and then reduces it to generate machines
homomorphic to �(�) and satisfying Lemma 6.

We first define the following:

– valid state: A set of n-tuples, T � 
t1� � � � � tm�, where ti (1 � i � m) is a n-tuple
corresponding to a state in X�, is said to be valid, if it satisfies Lemma 6.

– Set of valid n-tuple sets, V: An element, T � V , can be represented as T �


t1� � � � � tm�, where ti (1 � i � m) is a n-tuple corresponding to a state in X�. In
addition, T needs to be a valid state and r0 must belong to T .

– Transition function, ����: We define the transition function, ���� : 2X��� � 2X� ,
as follows:

�T � 2X� � �� � �� ����(T� �) � 
 ��(t1� �)� ��(t2� �)� � � � � ��(tm� �) �

– Set of 1-fusions	1: Our algorithm generates a set of 1-fusions corresponding to �,
denoted by 	1.

The algorithm for generating the 1-fusions is shown in Fig. 3. The input to the algo-
rithm is the set of valid n-tuple sets V . The basic idea is to generate all the n-tuple sets
containing r0 and satisfying Lemma 6. Consider the example shown in Fig. 1. Since
n � 2 , any n-tuple set, T , is valid, if for any two tuples in T , the number of common
elements is less than 1.

We first generate �(A� B). As seen in Fig. 1(iii), it has 9 states. Starting from this, we
generate V . Here,

V � 

r0�� 
r0� r7�� 
r0� r4�� 
r0� r5�� 
r0� r8�� 
r0� r7� r5�� 
r0� r4� r8��

Starting with each element, T � V , as the initial state, we generate machines by recur-
sively finding the next state, applying function ����. If a machine contains an invalid
state, it is discarded. Finally, we add these machines to 	1 if they are homomorphic
to �(�).
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function Compute 1-Fusion
Input: V ; //set of all valid tuple sets containing r0

Output: B1; //set of 1-fusions ofA
for all (T ∈ V), do

initialState = T;
B = generateMachine(initialState);
if (B � null) and (B � R(A)), then
B1 = B1 ∪ {B}; //B is a 1-fusion

end if
end for
end function

function generateMachine
Inputs: initialState;
Output: fusionMachine;
/*
recursively generate fusionMachine starting from
initialState applying the transition function next

*/
.
.
.

if (all states in fusionMachine are valid), then
return fusionMachine;

else
return null;

end function

Fig. 3. Algorithm to generate 1-fusions

Referring to the example in Fig. 1, we generate fusions starting from the elements in
V . Let us consider an element T � 
r0� r4� r8�.

����(T� I0) � ����(
r0� r4� r8�� I0) � 
��(r0� I0)� ��(r4� I0)� ��(r8� I0)� � 
r2� r3� r7�

Since 
r2� r3� r7� is valid, we continue constructing the machine and finally generate
a machine identical to F2, shown in Fig. 1(v). Similarly, starting from 
r0� r7� r5�, we
generate machine F1, shown in Fig. 1(iv).

Theorem 4. The algorithm in Fig. 3 generates fusions corresponding to a given set of
machines.

Given a set of 1-fusions, 	1, we now proceed to see if subsets of 	1 form k-fusions
(1 � k � n). Any k machines, 	� � 	1, is a k-fusion if for all subsets A� � �, of size
n � k, �(�� � 	�) � �(�). This simply follows from the definition of k-fusion.

Let us assume that the number of states in �(�) is Nr. The time complexity of
the algorithm to generate 1-fusions is given by O(�V �Nr ���) and that of the algorithm
to generate k-fusions is given by O(�V �Ck

nCn�k Nr ���). For a detailed time complexity
analysis, refer to the technical report.

It is important to note that the algorithm in Fig. 3 creates only a subset of fusion
machines that can be obtained by applying the next transition to all valid initial tuple
sets. An exhaustive algorithm to generate all fusions can be found in the technical report.

6 Implementation and Results

We implemented a fusion machine generator in Java (JDK 6) based on the algorithm
discussed in this paper. The results are shown in the following table. We compare the
number states of the reachable cross product (RCP) with the smallest 1-fusion machine
generated by our algorithm.
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Original Machines RCP Fusion �V �

Divider, One Counter, Zero Counter 27 6 231
Divider, One Counter, Pattern Generator 36 27 33
Even Parity Checker, Odd Parity Checker, Toggle Switch,
Shift Register

32 19 13

One Counter, Zero Counter, Shift Register 72 25 155
TCP, MESI(Cache), Shift Register 340 340 1
Even Parity Checker, Odd Parity Checker, MESI 16 16 3

The time complexity of the algorithm is dominated by the size of V . As seen from the
results, in many practical examples, the size of V is much smaller than the theoretical
complexity. There are many cases in which the smallest fusion machine generated by
our algorithm is considerably smaller than the corresponding reachable cross product
for the given set of machines. However, there are scenarios in which the algorithm
yields no reduction. In such cases replication might be a cheaper approach.

Note that, recovery involves more overhead in our algorithm when compared to repli-
cation, since we need the state of all the n � k machines to recover the state of the k
missing machines.

7 Conclusion

In this paper, we present a new fusion approach to design fault tolerant systems using
a small number of backup machines. In many cases, fusion results in significant space
savings compared to traditional replication based approaches. Though the algorithm
presented in this paper for computing the fusion is expensive, it is important to note
that this needs to be executed only once at design time.

The idea introduced in this paper opens up several interesting avenues for further
research. The minimality of fusion machines seems to be an interesting problem. We
are currently working on a polynomial time algorithm for generating minimal fusions.
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Abstract. We present a wait-free solution to the generalized dining philosophers
problem under eventual weak exclusion in environments subject to crash faults.
Wait-free dining guarantees that every correct hungry process eventually eats, re-
gardless of process crashes. Eventual weak exclusion (�WX ) actually allows
scheduling mistakes, whereby mutual exclusion may be violated finitely-many
times; for each run, however, there must exist a convergence point after which live
neighbors never eat simultaneously. Wait-free dining under �WX is particularly
useful for synchronization tasks where eventual safety is sufficient for correctness
(e.g., duty-cycle scheduling, self-stabilizing daemons, and contention managers).
Unfortunately, wait-free dining is unsolvable in asynchronous systems. As such,
we characterize sufficient conditions for solvability under partial synchrony by
presenting a wait-free dining algorithm for �WX using a local refinement of the
eventually perfect failure detector �P1.

Keywords: Dining Philosophers, Failure Detectors, Wait-Freedom.

1 Introduction

The dining philosophers problem (or dining for short) is a fundamental scheduling
paradigm in which processes (called diners) periodically require exclusive access to
a fixed subset of shared resources [1,2]. Each diner is either thinking, hungry, or eating.
These states correspond to three basic phases of computation: executing independently,
requesting resources, and utilizing shared resources in a critical section, respectively.
Potential scheduling conflicts are modeled by a conflict graph in which diners with
overlapping resource requirements are connected as neighbors. As such, dining is a
generalization of the mutual exclusion problem, which corresponds to the special case
where the conflict graph forms a clique.

Wait-free dining guarantees that every correct hungry process eventually eats, even
if other processes fault by crashing. The solvability of wait-free dining depends on two
primary factors: (1) the degree to which concurrency is restricted among eating diners,
and (2) the degree to which crash faults can be detected reliably. The former depends
on the applicable safety specification for local exclusion, while the latter depends on
the degree of synchrony in the system.
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Safety specifications restrict concurrency among eating diners. For example, strong
exclusion prohibits any pair of conflicting neighbors from eating simultaneously, even if
one of them has crashed. This safety property models resources that can be permanently
corrupted by process crashes. Unfortunately, wait-free dining under strong exclusion is
vacuously unsolvable. To see why, consider any diner that crashes while eating. Wait-
freedom guarantees that every correct hungry neighbor will eventually eat, but strong
exclusion prohibits the same. Moreover, this result is independent of whether crashes
can be detected reliably.

A less restrictive model called weak exclusion prohibits only live neighbors from
eating simultaneously. This safety property models resources that are recoverable or
eventually stateless after crash faults. For example, consider a wireless network where
diners broadcast messages over a subset of shared frequencies. If some diner crashes
while eating, then the current transmission terminates. As such, the frequency allocated
to the crashed diner becomes available for subsequent use by neighboring diners.

Wait-free dining for weak exclusion is actually solvable, but it requires substantial
timing assumptions, or, alternatively, access to sufficiently powerful failure detectors.
A failure detector can be viewed as a distributed system service that can be queried
like an oracle for information about process crashes [3]. Oracle-based algorithms are
decoupled from the underlying timing assumptions about partial or even full synchrony
necessary to implement such fault-detection capabilities in practice. Recent results on
fault-tolerant mutual exclusion indicate that wait-free dining under weak exclusion is
solvable in systems augmented with Trusting failure detectors — a relatively powerful
class of oracles that can reliably detect certain crashes [4].

Unfortunately, trusting oracles require significant assumptions about network tim-
ing parameters to be implemented in practice. By contrast, less powerful oracles that
are implementable in more practical models of partial synchrony — such as those for
solving fault-tolerant consensus — are too weak to solve wait-free dining under weak
exclusion. This problem remains unsolvable even for oracles of intermediate strength.
For example, the eventually perfect failure detector �P always suspects crashed pro-
cesses, and eventually stops suspecting correct processes [3]. This oracle, which can
make finitely many false-positive mistakes in any run, is more than sufficient to solve
fault-tolerance consensus. Still, no �P-based algorithm can solve wait-free dining for
weak exclusion; neighbors of any crashed diner will always be able to starve [5].

Our contribution examines a practical model of exclusion for wait-free dining which
is solvable under modest assumptions of partial synchrony. In particular, we explore
dining under eventual weak exclusion, and show that it is solvable using the afore-
mentioned oracle �P . Eventual weak exclusion (abbreviated �WX hereafter) permits
finitely-many scheduling mistakes whereby conflicting diners eat together. For each
run, however, there exists a time after which no two live neighbors eat simultaneously.

The time to convergence may be unknown, and it may also vary from run to run.
Nevertheless, �WX is sufficiently powerful to serve as a useful scheduling abstraction.
For example, �WX models recoverable resources where sharing violations precipitate
at worst repairable (transient) faults. �WX has received considerable attention recently
in the context of shared-memory contention management [6], conflict managers for self-
stabilizing systems [7], as well as wait-free eventually fair distributed daemons[8].
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2 Background and Technical Framework

Although originally proposed by Dijkstra for a ring topology [1], dining philosophers
was later generalized by Lynch for overlapping local exclusion problems on arbitrary
graphs [2]. A dining instance is modeled by an undirected conflict graph DP = (Π, E),
where each vertex p ∈ Π represents a diner, and each edge (p, q) ∈ E represents a set
resource conflicts between neighbors p and q.

Each diner is either thinking, hungry, or eating, but initially all diners are thinking.
Diners may think forever, but they can also become hungry at any time. By contrast,
eating is always finite (but not necessarily bounded). Hungry neighbors are said to be in
conflict, because they compete for shared but exclusive resources. A correct solution to
wait-free dining under eventual weak exclusion (�WX ) is an algorithm that schedules
diner transitions from hungry to eating, subject to the following two requirements:

Safety: Every run has an infinite suffix where no two live neighbors eat simultaneously.

Progress: Every correct hungry diner eventually eats, regardless of process crash faults.
Progress ensures fairness among hungry diners. In particular, dining solutions are not

permitted to starve hungry processes by never scheduling them to eat. In the presence of
crash faults, a dining algorithm that satisfies progress is called wait-free [9]. The safety
requirement of eventual weak exclusion permits finitely many scheduling mistakes. A
mistake occurs when two live neighbors are scheduled to eat simultaneously.

Computational Model. We consider asynchronous environments where message de-
lay, clock drift, and relative process speeds are unbounded. A system is modeled by
a set of n distributed processes Π = {p1, p2, . . . , pn} which communicate only by
asynchronous message passing. We assume that the dining conflict graph is a subgraph
of the communication graph, so that each pair of neighboring diners is connected by
reliable FIFO channels.

Fault Patterns. Processes may fault only by crashing. A crash fault occurs when a
process ceases execution (without warning) and never recovers [10]. A fault pattern
F models the occurrence of crash faults in a given run. Specifically, F is a function
from the global time range T to the powerset of processes 2Π , where F (t) denotes the
subset of processes that have crashed by time t. Since crash faults are permanent, F is
monotonically non-decreasing. We say that p is faulty in F if p ∈ F (t) for some time
t; otherwise, we say that p is correct in F . Additionally, a process p is live at time t if
p has not crashed by time t. That is, p /∈ F (t). Thus, correct processes are always live,
but faulty processes are live only prior to crashing.

Failure Detectors. An unreliable failure detector can be viewed as a distributed ora-
cle that can be queried for (possibly incorrect) information about crashes in Π . Each
process has access to its own local detector module that outputs the set of processes cur-
rently suspected of having crashed. Unreliable failure detectors are characterized by the
kinds of mistakes they can make. Mistakes can include false-negatives (i.e., not suspect-
ing a crashed process), as well as false-positives (i.e., wrongfully suspecting a correct
process). In Chandra and Toueg’s original definition [3], each oracle class is defined
by two properties: completeness and accuracy. Completeness restricts false negatives,
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while accuracy restricts false positives. More precisely, each oracle class is a func-
tion (defined by the intersection of a completeness property and an accuracy property),
which maps each possible fault pattern to a set of admissible histories.

Our wait-free dining algorithm is based on the eventually perfect failure detector
�P from the original Chandra-Toueg hierarchy [3]. Informally, �P is a convergent
oracle that always suspects crashed processes and eventually stops suspecting correct
processes. As such, �P may commit finitely-many false positive mistakes during any
run before converging to an infinite suffix during which the oracle provides reliable
information about process crashes. Unfortunately, the time to convergence is not known
and it may vary from run to run.

As originally defined, the scope of �P is global, insofar as it provides informa-
tion about all processes. One drawback of global oracles is that communication over-
head can limit their practicality for large-scale networks. Accordingly, scope-restricted
oracles have been proposed that provide information only about subsets of processes
[11,12,13]. Our dining solution uses a variant of �P defined in [14,15] for which sus-
pect information is only provided about immediate neighbors. This local refinement,
called �P1, satisfies the following completeness and accuracy properties:

Local Strong Completeness — Every crashed process is eventually and permanently
suspected by all correct neighbors.

Local Eventual Strong Accuracy — For every run, there exists a time after which
no correct process is suspected by any correct neighbor.

It is worth noting that �P cannot be implemented in purely asynchronous systems.
Implementations typically use adaptive time-outs based on modest assumptions about
partial synchrony. A simple technique assumes that upper bounds on message delay and
relative process speed exist, but are unknown. Such bounds can be adaptively estimated
by ping-ack protocols which increase a time-out threshold after each false positive.
After finitely-many mistakes, the current time-out will exceed the unknown round-trip
message time, after which false positives desist.

There are known implementations of �P in several other models partial synchrony
as well [3,16,17,18]. The common advantage is that �P-based algorithms are decou-
pled from explicit commitments to underlying detection mechanisms and/or specific
timing parameters. Additionally, the local refinement �P1 can also be implemented
efficiently in sparse, large-scale, and even partitionable networks [15].

3 A Wait-Free Dining Algorithm for �WX

Our solution is based on the classic hygienic dining algorithm [19]. In hygienic dining,
a unique fork is associated with each edge in the conflict graph. A hungry process must
collect and hold all shared forks to eat. This provides a simple basis for safety, since at
most one diner can hold a given fork at any time. Fork conflicts are resolved according to
a dynamic partial ordering on process priority. After eating, diners reduce priority below
all neighbors; this ensures progress by yielding to previously lower-priority diners.
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It is easy to see why hygienic dining is not wait-free. Without fault detection, hungry
processes starve whenever missing forks are lost to crashed neighbors. The result is
actually much worse: if no process thinks forever, then the crash of any eating diner
will eventually precipitate global starvation among all processes (not just neighbors).

In our solution, suspicion by �P1 serves as a proxy for permanently missing forks.
The completeness property guarantees that every crashed process will be eventually and
permanently suspected by all correct neighbors. As such, hungry neighbors of crashed
diners can avoid starvation by using suspicion as a proxy for permanently missing forks.
Specifically, a hungry diner i can eat if, for every neighbor j, either i holds the fork
shared with j, or the �P1 oracle at i suspects j.

Unfortunately, suspicion by �P1 is an unreliable proxy for missing forks, because
the eventual accuracy property also allows false-positive mistakes. For example, if live
neighbors falsely suspect each other, they may proceed to eat simultaneously, regardless
of the fork. Ideally, scheduling violations should be limited by the finite number of false-
positive mistakes per run. It remains to show, however, that �WX will still be satisfied
after �P1 converges.

A deeper subtlety is the impact of oracular mistakes on maintaining a consistent
ordering of process priorities. In hygienic dining, relative process priorities are typically
encoded directly in the fork variables. As such, it becomes trivial for diners to reduce
their priority below all neighbors after eating, because (1) diners must hold every shared
fork while eating, so (2) the current priority of every neighbor is actually known.

The same technique does not work with �P1, because false-positive mistakes may
enable diners to eat despite missing critical forks. In the worst case, two neighbors can
eat simultaneously even if neither holds the fork. This can occur if the fork is in transit,
but both diners begin eating as the result of mutual suspicion. If the fork is still in
transit when both diners complete eating, then neither diner knows the actual priority
ordering. Unlike hygienic dining, it is impossible for both diners to reduce their own
priority below all neighbors; either one diner will not lower its priority sufficiently, or
both priorities will match (which could lead to symmetries resulting in deadlock).

To circumvent this difficulty, we store process priorities explicitly at each diner,
and assume unique identifiers to break symmetries. Additionally, we establish wait-free
progress even though priorities are reduced by arbitrary values after eating.

3.1 Algorithm Variables

Our algorithm guarantees safety using forks plus the eventual strong accuracy of �P1.
It guarantees wait-free progress using a dynamic ordering on process priorities, plus
the strong completeness of �P1. In addition to the local oracle module, each process
has the following local variables. A trivalent variable statei denotes the current dining
phase: thinking, hungry, or eating. Each process also has a local integer-valued variable
heighti (which can grow negatively without bound), and a unique process identifier idi.
Taken together as an ordered pair, (heighti, idi) determines the priorityi of process i.
Since process identifiers are unique, every pair of priorities, x and y, can be totally
ordered lexicographically as follows:

x < y
def= (x.height < y.height) ∨ ((x.height = y.height) ∧ (x.id < y.id))
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To implement the forks, we introduce two local variables for each pair of neighbors.
For process i, we associate a boolean variable forkij for each neighbor j. Symmetrically,
each process j has a boolean variable forkji corresponding to neighbor i. We interpret
these variables as follows: forkij is true iff process i holds the unique fork that it shares
with neighbor j. Alternatively, forkji is true iff j holds the fork. When the fork is in
transit from one neighbor to the other, both local variables are false. Since the fork is
unique and exclusive, it is never the case that both variables are true.

In addition to the forks, we also introduce a request token between each pair of
neighbors. In general, if process i holds a request token, but needs the corresponding
fork from j, then i can request the missing fork by sending the request token to j.
Request tokens are implemented and interpreted the same as forks. For process i, we
associate a unique boolean variable tokenij for each neighbor j. Symmetrically, each
process j has a boolean variable tokenji corresponding to neighbor i.

3.2 Algorithm Actions

A thinking process can become hungry at any time by executing Action 1 and selecting
the corresponding alternative. Action 2 is always enabled while hungry. When executed,
it requests every missing fork for which no previous request is currently pending. This
is achieved by sending the request token to the corresponding neighbor, including the
current priority of the requesting process. As a result, the local token variable becomes
false to indicate that a request has been sent.

Action 3 handles fork requests. The requested fork must be sent immediately if the
recipient is thinking, but also if the recipient is hungry but has lower priority than the
requestor. Otherwise, the fork request is deferred until after eating. Deferred requests
are represented by holding both the shared fork and the request token. Note that if a
hungry process loses a requested fork to a higher-priority neighbor in Action 3, the
relinquished fork will be re-requested by subsequently executing Action 2, which is
always enabled while hungry.

Action 4 simply receives forks, and Action 5 determines when a hungry process can
begin eating. A hungry process i can begin eating if, for each neighbor j, process i
either holds the shared fork, or currently suspects j. This is the only action that utilizes
the local oracle �P1 and it is central to the wait-freedom of the algorithm.

Action 6 exits eating and transits back to thinking. This action reduces the priority of
the diner, and sends forks for any requests that were previously deferred while hungry
or eating. To reduce priority, Action 6 invokes a local procedure called Lower which
reduces only the height component of the diner’s priority by some positive integer. The
magnitude of the reduction is up to the algorithm designer, and can be either statically
fixed or dynamically chosen at runtime.

Action 6 isolates several subtleties. In hygienic dining, a process must reduce its
priority below that of all neighbors after eating. This absolute reduction forms the basis
for progress, because it forces high-priority diners to yield to lower-priority neighbors.
In our algorithm, oracular mistakes may enable some diners to eat without knowing
the priorities of all live neighbors. As such, hygienic reductions cannot be guaranteed.
Our proof of progress shows that reducing priority by an arbitrary amount is sufficient,
because it still reduces the number of times any diner can overtake its live neighbors.
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Code for process i, with unique identifier idi and local set of neighbors N(i)

var statei : {thinking, hungry, eating} init, statei = thinking
heighti : integer init, heighti = 0
priorityi : (heighti × process-id) init, priorityi = (0, idi)
forkij : boolean, for each j ∈ N(i) init, forkij = (i > j)
tokenij : boolean, for each j ∈ N(i) init, tokenij = (i < j)
�P1 : local eventually perfect detector init, �P1 ⊆ N(i)

1 : {statei = thinking} −→ Action 1
2 : statei := (thinking or hungry) Become Hungry

3 : {statei = hungry} −→ Action 2
4 : ∀j ∈ N(i) where (tokenij ∧ ¬forkij) do Request Missing Forks
5 : send-request 〈priorityi〉 to j
6 : tokenij := false

7 : {receive-request 〈priorityj〉 from j ∈ N(i)} −→ Action 3
8 : tokenij := true Send Fork or
9 : if (statei = thinking ∨ (statei = hungry ∧ (priorityi < priorityj))) Defer

10 : then send-fork〈i〉 to j
11 : forkij := false

12 : {receive-fork 〈j〉 from j ∈ N(i)} −→ Action 4
13 : forkij := true Obtain Shared Fork

14 : {statei = hungry ∧ (∀j ∈ N(i) :: (forkij ∨ j ∈ �P1))} −→ Action 5
15 : statei := eating Enter Critical Section

16 : {statei = eating} −→ Action 6
17 : Lower(priorityi) Exit Critical Section
18 : statei := thinking Send Deferred Forks
19 : ∀j ∈ N(i) where (tokenij ∧ forkij) do
20 : send-fork〈i〉 to j
21 : forkij := false

22 : procedure Lower (p : priority) Reduce Priority
23 : ensures p′ := Lower (p) where Process ID Unchanged
24 : (p′.id = p.id) and (p′.height < p.height) Integer Height Lowered

Algorithm 1. 1. Wait-Free Dining under Eventual Weak Exclusion

4 Proof of Correctness

Lost tokens or forks can compromise progress, while duplicated tokens or forks can
compromise safety. First we prove some basic lemmas which assert that each pair of
live neighbors share a unique fork and a unique request token.
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Lemma 1. There exists exactly one token between each pair of live neighbors.

Proof. For each pair of neighbors, the initialization code creates a unique token at the
lower-priority process. Since communication channels are reliable, this token is neither
lost nor duplicated while in transit. Only Actions 2 and 3 can modify the token vari-
ables. No token is lost, because every token received is locally stored (Action 3), and
no token is locally removed unless it is sent (Action 2). No token is duplicated, because
every token sent is locally removed, and no absent token is ever sent (Action 2). Thus,
token uniqueness is preserved. �

Lemma 2.1. There exists exactly one fork between each pair of live neighbors.

Proof. For each pair of neighbors, the initialization code creates a unique fork at the
higher-priority process. Since communication channels are reliable, this fork is neither
lost nor duplicated while in transit. Only Actions 3, 4, and 6 modify the fork variables.
No fork is lost, because every fork received is locally stored (Action 4), and no fork is
locally removed unless it is sent (Actions 3 & 6). No fork is duplicated, because every
fork sent is locally removed, and no absent fork is ever sent∗ (Action 3 & 6). Thus, fork
uniqueness is preserved. �

∗Action 3 can send forks (Line 11) without verifying their local presence. If such forks
are absent, then this action could compromise �WX by duplicating forks. As it turns
out, Action 3 is never enabled unless the requested fork is actually present. This result
may not be obvious from the program text, because it depends explicitly on the assump-
tion of FIFO channels. Consequently, we prove this assertion separately below.

Lemma 2.2. Action 3 is never enabled unless the requested fork is present.

Proof. Suppose for contradiction that Action 3 is enabled at some process i at time t2,
but that the requested fork is absent. This action can only be enabled by i receiving a
request token from some neighbor j that executed Action 2 at an earlier time t1 < t2.
The condition in Line 4 asserts that j held the token but not the shared fork at time t1.
Consequently, the fork was already at i or it was in transit at time t1.

1. Suppose the fork was in transit from j to i. By FIFO channels, the fork had to arrive
at i before the request token which enabled Action 3 at time t2. Only Actions 3 and
6 send forks, but both require the fork and token to be co-located. Thus, the fork
remains at i until Action 3 became enabled at time t2.

2. Suppose the fork was in transit from i to j. Then i must have sent the fork by
executing Action 3 or 6 at some earlier time t0 < t1. As mentioned above, the
token must have been co-located with the fork at time t0. Again, by FIFO channels,
j could not execute Action 2 at time t1, because the token could not have overtaken
the fork which was still in transit. �

Theorem 1. Algorithm 1 satisfies eventual weak exclusion �WX . That is, for every
execution there exists a time after which no two live neighbors eat simultaneously.
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Proof. The safety proof is by direct construction and uses the local eventually strong
accuracy property of �P1. This property guarantees that for each run there exists a time
t after which no correct process is suspected by any correct neighbor.

We observe that faulty processes cannot prevent �WX from being established.
Since faulty processes are live for only a finite prefix before crashing, they can eat
simultaneously with live neighbors only finitely many times in any run. Consequently,
we can restrict our focus to correct processes only.

Consider any execution α of Algorithm 1. Let t denote the time in α after which
�P1 never suspects correct neighbors. Let i be any correct process that begins eating
after time t. By Action 5, process i can only transit from hungry to eating if, for each
neighbor j, either i holds the shared fork or i suspects j. Since �P1 never suspects
correct neighbors after time t in execution α, process i must hold every fork it shares
with its correct neighbors in order to begin eating.

So long as i remains eating, Actions 3 and 6 guarantee that i will defer all fork re-
quests. As such, p will not relinquish any forks while eating. From Lemma 2.1, we
know that forks cannot be duplicated either. Furthermore, �P1 has already converged
in α, so no correct neighbor can suspect p. Thus, Action 5 remains disabled for every
correct hungry neighbor of i until after i transits back to thinking. We conclude that no
pair of correct neighbors can begin1 overlapping eating sessions after time t. �

Next we introduce some definitions to construct a metric function for the progress proof.
First, we measure the priority distance between any two processes i and j as:

dist(i, j) =

⎧
⎨

⎩

0, if (priorityi < priorityj)
heighti − heightj , if (priorityi > priorityj) ∧ (idi < idj)
heighti − heightj + 1, if (priorityi > priorityj) ∧ (idi > idj)

Suppose for any pair of processes i and j that dist(i, j) = d in some configuration
where j is hungry. While j remains hungry, priorityj remains unchanged. Also, recall
from Action 6 that each process reduces the height component of its priority after eating.
Consequently, d is an upper bound on the maximum number of times that process i can
overtake process j before either j gets scheduled to eat or priorityi < priorityj .

Now we define a metric function M : Π → IN for each diner j ∈ Π as follows:

M(j) =
∑

i�=j

dist(i, j)

First, we observe that M is bounded below by 0, and that M(j) = 0 iff j currently
has the highest priority value among all processes in Π . In general, the value of M(j)
depends only on processes that are currently higher-priority than j. This is because

1 As a technical point, diners might forestall �WX by eating with neighbors that began eating
before �P1 converged. For example, consider neighbors i and j, where i holds the shared
fork, but j began eating by falsely suspecting i before �P1 converged. Since j is already
eating, but i holds the shared fork, i might violate exclusion by eating with j even after the
oracle has converged. This can happen multiple times, in fact, so long as j continues to eat.
The phenomenon is temporary, however, because j is either faulty and crashes, or j is correct
and must exit eating within finite time. Thereafter, i and j never eat simultaneously again.
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dist(i, j) = 0 for any process i with priorityi < priorityj . If M(j) = b, then b is an
upper bound on how many times any higher-priority process can eat before either j gets
scheduled to eat or priorityj becomes globally maximal.

We also note that the metric value of each process in a given configuration is unique:
(i �= j) ⇒ M(i) �= M(j). Moreover, M(i) < M(j) ⇔ (priorityi > priorityj). These
properties follow from the fact that priorities are totally ordered.

Finally,the metric value M(j) never increases while process j is thinking or hungry.
M(j) can only increase by reducing the height component of priorityj in Action 6 after
eating. Importantly, this change in relative priority actually causes the metric values of
all other processes to decrease.

We are now prepared to state and prove the following helper lemma for progress:

Lemma 3. Let C be a configuration where some correct process is hungry, and let H
denote the set of all hungry processes in C. The correct process j ∈ H with minimal
metric eventually eats, or some correct process i with M(i) < M(j) becomes hungry.

Proof. Let j be the unique correct hungry process with minimal metric value in H .
In other words, j is the highest-priority correct hungry process in configuration C.
Lemma 3 holds trivially if j eats or if any correct process i with M(i) < M(j) becomes
hungry. Otherwise, j remains the highest-priority correct hungry process forever. We
will show that this latter case leads to a contradiction.

By definition, every faulty neighbor of j will crash within finite time. By the local
strong completeness of �P1, process j will permanently suspect such processes by
some unknown time t. Thereafter, j must collect forks only from its correct neighbors.

First, j will not lose any such forks. By hypothesis, j is hungry and higher priority
than any correct neighbor, so any fork request received by j in Action 3 will be deferred.

Second, j will eventually acquire every fork shared with its correct neighbors. By
Lemma 1, j shares a unique request token with each such neighbor. For any missing
fork, Action 2 guarantees that j will eventually send the corresponding token. Since j
is higher priority than any correct neighbor, these fork requests must be honored unless
the recipient is currently eating. In the latter case, the requested fork will be sent when
the correct neighbor exits eating in Action 6.

We conclude that if j remains hungry indefinitely, then j eventually suspects each
faulty neighbor and eventually holds the shared fork with each correct neighbor. By
Line 14, the guard on Action 5 is enabled. So j eats and Lemma 3 is established. �

Theorem 2: Algorithm 1 satisfies wait-free progress. That is, every correct hungry
process eventually eats.

Proof: We prove wait-freedom by complete (strong) induction on metric values.

Base Case: Let j be a correct hungry process with M(j) = 0.
By definition, the metric value M(j) is minimal, so Lemma 3 applies to j. There

are only two outcomes: either j eats, or some process i with M(i) < M(j) becomes
hungry. Since metric values are unique and bounded below by 0, no such process i
exists. Consequently, j eventually eats. �
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Inductive Hypothesis: Suppose for k > 0 that every correct hungry process i with
M(i) < k eventually eats. It remains to show that every correct hungry process j with
M(j) = k eventually eats as well.

Let C be a configuration, and let j be a correct hungry process in C with M(j) = k.
Suppose that k is the minimal metric value among all correct hungry processes in C.
Then Lemma 3 applies to j, so we conclude that j eventually eats, or some correct
process i with M(i) < M(j) becomes hungry. Alternatively, suppose that k is not
the minimal metric value among all correct hungry processes in C. Then some correct
hungry process i with M(i) < k already exists.

Either way, we conclude that j eventually eats or the inductive hypothesis applies to
some correct hungry process i with M(i) < k. In the latter case, process i eats. As a
correct diner, i eventually stops eating by executing Action 6, which thereby lowers the
height component of priorityi and decreases dist(i, j) by at least 1. Recall that while j
remains hungry, M(j) does not increase. Thus, any decrease in dist(i, j) will cause the
metric value of M(j) becomes less than k. Since j is now a correct hungry process with
M(j) < k, the inductive hypothesis applies directly to j. We conclude that j eventually
eats, and that Algorithm 1 satisfies wait-free progress by complete induction. �

5 Contributions

We have examined the dining philosophers problem under eventual weak exclusion in
environments subject to permanent crash faults. Eventual weak exclusion (�WX ) per-
mits conflicting diners to eat concurrently only finitely many times, but requires that, for
each run, there exists a (potentially unknown) time after which live neighbors never eat
simultaneously. This safety property models systems where resources are recoverable
or where sharing violations precipitate only transient (repairable) faults. Applications
of �WX include shared-memory contention management [6], conflict managers for
self-stabilizing systems [7], and wait-free eventually fair daemons [8].

Dining under �WX is unsolvable in asynchronous environments, where crash faults
can precipitate permanent starvation among live diners. The contribution of our work
is a wait-free dining algorithm for �WX in partially synchronous environments which
guarantees that every correct hungry process eventually eats, even in the presence of
arbitrarily many crash faults. Our oracle-based solution uses a local refinement of the
eventually perfect failure detector �P1. This oracle always suspects crashed neigh-
bors, and eventually stops suspecting correct neighbors. �P1 provides information only
about immediate neighbors, and, as such, it is fundamental to the scalability of our ap-
proach, since it is implementable in partially synchronous environments with sparse
communication graphs that are partitionable by crash faults.

Our work demonstrates that �P1 is sufficient for wait-free dining under �WX . It
is an open question, however, whether this oracle is actually necessary. This question
goes to the minimality of our assumptions and the portability of our solutions to weaker
models of partial synchrony. On the one hand, wait-free dining under �WX is a harder
problem than fault-tolerant consensus; the eventually strong oracle �S — which is
sufficient for consensus [3] — is not sufficient for wait-free dining [20]. Thus, the search
for a weakest failure detector is bounded above by �P1 and below by �S.
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On the Inherent Cost of Atomic Broadcast and
Multicast in Wide Area Networks�

Nicolas Schiper and Fernando Pedone

University of Lugano, Switzerland

Abstract. In this paper, we study the atomic broadcast and multicast problems,
two fundamental abstractions for building fault-tolerant systems. As opposed to
atomic broadcast, atomic multicast allows messages to be addressed to a subset
of the processes in the system, each message possibly being multicast to a differ-
ent subset. Our study focuses on wide area networks where groups of processes,
i.e., processes physically close to each other, are inter-connected through high
latency communication links. In this context, we capture the cost of algorithms,
denoted latency degree, as the minimum number of inter-group message delays
between the broadcasting (multicasting) of a message and its delivery. We present
an atomic multicast algorithm with a latency degree of two and show that it is op-
timal. We then present the first fault-tolerant atomic broadcast algorithm with a
latency degree of one. To achieve such a low latency, the algorithm is proactive,
i.e., it may take actions even though no messages are broadcast. Nevertheless, it is
quiescent: provided that the number of broadcast messages is finite, the algorithm
eventually ceases its operation.

1 Introduction

Distributed applications spanning multiple geographical locations have become com-
mon in recent years. Typically, each geographical site, or group, hosts an arbitrarily
large number of processes connected through high-end local links; a few groups exist,
interconnected through high-latency communication links. As a consequence, commu-
nication among processes in the same group is cheap and fast; communication among
processes in different groups is expensive and orders of magnitude slower than local
communication. Data is replicated both locally, for high availability, and globally, usu-
ally for locality of access. In this paper we investigate the atomic broadcast and mul-
ticast problems, two communication primitives that offer adequate properties, namely
agreement on the set of messages delivered and on their delivery order, to implement
replication [9].

Ideally, we would like to devise algorithms that use inter-group links as sparingly
as possible, saving on both latency and bandwidth (i.e., number of messages). As we
explain next, however, atomic broadcast and multicast establish an inherent tradeoff
in this context. As opposed to atomic broadcast, atomic multicast allows messages to
be sent to a subset of processes in the system. More precisely, messages can be ad-
dressed to any subset of the system’s groups, each message possibly being multicast
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to a different subset. From a problem solvability point of view, atomic multicast can
be easily reduced to atomic broadcast: every message is broadcast to all the groups in
the system and only delivered by those processes the message is originally addressed
to. Obviously, this solution is inefficient as it implies communication among processes
that are not concerned by the multicast messages. To rule out trivial implementations of
no practical interest, we require multicast algorithms to be genuine [7], i.e., only pro-
cesses addressed by the message should be involved in the protocol. A genuine atomic
multicast can thus be seen as an adequate communication primitive for distributed ap-
plications spanning multiple geographical locations in which processes store a subset
of the application’s data (i.e., partial replication).

We show that for messages multicast to at least two groups, no genuine atomic mul-
ticast algorithm can hope to achieve a latency degree lower than two.1 This result is
proven under strong system assumptions, namely processes do not crash and links are
reliable. Moreover, this lower bound is tight, i.e., the fault-tolerant algorithm A1 of
Section 4 and the algorithm in [5] achieve this latency degree (A1 is an optimized ver-
sion of [5], see Section 4). A corollary of this result is that Skeen’s algorithm, initially
described in [2] and designed for failure-free systems, is also optimal—a result that has
apparently been left unnoticed by the scientific community for more than 20 years.

We demonstrate that atomic multicast is inherently more expensive than atomic
broadcast by presenting the first fault-tolerant broadcast algorithm with a latency de-
gree of one. To achieve such a low latency, the algorithm is proactive, i.e., it may take
actions even though no messages are broadcast. Nevertheless, we show how it can be
made quiescent: provided that a finite number of messages is broadcast, processes even-
tually cease to communicate. In runs where the algorithm becomes quiescent too early,
that is, a message m is broadcast after processes have decided to stop communicating,
m will not be delivered in a single inter-group message delay, but in two. We show that
this extra cost is unavoidable, i.e., no quiescent atomic broadcast algorithm can hope to
always achieve a latency degree of one.2

These two lower bound results stem from a common cause, namely the reactiveness
of the processes at the time when the message is cast. Roughly speaking, a process p is
said to be reactive when the next message m that p sends is in response either to a local
multicast event or to the reception of another message. In Section 3, we first show that
no atomic broadcast or multicast algorithm can hope to deliver the last cast message
m with a latency degree of one if m is cast at a time when processes are reactive. To
obtain the lower bounds, we then show that (i) in runs of any genuine atomic multicast
algorithm where one message is multicast at time t, processes are reactive at t and (ii)
in runs of any quiescent atomic broadcast or atomic multicast algorithm where a finite
number of messages are cast, processes are eventually reactive forever.

These results help better understand the difference between atomic broadcast and
multicast. In particular, they point out a tradeoff between the latency degree and mes-
sage complexity of these two problems. Consider a partial replication scenario where
each group replicates a set of objects. If latency is the main concern, then every

1 A precise definition of latency degree is given in Section 2.
2 This result also holds for quiescent (genuine or non-genuine) atomic multicast algorithms. The

genuine case is already covered by the first lower bound result and is therefore irrelevant here.
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operation should be broadcast to all groups, and only groups concerned by the oper-
ation handle it. This solution, however, has a high message complexity: every operation
leads to sending at least one message to all processes in the system. Obviously, this is
inefficient if the operation only touches a subset of the system’s groups. To reduce the
message complexity, genuine multicast can be used. However, any genuine multicast
algorithm will have a latency degree of at least two.

The rest of the paper is structured as follows. In Section 2, we present our system
model and definitions. Section 3 shows the genuine atomic multicast latency degree
lower bound and investigates the cost of quiescence in a unified way. In Sections 4
and 5, we present the optimal multicast and broadcast algorithms. Finally, Section 6
discusses the related work and concludes the paper. The proofs of correctness of the
algorithms can be found in [12].

2 System Model and Definitions

2.1 Processes and Links

We consider a system Π = {p1, ..., pn} of processes which communicate through mes-
sage passing and do not have access to a shared memory or a global clock. We assume
the benign crash-stop failure model, i.e., processes may fail by crashing, but do not be-
have maliciously. A process that never crashes is correct ; otherwise it is faulty . The
system is asynchronous, i.e., messages may experience arbitrarily large (but finite) de-
lays and there is no bound on relative process speeds. Furthermore, the communication
links do not corrupt or duplicate messages, and are quasi-reliable: if a correct process
p sends a message m to a correct process q , then q eventually receives m. We de-
fine Γ = {g1, ..., gm} as the set of process groups in the system. Groups are disjoint,
non-empty and satisfy

⋃
g∈Γ g = Π . For each process p ∈ Π , group(p) identifies the

group p belongs to. Hereafter, we assume that in each group: (1) there exists at least one
correct process and (2) consensus is solvable (consensus is defined below).

2.2 Specifications of Agreement Problems

We define the agreement problems considered in this paper, namely consensus, reliable
multicast, and atomic multicast/broadcast. Let A be an agreement algorithm. We define
R(A) as the set of all admissible runs of A.

Consensus. In the consensus problem, processes propose values and must reach agree-
ment on the value decided. Uniform consensus is defined by the primitives propose(v)
and decide(v) and satisfies the following properties [8]: (i) uniform integrity: if a pro-
cess decides v, then v was previously proposed by some process, (ii) termination: every
correct process eventually decides exactly one value, (iii) uniform agreement: if a pro-
cess decides v, then all correct processes eventually decide v.

Reliable Multicast. With reliable multicast, messages may be addressed to any subset
of the processes in Π . For each message m, m.dest denotes the processes to which
the message is reliably multicast. Non-uniform reliable multicast is defined by primi-
tives R-MCast(m) and R-Deliver(m), and satisfies the following properties : (i) uniform
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integrity: for any process p and any message m, p R-Delivers m at most once, and
only if p ∈ m.dest and m was previously R-MCast, (ii) validity: if a correct process
p R-MCasts a message m, then eventually all correct processes q ∈ m.dest R-Deliver
m, (iii) agreement: if a correct process p R-Delivers a message m, then eventually all
correct processes q ∈ m.dest R-Deliver m.

Atomic Multicast. Atomic multicast allows messages to be addressed to a subset of
groups in Γ . For each message m, m.dest denotes the groups to which m is addressed.
Let p be a process. By abuse of notation, we write p ∈ m.dest instead of ∃g ∈ Γ : g ∈
m.dest ∧ p ∈ g. Hereafter, we denote the sequence of messages delivered by p at time
t as St

p, and the sequence of messages delivered by p at time t projected on processes
p and q as Pp,q(St

p), i.e., Pp,q(St
p) is the sequence of messages St

p restricted to the
messages m such that p, q ∈ m.dest. Atomic multicast is defined by the primitives
A-MCast and A-Deliver, and satisfies the uniform integrity and validity properties of
reliable multicast as well as the two following properties: (i) uniform agreement: if a
process p A-Delivers m, then all correct processes q ∈ m.dest eventually A-Deliver m,
(ii) uniform prefix order: for any two processes p and q and any time t, either Pp,q(St

p)
is a prefix of Pp,q(St

q) or Pp,q(St
q) is a prefix of Pp,q(St

p).
We also require atomic multicast algorithms to be genuine [7]: An algorithm A solv-

ing atomic multicast is said to be genuine iff for any run R ∈ R(A) and for any process
p, in R if p sends or receives a message then some message m is A-MCast and either p
is the process that A-MCasts m or p ∈ m.dest.

Atomic Broadcast. Atomic broadcast is a special case of atomic multicast. It is defined
by the primitives A-BCast and A-Deliver and satisfies the same properties as atomic
multicast where all A-BCast messages m are such that m.dest = Γ , i.e., messages are
always A-BCast to all groups in the system.

2.3 Latency Degree

Let A be a broadcast or multicast algorithm and R be a run of A (R ∈ R(A)). More-
over, in run R, let m be a message A-XCast (A-BCast or A-MCast) and Π ′(m) ⊆ Π
be the set of processes that A-Deliver m. Intuitively, the latency degree of R is the min-
imal length of the causal path between the A-XCast of m and the last A-delivery of m
among the processes in Π ′(m), when counting inter-group messages only. To define
this latency degree we assign timestamps to process events using a slightly modified
version of Lamport’s logical clocks [9]. Initially, for all processes p ∈ Π , p’s logical
clock, LCp, is initialized to 0. On process p, an event e is assigned its timestamp as
follows:

1. If e is a local event, ts(e) = LCp

2. If e is the send event of a message m to a process q,

ts(e) =
{

LCp + 1, if group(p) �= group(q)
LCp, otherwise

3. If e is the receive event of a message m, ts(e) = max(LCp, ts(send(m)))
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The latency degree of a message m A-XCast in run R is defined as follows:

Δ(m, R) = maxq∈Π′(m)(ts(A-Deliver(m)q) − ts(A-XCast(m)p))

where A-Deliver(m)q and A-XCast(m)p respectively denote the A-Deliver(m) event
on process q and the A-XCast(m) event on process p. We refer to the latency degree of
an algorithm A as the minimum value of Δ(m, R) among all admissible runs R of A
and messages m A-XCast in R.

3 The Inherent Cost of Reactiveness

We establish the inherent cost of the genuine atomic multicast problem for messages
that are multicast to multiple groups and we show that quiescence has a cost, i.e., in
runs where a message m is cast at a time when the algorithm is quiescent, there exists
no algorithm that delivers m with a latency degree of one. As explained in Section 1, we
proceed in two steps. We first show that, if processes are reactive when the last message
m is cast, then m cannot be delivered with a latency degree of one. We then prove that
(i) in runs of any genuine atomic multicast algorithm where one message is multicast at
time t, processes are reactive at t and (ii) in runs of any quiescent atomic broadcast or
atomic multicast algorithm where a finite number of messages are cast, processes are
eventually reactive forever.

The proofs are done in a model identical to the model of Section 2, except that
processes do not crash and links are reliable, i.e., they do not corrupt, duplicate, or lose
messages.

Definition 1. In a run R of an atomic broadcast or multicast algorithm, we say that a
process p is reactive at time t iff p sends a message m at time t′ ≥ t only if p A-XCasts
m or if p received a message sent in the interval [t, t′].

Proposition 1. In a system with at least two groups, for any atomic broadcast or any
atomic multicast algorithm A, there does not exist runs R1, R2 of A in which processes
are reactive at the time the last messages m1, m2 are A-XCast to at least two groups,
such that Δ(m1, R1) = Δ(m2, R2) = 1.

Proof: Suppose, by way of contradiction, that there exist an algorithm A and runs Ri

of A, i ∈ {1, 2}, such that Δ(mi, Ri) = 1. Consider two groups, g1 and g2. In run Ri,
process pi ∈ gi A-XCasts message mi at time t to g1 and g2. We first show that (*)
in Ri, at or after time t, processes can only send messages m such that for a sequence
of events e1 = A-XCast(mi), e2, ..., ek = send(m), A-XCast(mi) → e2 → ... →
send(m).3 Suppose, by way of contradiction, that there exists a process p in Ri that
sends a message m at a time t′i ≥ t such that the event send(m) is not causally linked to
the event A-XCast(mi). We construct a run R′i identical to run Ri except that message

3 Events e1, ..., ek can be of four kinds, either send(m), receive(m), A-XCast(m), or A-
Deliver(m) for some message m. Moreover, the relation → is Lamport’s transitive happened
before relation on events [9]. It is defined as follows: e1 → e2 ⇔ e1, e2 are two events on
the same process and e1 happens before e2 or e1 = send(m) and e2 = receive(m) for some
message m.
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mi is not A-MCast (note that processes are also reactive at time t in R′i). Since in Ri,
there is no causal chain linking the event A-XCast(mi) with the event send(m), runs R′i
and Ri are indistinguishable to process p up to and including time t′i. Therefore, p also
sends m in R′i. Hence, since processes are reactive at time t and no message is A-XCast
at or after t, p must have received a messag m′ sent at or after t by some process q. Ap-
plying the same reasoning multiple times, we argue that there must exist a process r that
sends a message m′′ at time t such that for some events e1 = send(m′′), e2, ..., ex−1 =
send(m′), ex = send(m), we have send(m′′) → ... → send(m′) → send(m). However,
r cannot send m′′ because no message is A-XCast at or after t, a contradiction.

By the validity property of A and because there is no failure, all processes eventually
A-Deliver mi. Since Δ(mi, Ri) = 1, by (*), processes in gi A-Deliver mi before
receiving any message from processes in g3−i sent at or after time t. Let t∗i > t be
the time at which all processes in gi have A-Delivered message mi. We now build run
R3 as follows. As in run Ri, pi A-XCasts mi. Runs Ri and R3 are indistinguishable
for processes in group gi up to time t∗i , that is, all messages causally linked to the event
A-XCast(m3−i) (including A-XCast(m3−i) itself) sent from processes in group g3−i

to processes in group gi are delayed until after t∗i . Consequently, processes in group gi

have all A-Delivered mi by time t∗i . By the uniform agreement of A, processes in g1
eventually A-Deliver m2 and processes in g2 eventually A-Deliver m1, violating the
uniform prefix order property of A. �
Proposition 2. For any run R of any genuine atomic multicast algorithm A where one
message is A-MCast at time t, processes are reactive at time t.

Proof: In run R, by the genuineness property of A, for any message m′ sent, there exist
events e1 = A-MCast(m), e2, ..., ex = send(m′) such that A-MCast(m) → e2 → ... →
send(m′) (otherwise, using a similar argument as in Proposition 1, we could build a run
R′ identical to run R, except that no message is A-MCast in R′, such that a process
sends a message anyway, contradicting the fact that in R′ no message is A-MCast and
A is genuine).

Consequently, for any process p, if p sends a message m′ at t′ ≥ t, then p A-MCasts
m′ or p received a message in the interval [t, t′]. �
Proposition 3. For any run R of any quiescent atomic broadcast or atomic multicast
algorithm A in which a finite number of messages are A-XCast, there exists a time t
such that for all t′ ≥ t, processes are reactive at t′.

Proof: In R, a finite number of messages are A-XCast. Because A is quiescent, there
exists a time t at or after which no messages are sent. It follows directly that for all
t′ ≥ t processes are reactive at t′. �

Although our result shows that if the last message m is cast when processes are reac-
tive, then m cannot be delivered in one inter-group message delay, in practice, multiple
messages may bear this overhead. In fact, this might even be the case in runs where
an infinite number of messages are cast. Indeed, to ensure quiescence, processes must
somehow predict whether any message will be cast in the future. Hence, if no mes-
sage is expected to be cast, processes must stop communicating, and this may happen
prematurely.
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4 Atomic Multicast for WANs

In this section, we present a latency degree-optimal atomic multicast algorithm which is
inspired by the one from Fritzke et al. [5], an adaptation of Skeen’s algorithm for failure-
prone systems. Due to space constraints, we here only present the basic principles of
the algorithm, the pseudo-code as well as a detailed explanation can be found in [12].

4.1 Algorithm Overview

The algorithm associates every multicast message with a timestamp. To ensure agree-
ment on the message delivery order, two properties are ensured: (1) processes agree on
the message timestamps and (2) after a process p A-Delivers a message with timestamp
ts, p does not A-Deliver a message with a smaller timestamp than ts. To satisfy these
two properties, inside each group g, processes implement a logical clock that is used to
generate timestamps—this is g’s clock. To guarantee g’s clock consistency, processes
use consensus to maintain it. Moreover, every message m goes trough the following
four stages:

– Stage s0: In every group g ∈ m.dest, processes define a timestamp for m using g’s
clock. This is g’s proposal for m’s final timestamp.

– Stage s1: Groups in m.dest exchange their proposals for m’s timestamp and set
m’s final timestamp to the maximum timestamp among all proposals.

– Stage s2: Every group in m.dest sets its clock to a value greater than the final
timestamp of m.

– Stage s3: Message m is A-Delivered when its timestamp is the smallest among all
messages that are in one of the four stages and not yet A-Delivered.

As mentioned above, our algorithm differentiates itself from [5] in several aspects. First,
when a message is multicast, instead of using a uniform reliable multicast primitive, we
use a non-uniform version of this primitive while still ensuring properties as strong as
in [5]. Second, in contrast to [5], not all messages go trough all four stages. Messages
that are multicast to only one group can jump from stage s0 to stage s3. Moreover,
even if a message m is multicast to more than one group, on processes belonging to
the group that proposed the largest timestamp (i.e., m’s final timestamp), m can skip
stage s2.

4.2 Latency Degree Analysis

Consider a message m that is multicast by a process p. In [12], we show that if m is
multicast to one group, the latency degree of the algorithm, denoted as A1, is zero if
p ∈ g, and one otherwise. Moreover, if m is multicast to multiple groups, the latency
degree is two, which matches the lower bound of Section 3.

Theorem 1. There exists a run R of algorithm A1 in which a message m is A-MCast
to two groups such that Δ(m, R) = 2.
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5 Atomic Broadcast for WANs

In this section, we present the first fault-tolerant atomic broadcast algorithm that
achieves a latency degree of one. Together with the lower bound of Section 3, this
shows that atomic multicast is more costly than atomic broadcast. Due to space con-
straints, we here only present an overview of the algorithm, the pseudo-code as well as
a detailed explanation can be found in [12].

5.1 Algorithm Overview

To atomically broadcast a message m, a process p reliably multicasts m to the processes
in p’s group. In parallel, processes execute an unbounded sequence of rounds. At the
end of each round, processes deliver a set of messages according to some deterministic
order. To ensure agreement on the messages delivered in round r, processes proceed in
two steps. In the first step, inside each group g, processes use consensus to define g’s
bundle of messages. In the second step, groups exchange their message bundles. The
set of message delivered at the end of round r is the union of all bundles. Note that
we also wish to ensure quiescence, i.e., if there is a time after which no message is
broadcast, then processes eventually stop sending messages. To do so, processes try to
predict when no further messages will be broadcast. Our prediction strategy is simple,
it consists in checking, at the end of each round, whether any message was delivered
or not. If no messages were delivered, processes stop executing rounds. Note that our
algorithm is indulgent with regards to prediction mistakes, i.e., if processes become
quiescent too early, they can restart so that liveness is still ensured.

5.2 Latency Degree Analysis

In [12], we analyze the latency degree of the algorithm, denoted as A2. We first show
that its best latency degree (among all its admissible runs) is one, which is optimal.
We then consider runs where processes become quiescent too early, i.e., processes stop
executing rounds before a message is broadcast. In these runs, the latency degree of the
algorithm is two.

Theorem 2. There exists a run R of algorithm A2 in which a message m is A-BCast
such that Δ(m, R) = 1.

Theorem 3. There exists a run R of algorithm A2 in which the last message m is
A-BCast when processes are reactive such that Δ(m, R) = 2.

It is worth noting that the presented broadcast algorithm never becomes reactive if the
time between two consecutive broadcasts is smaller than the time to execute a round.
Moreover, in this case, all rounds are useful, i.e., they all deliver at least one message.
For example, in a system where the inter-group latency is 100 milliseconds, a broadcast
frequency of 10 messages per second is enough to obtain this desired behavior. In case
the broadcast frequency is too low or not constant, to prevent processes from stopping
prematurely, more elaborate prediction strategies based on application behavior could
be used.
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6 Related Work and Final Remarks

The literature on atomic broadcast and multicast algorithms is abundant [3]. We here
review the most relevant papers to our protocols.

Atomic Multicast. In [7], the authors show the impossibility of solving genuine atomic
multicast with unreliable failure detectors when groups are allowed to intersect. Hence,
the algorithms cited below circumvent this impossibility result by considering non-
intersecting groups that contain a sufficient number of correct processes to solve con-
sensus. They can be viewed as variations of Skeen’s algorithm [2], a multicast algorithm
designed for failure-free systems, where messages are associated with timestamps and
the message delivery follows the timestamp order. In [10], the addressees of a mes-
sage m, i.e., the processes to which m is multicast, exchange the timestamp they as-
signed to m, and, once they receive this timestamp from a majority of processes of each
group, they propose the maximum value received to consensus. Because consensus is
run among the addressees of a message and can thus span multiple groups, this algo-
rithm is not well-suited for wide area networks. In [4], consensus is run inside groups
exclusively. Consider a message m that is multicast to groups g1, ..., gk. The first des-
tination group of m, g1, runs consensus to define the final timestamp of m and hands
over this message to group g2. Every subsequent group proceeds similarly up to gk.
To avoid cycles in the message delivery order, before handling other messages, every
group waits for a final acknowledgment from group gk. The latency degree of this algo-
rithm is therefore proportional to the number of destination groups. In [5], to ensure that
processes agree on the timestamps associated to every message and to deliver messages
according to the timestamp order, every message goes through four stages. In contrast
to [5], the algorithm presented in this paper allows messages to skip stages, therefore re-
ducing the number of intra-group messages sent by sparing the execution of consensus
instances.

Atomic Broadcast. In [1], the authors consider the atomic broadcast and multicast prob-
lems in a publish-subscribe system where links are reliable, publishers do not crash, and
cast infinitely many messages. Agreement on the message ordering is ensured by using
the same deterministic merge function at every subscriber process. Given the cast rate
of publishers, the authors give optimal algorithms with regards to the merge delay, i.e.,
the time elapsed between the reception of a message by a subscriber and its delivery.
Both algorithms achieve a latency degree of one.4 In [13], a time-based protocol is in-
troduced to increase the probability of spontaneous total order in wide area networks
by artificially delaying messages. Although the latency degree of the optimistic deliv-
ery of a message is one, the latency degree of its final delivery is two. Moreover, their
protocol is non-uniform, i.e., the agreement property of Section 2 is only ensured for
correct processes. In [14], a uniform protocol based on multiple sequencers is proposed.
Every process p is assigned a sequencer that associates sequence numbers to the mes-
sages p broadcasts. Processes optimistically deliver a message m when they receive
m’s sequence number. The final delivery of m occurs when the sequence number of

4 Note that this does not contradict the latency degree lower bound of genuine atomic multicast.
Indeed, their assumptions are different than ours, i.e., to ensure liveness of their multicast algo-
rithm, they require that each publisher multicast infinitely many messages to each subscriber.
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Algorithm latency degree inter-group msgs.
[4] k + 1 O(kd2)

[10] 4 O(k2d2)

[5] 2 O(k2d2)

Algorithm A1 2 O(k2d2)

[1]5 1 O(kd)

(a) Atomic Multicast

Algorithm latency degree inter-group msgs.
[13]6 2 O(n)

[14] 2 O(n2)

Algorithm A2 1 O(n2)

[1]5 1 O(n)

(b) Atomic Broadcast

Fig. 1. Comparison of the algorithms (d : nb. of processes per group, k : nb. of destination groups)

m has been validated by a majority of processes. The latency degree of this algorithm
is identical to [13].

In Figure 1, we compare the latency degree and the number of inter-group exchanged
messages of the aforementioned algorithms. In this comparison, we consider the best-
case scenario, in particular there is no failure nor failure suspicion. We denote n as the
total number of processes in the system, d as the number of processes in each group,
and k as the number of groups to which a message is cast (k ≥ 2). To compute the
latency degree and number of inter-group messages sent, we consider the oracle-based
uniform reliable broadcast and uniform consensus algorithms of [6] and [11] respec-
tively (note that [6] can easily be modified to implement reliable multicast). The latency
degrees of [6] and [11] are respectively one and two. Furthermore, considering that a
process p multicasts a message to k groups (we consider that p belongs to one of these
k groups) or that k groups execute consensus, the algorithms respectively send d(k−1)
and 2kd(kd − 1) inter-group messages.

From Figure 1, we conclude that, among uniform fault-tolerant broadcast protocols,
Algorithm A2 achieves the best latency degree and message complexity. In the case of
the atomic multicast problem, although Algorithm A1 and [5] achieve the best latency
degree among fault-tolerant protocols, [4] has a lower message complexity. Deciding
which algorithm is best is not straightforward as it depends on factors such as the net-
work topology as well as the latencies and bandwidths of links.
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Abstract. Predicate detection in a distributed system is an important
problem. It is useful in debugging and testing of the distributed system.
Two modalities are introduced for predicate detection by Cooper and
Marzullo. They are denoted by Possibly and Definitely. In general, the
complexity of detecting predicates in the two modalities is NP-complete
and coNP-complete. On detecting conjunctive predicates in Definitely
modality, Garg and Waldecker proposed an efficient method. In this pa-
per, we extend the notion of the conjunctive predicate to the notion of
the disjunctive normal form (DNF) predicate, which is a disjunction of
several conjunctive predicates. We are concerned with the problem of
detecting DNF predicates in Definitely modality. We study two classes
of DNF predicates called separation DNF predicates and separation-
inclusion DNF predicates, which can be detected in Definitely modality
using an idea similar to that of Garg and Waldecker.

1 Introduction

Predicate detection in a distributed system is an important problem. It is useful
in debugging and testing of the distributed system. A predicate is an interesting
property that we want to check in the execution of a distributed system. Two
modalities are introduced for predicate detection by Cooper and Marzullo [4].
They are denoted by Possibly and Definitely. We know that the state space of
an execution of a distributed system is a distributive lattice. Given a predicate Φ,
Possibly(Φ) means that there exists one path from the initial state to the final
state in the lattice, which passes through a state satisfying Φ. Definitely(Φ)
means that all paths from the initial state to the final state in the lattice pass
through a state satisfying Φ. Possibly(Φ) is usually used to check the property
Φ that we want to avoid, such as, the number of tokens in a system is less than
a constant. While Definitely(Φ) is usually used to check the desired property
Φ that we want to guarantee, such as, a leader is elected.
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Predicate detection suffers from the state explosion problem. It has been
shown that in general, detection of Possibly(Φ) is NP-complete [3] and detection
of Definitely(Φ) is coNP-complete [13].

The conjunctive predicate is an important class of predicates. A conjunctive
predicate is a conjunction of local predicates. A local predicate is defined on
only one process. Thus the truth of it can be easily verified by the process.
On detecting conjunctive predicates in Possibly modality, [8] and [9] proposed
efficient algorithms. On detecting conjunctive predicates in Definitely modality,
Garg and Waldecker proposed an efficient method in [7]. The concept of intervals
play an important role in their method. An interval in a process is a sequence
of consecutive events satisfying a local predicate of the conjunctive predicate
Φ. The essence of the method is choosing one interval from every process and
analyzing the relation of these intervals. An similar method was independently
proposed in [14] by Venkatesan and Dathan.

In this paper, we extend the notion of the conjunctive predicate to the notion
of the disjunctive normal form (DNF) predicate, which is a disjunction of several
conjunctive predicates. From [13], we know that in general detection of DNF
predicates in Definitely modality is coNP-complete. The purpose of this paper
is to discuss two classes of DNF predicates called separation DNF predicates
and separation-inclusion DNF predicates, which can be detected efficiently in
Definitely modality using an idea similar to that of Garg and Waldecker by
analyzing the relation of intervals.

Given a DNF predicate Φ = Φ1 ∨Φ2 ∨ . . .∨Φm, where each Φi is a conjunctive
predicate, for every conjunctive predicate Φi we have a set of intervals. The set
of intervals with respect to Φ is the union of these sets of intervals. Separation
DNF predicates and separation-inclusion DNF predicates put some restrictions
on the relationship between these intervals. Informally speaking, both separation
DNF predicates and separation-inclusion DNF predicates require that no two
intervals are adjacent. Besides, separation-inclusion DNF predicates require that
the relation of interval inclusion satisfies certain conditions.

We observe the similarity between the condition on intervals of the method of
Garg and Waldecker in [7] and the concept of inevitable states in [5]. For using the
concept of inevitable states to prove our results, we use the technique of interval
compression. Such ideas were first explored in [1] and [11]. But they concern
the problem of detecting predicates in Possibly modality. In [2] Chakraborty
and Garg prove such an idea can be used for detecting predicates in Definitely
modality.

Then based on the concept of inevitable states, we use a constructive way to
obtain the desired result on separation DNF predicates. And we use an indirect
way to obtain the desired result on separation-inclusion DNF predicates.

The remainder of the paper is organized as follows: Section 2 discusses the
model that we use. In section 3 we introduce the concept of DNF predicates
and discuss the interval compression theorem with respect to DNF predicates.
Section 4 discusses some properties of inevitable states. Section 5 presents the
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main results on detection of separation DNF predicates and separation-inclusion
DNF predicates. Section 6 concludes the paper.

2 Model

We assume a loosely-coupled message-passing asynchronous system. A distri-
buted system consists of n sequential processes denoted by P1, P2, . . . , Pn. The
processes do not share a global clock or a global memory. They can communicate
with each other only by exchanging messages through communication channels.
The system is asynchronous, which means that each process executes at its own
speed because of the lack of global clock, and message transition delay is arbitrary
but finite. We assume that the communication channels are reliable. No messages
are lost, altered or spuriously introduced. We do not assume that the channels are
FIFO channels. In this paper, we are concerned with detecting global predicates
in a given execution of a distributed system in an off-line manner.

Each process in the distributed system is sequential. For each process Pi, 1 ≤
i ≤ n, the sequence of events in the process is E1

i E2
i E3

i · · ·. Let Ei denote the
set of events in Pi. Let E = E1 ∪ E2 ∪ . . . ∪ En. We use Lamport’s happened-
before relation [10] to give an irreflexive partial order → on E. Happened-before
relation is defined as the smallest relation satisfying the following conditions: for
two events e, f ∈ E, (1) if e and f belong to the same process, and e occurs
before f , then e → f ; (2) if e is an event which sends a message and f is an
event which receives the message sent by e, then e → f ; (3) if there exists an
event g ∈ E such that e → g and g → f , then e → f . Based on the induced
order, we model the given execution of the system as an irreflexive partial order
set 〈E, →〉. We call it a computation.

A global state of a computation 〈E, →〉 is a subset G of E such that for each
event e in G, any event f occurring before e in the process that e belongs to, is
in G. A global state G is a consistent global state, if for each event e, any event
f satisfying f → e, is in G. The intuitive meaning of consistent global states is
that for each event in the global state, all the events that should occur before
it have occurred. The set of consistent global states forms a distributive lattice
under the relation of ⊆ [12][6]. Let L(E) denote the distributive lattice.

We can represent a global state G by an n-dimension vector S=(s1, s2, . . . , sn),
where for each i, 1 ≤ i ≤ n, if Ei ∩ G �= ∅, then Esi

i is the greatest el-
ement in Ei ∩ G; otherwise si = 0. The frontier of a global state S is an
n-tuple H = (Es1

i , Es2
2 , . . . , Esn

n ). For two global states S and S′ in L(E),
S ≤ S′ if and only if si ≤ s′i, for all i, 1 ≤ i ≤ n. S < S′ if and only
if S ≤ S′ and S �= S′. S ∩ S′ = (min(s1, s

′
1), min(s2, s

′
2), . . . , min(sn, s′n)).

S ∪ S′ = (max(s1, s
′
1), max(s2, s

′
2), . . . , max(sn, s′n)).

A run of a computation is a total order of the events in E, which is compatible
with →, that is, if e → f , then e comes before f in the run. A run is also a chain
of states from ⊥ to � in the lattice L(E).
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When detecting a predicate in a computation, each process has an interest-
ing variable which is used to check some properties of the execution. Given a
consistent global state S = (s1, s2, . . . , sn), the value of the variable on Pi is the
value of the variable after the occurrence of the event Esi

i , if si > 0; otherwise,
it is a given initial value. A global predicate is a predicate defined on variables of
processes. If a predicate is defined on the variable on a single process, it is called
a local predicate. An event e satisfies a local predicate defined on the process
that e belongs to, if after the occurrence of e the value of the variable in the
process satisfies the local predicate.

Given a predicate Φ, two modalities are usually used in predicate detection [4]:
Definitely(Φ). It is true if for every run of the computation, there exists a

consistent global state satisfying Φ on this run.
Possibly(Φ). It is true if there exists a run of the computation such that a

consistent global state on this run satisfies Φ.
For example, in the computation of figure 1, assume the interesting variables

in P1 and P2 are x and y respectively and the global predicate we want to
detect is Φ = x > y. We can see that Possibly(Φ) is true, while Definitely(Φ)
is false.
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Fig. 1. A computation and its corresponding lattice

3 Interval Compression

In [7] Garg and Waldecker proposed a method to detect Definitely(Φ), where
Φ is a conjunctive predicate. A predicate is conjunctive if it is a conjunction of
local predicates. A conjunctive predicate has the form:

Φ = LP1 ∧ LP2 ∧ . . . ∧ LPn

where LPi is a local predicate defined on Pi, for every i, 1 ≤ i ≤ n.
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Now we briefly state their method with a slight modification. The notion
of intervals is important in detecting a conjunctive predicate. An interval is a
maximal sequence of consecutive events in a process Pi such that LPi is true for
all the events in the sequence. The beginning event of an interval I is denoted
by I.low and the ending event is denoted by I.high. When there exists only one
event in the interval, the beginning event and the ending event are the same.
For an event e, the immediately next event of e in the process that e belongs
to, is denoted by e.next. In the remainder of the paper, we assume that in every
process, neither the initial value nor the final event satisfies the local predicate
defined on the process.

Theorem 1. [7] For a conjunctive predicate Φ = LP1 ∧ LP2 ∧ . . . LPn,
Definitely(Φ) is true if and only if there exist n intervals, I1, I2, . . . , In, each
belonging to a different process such that Ii.low → Ij .high.next, for all i, j,
1 ≤ i ≤ n, 1 ≤ j ≤ n.

In this paper we extend the notion of conjunctive predicates to the one of dis-
junctive normal form (DNF) predicates. A predicate Φ is a disjunctive normal
form predicate if it has the form:

Φ = Φ1 ∨ Φ2 ∨ . . . ∨ Φm

where Φi is a conjunctive predicate, for all i, 1 ≤ i ≤ m. Thus Φ can be written
in the following form:

Φ=(LP 1
1 ∧LP 1

2 ∧. . .∧LP 1
n)∨(LP 2

1 ∧LP 2
2 ∧. . .∧LP 2

n)∨. . .∨(LPm
1 ∧LPm

2 ∧. . .∧LPm
n )

For using the similar method of theorem 1 to deal with detection of a DNF
predicate in Definitely modality, we extend the notion of intervals.

Definition 1. A maximal sequence of consecutive events in Pi is an interval
with respect to Φk, if all the events in the sequence satisfy LP k

i .

Definition 2. An maximal sequence of consecutive events in a process Pi is an
interval with respect to a DNF predicate Φ, if for any two events e and f in the
sequence, for all k, 1 ≤ k ≤ m, we have that if e is in an interval with respect
to Φk, then f is also in the interval.

Now we will show that an interval with respect to a DNF predicate can be
treated as a single event when we detect the predicate in Definitely modality.
We call this interval compression. Such an idea was proposed by Chakraborty
and Garg in [2].

We collect the beginning events of all intervals with respect to Φ on processes
into a set E′. Apparently, we have that E′ ⊆ E. From the relation → we can
induce the relation →′. For every e and f , e, f ∈ E′, e →′ f if and only if e → f .
From the original computation 〈E, →〉, we can obtain the reduced computation
〈E′, →′〉. In 〈E′, →′〉 events in each process are also indexed by consecutive
natural numbers starting from 1.

The next theorem presents the relation of the two computations.
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Theorem 2. Given a DNF predicate Φ, Definitely(Φ) is true for the origi-
nal computation 〈E, →〉, if and only if Definitely(Φ) is true for the reduced
computation 〈E′, →′〉.

This theorem can be derived from [2] (theorem 4).

4 Inevitable States

In a state space L(E), inevitable states are some special states. A state is in-
evitable if it is on all the runs of the computation. For example, in the lattice of
figure 1, (2,2) is an inevitable state. Inevitable states are useful in the detection
of certain classes of DNF predicates in Definitely modality. In this section, we
give some properties of inevitable states.

In [5] Fromentin and Raynal proposed a method to determine whether a
consistent global state is inevitable.

Theorem 3. [5] S = (s1, s2, . . . , sn) is an inevitable state if and only if Esi

i →
E

sj

j .next, for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Now we use this result to obtain the following lemma, which is useful in the
detection of certain classes of DNF predicates in Definitely modality.

For a state S, let Level(S) denote
∑n

i=1 si. We call Level(S) the level value
of S.

Lemma 1. If S is not an inevitable state, there exists a state S′ such that
Level(S) = Level(S′), and S and S′ are different in only two processes i, j, with
|si − s′i| = 1 and |sj − s′j | = 1.

5 Detection of Two Classes of DNF Predicates

In this section, we will present the main results in this paper on detection of
two classes of DNF predicates in Definitely modality. The result can be seen as
an extension of theorem 1 to the two classes of DNF predicates. The next two
definitions define two classes of DNF predicates which we are interested in.

For two interval I and I ′ which are on the same process Pi, let a be the
index of the event I.low and b be the index of I.high, that is, Ea

i = I.low and
Eb

i = I.high. And let a′ be the index of the event I ′.low and b′ be the index
of I ′.high. If a = a′ and b = b′, we say that I and I ′ coincide. If a > b′ + 1 or
a′ > b+1, we say that I and I ′ separate. Intuitively, it means that I and I ′ have
not any same event and they are not adjacent. If a ≤ a′ ≤ b′ ≤ b, and I and I ′

do not coincide, we say that I includes I ′.

Definition 3. Given a computation 〈E, →〉 and a DNF predicate Φ = Φ1 ∨Φ2 ∨
. . . ∨ Φm. Let Ai be the set of intervals that are with respect to Φi, for each i,
1 ≤ i ≤ m. Let A = A1 ∪ . . . ∪ Am. Φ is a separation DNF predicate, if for any
two intervals I and I ′ in A on the same process they coincide or separate.
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Fig. 2. An example of separation DNF predicate

Figure 2 illustrates an example of the separation DNF predicate.

Definition 4. Given a computation 〈E, →〉 and a DNF predicate Φ = Φ1 ∨
Φ2 ∨ . . . ∨ Φm. Let Ai be the set of intervals that are with respect to Φi, for all
i, 1 ≤ i ≤ m. Let A = A1 ∪ . . . ∪ Am. Let R be a binary relation such that
R = {(i, j)| there exist an intervals I with respect to Φi and an interval I ′ with
respect to Φj in A such that I and I ′ are on the same process and I includes I ′}.
Φ is a separation-inclusion DNF predicate, if the two conditions are satisfied:
(1) for any two intervals I and I ′ in A on the same process they coincide, or
they separate, or I includes I ′, or I ′ includes I; (2) R is acyclic, that is, there
does not exist a sequence b1b2 . . . bl such that b1 = bl and (bk, bk+1) ∈ R for all
k, 1 ≤ k ≤ l − 1.

3

2 12

2

2

2 1

33

1

3

Fig. 3. An example of separation-inclusion DNF predicate

Figure 3 illustrates an example of the separation-inclusion DNF predicate.
From the above two definitions, we can see that the separation DNF predicate

is a subclass of the separation-inclusion DNF predicate. Next we will prove that
the two classes can be detected in Definitely modality using a method similar
to that of theorem 1. Both of the proofs are based on inevitable states. We use a
constructive way to prove the first theorem on separation DNF predicates. While
we use an indirect way to prove the second theorem on separation-inclusion DNF
predicates.
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First we give a theorem on separation DNF predicates. Given a DNF predi-
cate, a true state is a consistent global state satisfying the predicate.

Before we present the theorem, given a separation DNF predicate Φ, we show
a property of L(E′). From the definition of separation DNF predicates, any
two intervals I ∈ A and I ′ ∈ A, which are on the same process, coincide or
separate. Thus any I ∈ A is an interval with respect to Φ. When doing interval
compression, it is compressed to an event.

In 〈E′, →′〉, in some process Pi, if an event f satisfies a local predicate LP k
i of

some Φk, then before interval compression it is the beginning event of an interval
with respect to Φk. Let f ′ ∈ E′ is another event in Pi such that f ′ �= f and f ′

satisfies a local predicate of some Φj . From the definition of separation DNF
predicates, f and f ′ are not adjacent, that is, f.next �= f ′ and f ′.next �= f .
Thus we have that in L(E′) for any S = (s1, s2, . . . , sn) satisfying Φ and S′ =
(s′1, s

′
2, . . . , s

′
n) satisfying Φ, |si − s′i| ≥ 2 or si = s′i, for all i, 1 ≤ i ≤ n.

The idea of the proof is as follows. After interval compression, we obtain
〈E′, →′〉 from 〈E, →〉. Every n intervals with respect to a conjunctive predicate
in different processes is transformed to a state of 〈E′, →′〉. We can see that the
n intervals satisfy the relation stated in theorem 1 if and only if the compressed
state is an inevitable state. If one of the compressed states is inevitable, then
Definitely(Φ) is true. Based on the above property, if none of the compressed
states is inevitable, we can construct a run which does not pass through any true
state. It implies that Definitely(Φ) is false. Then we can have the next lemma
and theorem.

Lemma 2. Given a separation DNF predicate Φ = Φ1 ∨ Φ2 ∨ . . . ∨ Φm and a
computation 〈E, →〉, Definitely(Φ) is true for the reduced computation 〈E′, →′〉,
if and only if there exists an inevitable state satisfying Φ in L(E′).

Theorem 4.For a separation DNF predicate Φ=Φ1∨Φ2∨. . .∨Φm, Definitely(Φ)
is true if and only if there exist n intervals, I1, I2, . . . , In, each belonging to a
different process, such that all are intervals with respect to the same Φk, and
Ii.low → Ij .high.next, for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Next we will show theorem 4 can be extended to the case of separation-inclusion
DNF predicates. The case for separation-inclusion DNF predicates is more com-
plex than the one of separation DNF predicates. For separation-inclusion DNF
predicates, when doing interval compression, not all intervals with respect to
some Φk can be compressed to an event (because it maybe include other intervals
with respect to other Φj). Thus L(E′) for separation-inclusion DNF predicates
does not have the property of L(E′) for separation DNF predicates as stated
above.

The next definition introduces the concept of zones for depicting basic units
of L(E) for separation-inclusion DNF predicates.

Definition 5. A zone Z[(a1, b1), (a2, b2), . . . , (an, bn)] is a set of states. A state
S = (s1, s2, . . . , sn) ∈ Z if and only if ai ≤ si ≤ bi for all i, 1 ≤ i ≤ n.
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We can see that the states (not restricted to consistent global states) satisfying
Φ = Φ1 ∨Φ2 ∨ . . .∨Φm must be a set of zones Z = {Z1, Z2, . . .}. For example, let
I1, I2, . . . , In be n intervals with respect to the same Φk, where Ii is on process
Pi. Let ai be the index of Ii.low on Pi and bi be the index of Ii.high on Pi, for
all i, 1 ≤ i ≤ n. Then we get a zone Z[(a1, b1), (a2, b2), . . . , (an, bn)]. Any state
S = (s1, s2, . . . , sn) ∈ Z must satisfy Φk, because Esi

i satisfies LP k
i for all i,

i ≤ i ≤ n.
Given two zones Z and Z ′. Let I1, I2, . . . , In be the corresponding intervals

for Z and I ′1, I
′
2, . . . , I

′
n be the corresponding intervals for Z ′. From the definition

of separation-inclusion DNF predicates, we have that there does not exist such
case that Ij includes I ′j in process Pj , and I ′k includes Ik in process Pk. Thus if
Ii ∩ I ′i �= ∅ for all i, 1 ≤ i ≤ n, there only exist two cases: (1) Ii includes I ′i or Ii

coincide with I ′i , for all i, 1 ≤ i ≤ n. In this case Z ′ ⊆ Z; (2) I ′i includes Ii or I ′i
coincide with Ii, for all i, 1 ≤ i ≤ n. In this case Z ⊆ Z ′. Otherwise there exist
Ik and I ′k such that they separate. In this case, Zi ∩ Zj = ∅.

Thus there are only three cases for Z and Z ′: (1) Zi ∩Zj = ∅; (2) Z ′ ⊆ Z; (3)
Z ⊆ Z ′.

Let Z = {Z1, Z2, . . .} be the set of zones corresponding to Φ = Φ1 ∨Φ2 ∨ . . .∨
Φm. We say a zone Z is a top zone, if no zone Z ′ satisfies Z ⊆ Z ′. Let Z′ be a
set of top zones in Z such that

⋃
Z′∈Z′ Z ′ =

⋃
Z∈Z Z.

Some states in the zones are not consistent global states. In predicate detec-
tion, these states are meaningless. Therefore, the zone where none of the states
is consistent, is meaningless. In Z′, such zones can be deleted. Now we redefine
Z = {Z|Z ∈ Z′ and Z ∩ L(E) �= ∅}.

Definition 6. A set S of states in L(E) is definite if every run of the compu-
tation 〈E, →〉 passes through a state S such that S ∈ S and S ∈ L(E). If a set
of states S is definite, we denote it by Definitely(S).

Because all the true states in L(E) are in Z, we have that Definitely(Φ) is true
if and only if Definitely(

⋃
Z∈Z Z) is true.

In the previous part of this paper, we define predicates on the interesting
variables on processes. Now we will define predicates on the indices of events.
If e = Esi

i , the index of e is si. At this time, we can treat the value of the
interesting variable after executing an event e in a process Pi is the value of the
index of e in Pi. For example, if e = Esi

i , then after executing e, the value of
the interesting variable in Pi is si.

Now we rewrite the separation-inclusion DNF predicate Φ in a new form Φ̃
based on indices. For every Zk[(a1, b1), (a2, b2), . . . , (an, bn)] ∈ Z, a corresponding
conjunctive predicate Φ̃k is defined as Φ̃k =

∧n
i=1 Zk.ai ≤ si ≤ Zk.bi. Then

Φ̃ =
∨q

k=1 Φ̃k, where q is the number of zones in Z. Because a state S(not
restricting to consistent global states) satisfies Φ̃ if and only if S ∈

⋃
Z∈Z Z, and

Definitely(Φ) is true if and only if Definitely(
⋃

Z∈Z Z) is true, we have the
next lemma.

Lemma 3. Definitely(Φ) is true if and only if Definitely(Φ̃) is true.
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Because any interval with respect to some Φ̃k must be an interval with respect
to some Φj , it is easy to obtain the next lemma.

Lemma 4. If Φ is a separation-inclusion DNF predicate, Φ̃ is also a separation-
inclusion DNF predicate.

The next two lemmas show an interesting property of separation-inclusion DNF
predicates.

Lemma 5. Suppose that in Z there exists a zone Z[(s1, s1), (s2, s2), . . . , (sn, sn)]
containing only one state S = (s1, s2, . . . , sn), and S satisfies that there does
not exist any true state S′ = (s′1, s′2, . . . , s′n) such that S′ �= S, and for all i,
1 ≤ i ≤ n, |si − s′i| ≤ 1. If there exists a path from ⊥ to S which does not pass
through any other true state than S, and S′′ = (s′′1 , s′′2 , . . . , s′′n) is a consistent
global state such that for all i, 1 ≤ i ≤ n, s′′i = si or s′′i = si − 1, then there
exists a path from ⊥ to S′′ which does not pass through any true state.

Lemma 6. Suppose that in Z there exists a zone Z[(s1, s1), (s2, s2), . . . , (sn, sn)]
containing only one state S = (s1, s2, . . . , sn), and S satisfies that there does
not exist any true state S′ = (s′1, s′2, . . . , s′n) such that S′ �= S, and for all i,
1 ≤ i ≤ n, |si − s′i| ≤ 1. If S is not an inevitable state and Definitely(Z), then
Definitely(Z − {Z}) is true.

Now we show that after interval compression, in L(E′) there actually exists such
a zone that satisfies the conditions stated in lemma 5 and lemma 6.

Lemma 7. In Z′ there exists a zone Z ′[(s1, s1), (s2, s2), . . . , (sn, sn)] containing
only one state S = (s1, s2, . . . , sn), and in L(E′) S satisfies that there does
not exist any true state S′ = (s′1, s

′
2, . . . , s

′
n) such that S′ �= S, and for all i,

1 ≤ i ≤ n, |si − s′i| ≤ 1.

Theorem 5. For a separation-inclusion DNF predicate Φ = Φ1 ∨Φ2 ∨ . . . ∨Φm,
Definitely(Φ) is true if and only if there exist n intervals, I1, I2, . . . , In, each
belonging to a different process, such that all are intervals with respect to the
same Φk, and Ii.low → Ij .high.next, for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Proof. (⇒): Assume that Definitely(Φ) is true and there do not exist n intervals,
I1, I2, . . . , In, each belonging to a different process, such that all are intervals
with respect to the same Φk, and Ii.low → Ij .high.next, for all i, j, 1 ≤ i ≤ n,
1 ≤ j ≤ n. We can get Z from L(E), and Φ̃ from Z. From lemma 3, we know
that Definitely(Φ̃) is true. From lemma 4, we know that Φ̃ is also a separation-
inclusion DNF predicate.

We derive the reduced computation 〈E′, →′〉 from the original computation
〈E, →〉. We obtain Z′ from Z and Φ̃′ from Φ̃. From theorem 2, we can prove
that Definitely(Φ̃) is true for the original computation 〈E, →〉, if and only if
Definitely(Φ̃′) is true for the reduced computation 〈E′, →′〉. ThenDefinitely(Φ̃′)
is true for the reduced computation 〈E′, →′〉. Then Definitely(Z′) is true in
L(E′).
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From lemma 7 we know that there exists a zone Z ′u[(s1, s1), (s2, s2), . . . , (sn, sn)]
satisfying the conditions stated in lemma 5 and lemma 6 after interval compres-
sion. From the assumption and theorem 3 we can conclude that S is not an
inevitable state.

Then from lemma 6, we have that Definitely(Z′ − {Z ′u}) is true. Then Z ′u
can be deleted. Let Ψ be a formula obtained by deleting Φ̃

′u from the formula
of Φ̃′. Let Z̃ = Z′ − {Z ′u}.

Let a new original computation 〈E, →〉 be 〈E′, →′〉, a new Φ̃ be Ψ , a new Z
be Z̃.

Continue the above process until Z = ∅. We know that Definitely(Φ̃) is true,
which implies that Definitely(Z) is true. Then Definitely(∅) is true. It leads
to a contradiction.

(⇐): From theorem 1, we have thatDefinitely(Φk) is true. ThenDefinitely(Φ)
is true. �

Now we give the complexity results on separation-inclusion DNF predicates.
According to theorem 5, we know that Definitely(Φ) is true if and only if

there exists a Φk such that Definitely(Φk) is true. As shown in [7] the time com-
plexity of detection of Definitely(Φk) is O(n2p), where p =max{|Ei|}, we have
that the time complexity of using theorem 5 to detection separation-inclusion
DNF predicates in Definitely modality is at most O(mn2p).

6 Conclusion

In this paper we extend the notion of conjunctive predicates to the one of
DNF predicates. In general, detecting DNF predicates in Definitely is coNP-
complete. In this paper, we find two classes of DNF predicates named separation
DNF predicates and separation-inclusion DNF predicates, which can be detected
in Definitely modality in a similar method of Garg and Waldecker’s method for
detecting conjunctive predicates in Definitely modality. We prove the results
based on the concept of inevitable states.
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Abstract. In this paper, I have presented a paradigm based on Smart-Messages. 
A Smart-Message is a message that carries intelligence in the form of a program 
element. The paper discusses the anatomy of a Smart-Message along-with its 
application in solving two of the important problems in distributed systems: 
Leader election problem and Mutual exclusion problem. 

1   Introduction 

Distributed computing systems are subjects of great academic and research interests. 
Messages in a distributed algorithm simply carry data or state information of a node 
or information computed from the local states of n different computing nodes. These 
messages can trigger a computation at a node, but they themselves can not be exe-
cuted. A Smart-Message is an executable message that contains a program element 
and one or more data elements. A Smart-Message typically contains a program sec-
tion that help the message to route itself to a designated node. A Smart-Message 
keeps on forwarding itself along a path (or a cycle) in a connected graph that contains 
all nodes of the graph. A Smart-Message while executed at a node can collect node 
information that is public, update node information that is public, aggregate local state 
data elements from multiple nodes, perform an algorithm that is encoded in the mes-
sage (and triggered on certain inputs) and route itself to the next desired node based 
on a routing procedure. 

2   System Model and Assumptions 

A set of nodes (or processes) are connected over a graph and nodes communicate only 
by means of message passing. A node has sufficient computing power to carry a local 
computation. 

Nodes do not fail and links between nodes do not crash. Messages may get delayed 
finitely but they do not get lost. Message send primitives are non-blocking in nature. 
Message receive buffer at a node never overflows. 



 Solving Classic Problems in Distributed Systems: The Smart-Message Paradigm 171 

 

3   Anatomy of a Smart-Message 

A Smart-Message is different from a normal data message in the sense that it carries a 
program element that is executable at a site that has sufficient computational power to 
carry an execution. A Smart-Message typically consists of a program element and n 
number of data elements stored in a local data structure as required by the program 
element. 

3.1   Program Element 

A program element of a Smart-Message typically consists of the following three  
program sections. 

• Interaction with Local State of a Node: In this program section a Smart-Message 
can read values of node state variables and update node state variables. A node 
may decide to enforce an access control policy by exposing only a subset of its 
state variables as public. A public state variable can be read by a message or any 
other node in the network graph. If a node decides not to expose a node variable as 
public, it may define it as private. Private variables can only be accessed in a com-
putation that is local to a node i.e., private variables can not be accessed in a dis-
tributed computation that requires exchange of state information between nodes. A 
public state variable at a node may depend on a private node variable that is gener-
ated using a local computation specific to a node. A Smart-Message reads publicly 
accessible variables at a node and copies values of these variables to a local data 
structure internal to the message. 

• A Smart Algorithm: This program section is the heart of a Smart-Message. This is 
typically an algorithm that takes the local data structure of the message as input 
and performs a computation that often produces new data elements. These data 
elements generated from the execution of a Smart Algorithm can be written to lo-
cal node state. In essence, the execution of a Smart Algorithm often happens at a 
node when the Smart-Message has a fairly complete global view of all local node 
states collected in its local data structure and the Smart-Message is in a position to 
deduce a solution or to generate a set of new data elements that represent the solu-
tion of a distributed problem. 

• Routing Section: The routing information, i.e. how a Smart-Message propagates 
itself to the next desirable node in the system is often encoded as a routing 
procedure in this program section. In many cases, the Smart-Message needs a 
global view of the local node states to arrive at a conclusion about a distributed 
problem. Consequently, a Smart-Message is required to visit all the nodes of a 
connected graph at least once. Typically, the Smart-Message travels along a 
network path (or cycle) that originates at a node and goes through all the nodes in 
the network. A particular node may appear in the Smart-Message path more than 
once depending upon the network topology. Finding such a network path (or cycle) 
for a connected network graph is outside the scope of the paper and standard 
graph-theoretic algorithms exist that can find such a path. The Routing section of a 
Smart-Message however should contain this path information. It is not required for 
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a Smart-Message to travel along a cycle that goes through all nodes. Depending 
upon specific requirements of a distributed problem, routing procedure can be 
encoded appropriately for a Smart-Message. 

3.2   Local Data Structure 

A Smart-Message has a local data structure where it can store a number of data ele-
ments. Public state variables are often read by a Smart-Message (when executed) and 
copied as data elements into the local data structure of the Smart-Message. A Smart-
Message thrives to collect relevant local state information from various nodes and 
constructs a global view of the system, before the execution of its Smart Algorithm. 
The execution of a Smart Algorithm may not produce the desired solution of a dis-
tributed problem, if the constructed global view is not reliable enough. So, for proper 
construction of its local data structure and a global view of the system, a Smart-
Message may need to visit the relevant nodes (or all nodes) of the network graph 
more than once. 

4   Execution of a Smart-Message 

The Smart-Message paradigm extents the existing distributed framework of net-
worked nodes communicating via explicit message passing. In Smart-Message para-
digm, communication between nodes is still by means of message passing. It is just 
that messages now carry intelligence in the forms of executable program elements. 

The successful usage of the Smart-Message framework relies on the execution of a 
Smart Algorithm, as mentioned in Section 3.1. The algorithm tries to find a solution 
of a given distributed problem by collecting sufficient local state information from 
various nodes in the network graph. 

Usually, there is an initiator node in the network graph that starts solving a distrib-
uted problem (e.g., a leader election problem) by generating a Smart-Message. The 
design of a Smart-Message (specifically the Smart Algorithm) depends on the distrib-
uted problem that is being solved. The initiator node has a copy of the Smart-
Message. For the sake of simplicity, we may assume that all nodes in the network 
know how the Smart-Message for the given distributed problem looks like. So any 
node, can initiate a computation by generating a Smart-Message, if required. Smart-
Messages typically get forwarded from one node to the next node (along a cycle as 
described in Section 3.1) when they are executed. Whenever a node receives a Smart-
Message, it executes it. As part of the execution of a Smart-Message, the program 
element in the Smart-Message gets executed. 

The three program sections of the program element of a Smart-Message will be 
executed at a node. The first program section will collect local node state information 
(public node variables) and copy this information to its local data structure. Depend-
ing upon whether the local data structure is complete in terms of relevance or not (a 
complete local data structure of a Smart-Message represents a global state view of the 
system), the Smart Algorithm (second program section) can be triggered and this 
Smart Algorithm can compute new data elements which can then be copied back to 
local node state. The execution of the Smart Algorithm is often conditional and is 
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driven by the constructed global state view of the system. The third program section 
contains a routing procedure which when executed simply forwards the Smart-
Message to the next logical node (can be the next node in the network cycle as men-
tioned in Section 3.1). 

The Smart Algorithm of a Smart-Message can generate other ordinary messages 
(that carry data elements only) that can be sent by the node that is executing the 
Smart-Message. Depending upon the routing procedure, a Smart-Message may be 
forwarded to only one node at a time (e.g., the Smart-Message moves in a cycle of all 
nodes). This routing mechanism is often more than adequate for a leader-election al-
gorithm or a token-based mutual exclusion algorithm as described in Section 5. 

5   Application of Smart-Message Paradigm 

5.1   A Leader Election Algorithm 

A solution using a Smart-Message for leader election in a circular configuration of 
nodes (i1, i2… in) [1] is proposed in this section. The local node state is consisted of 
two public variables (NodeID, Current-LeaderID). The Smart-Message that is executed 
for this problem has the following anatomy: 

Local Data Structure of the Smart-Message 

• NodeID [ ]: This is a set that stores the node IDs of various nodes. 
• Leader-decided: Boolean which is FALSE until a new leader has been chosen. 
• LeaderID: This variable holds the identity of the elected leader. Initially it may be 

undefined. 
• Message-Pass-Number: The pass that the Smart-Message is making. Initially this 

is 0. 

Program Element 

Interaction with Local State of a Node 

If Not Leader-decided 

Then 

 Read node ID ik and insert ik to NodeID []; 

Else 

 Copy LeaderID to local state of the node; 

Smart Algorithm 

If the Smart-Message is getting executed at the initia-
tor node 

Then 

 Increment Message-Pass-Number by 1; 
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If (Message-Pass-Number = 2) and NodeID [] contains all 
the node IDs of all nodes and Not Leader-decided 

Then 

 Choose the maximum element of set NodeID []; 

 Set LeaderID = Maximum element chosen above; 

 Set Leader-decided as TRUE; 

Routing Section 

If (Message-Pass-Number <= 2) 

Then 

 Forward the Smart-Message to the next logical 
node in the network cycle going through all nodes; 

Execution of the Smart-Message 

The Smart-Message gets forwarded to all nodes in the network cycle starting from an 
initiator node and it gets executed at all nodes. An execution of a program element 
executes all three program sections one after the other. The message makes two 
passes along the network cycle. In the first pass it collects all the node identities and 
in the second pass it distributes the identity of the newly elected leader to all nodes in 
the cycle. The Smart-Algorithm contains the logic for finding the maximum identifier 
from a set of node identifiers and it typically gets executed at the node that had initi-
ated an election round. 

5.2   A Mutual Exclusion Algorithm 

Mutual exclusion among a set of communicating processes is a well-known problem 
in distributed systems [2]. This section illustrates a simplistic variation of token-based 
mutual exclusion using a Smart-Message. 

Local Data Structure of the Smart-Message 

• Token: This variable indicates a token. 

Program Element 

Interaction with Local State of a Node 

Copy Token from Smart-Message to a local node variable; 

Set Has-token in node local state to TRUE; 

Smart Algorithm 

If (Has-token of a node is TRUE) 

Then 

 Enter Critical Section (CS) of process; 
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Routing Section 

Once CS execution is over, forward the Smart-Message to 
the next node in a logical ring of all nodes; 

Execution of the Smart-Message 

Whenever a node receives the Token (included in the Smart-Message) it sets a local 
variable Has-token to TRUE and enters a Critical Section (CS). Once the execution of 
CS at a node is over, the node forwards the Smart-Message (along-with the Token) to 
the next node in the logical ring. This ensures only one of the nodes has the Token at 
a time and can enter a CS. 

6   Conclusions and Future Works 

In this idea paper, a Smart-Message paradigm has been proposed. As illustrated in 
Section 5, only one node in the network executes the Smart-Message at a time. Also 
there are no unnecessary exchanges of data messages between nodes. The Smart-
Message paradigm thus promises significant potential over the traditional approach of 
arriving at a consolidated global view by means of considerable number of data mes-
sage exchanges between participating nodes. Also, instead of the (same) program  
residing in every node, the program now resides in the message. 

Future work includes applying the Smart-Message methodology in developing  
distributed algorithms that can tolerate node crash, link crash and timing failures. 
Smart-Message paradigm can be extended to support routing in dynamic networks. A 
number of possibilities will arise when we decide to allow a Smart-Algorithm to be 
modified along a network path. A Smart-Message can be made more sophisticated by 
introducing additional program sections that deal with various specific aspects of a 
particular distributed problem. One can define appropriate formats for a Smart-
Message to make it transmission-efficient. Smart-Messages themselves should be 
made fault-tolerant and this is important because Smart-Messages carry intelligence. 
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Abstract. A Distributed Shared Memory (DSM) system logically implements 
the shared-memory model on a physically distributed-memory system. Jackal is 
an open source [2] fine grained distributed shared memory implementation of 
the Java programming language. Java inherently supports parallel programming 
with the use of multi-threading. Jackal exploits this property and allows users to 
run multi-threaded programs unmodified on a distributed memory environment 
such as a cluster. Since the built-in language support for threads is insufficient 
for many programming tasks, Java-1.5 introduces concurrent utilities [4]. 
Concurrent utilities of Java are classes that are designed as building blocks in 
making concurrent classes or applications. These utilities provide reduce 
programming effort, increase performance, increase reliability, improve 
maintainability and increase productivity. In this work we implement a subset 
of these utilities in Jackal. 

Keywords: DSM, concurrent utilities, Jackal, ReentrantLock, Atomic variable 
and ThreadPoolExecutor. 

1   Introduction 

A Distributed Shared Memory system is implemented either in hardware or in 
software. There are three ways to build a DSM system in software: Runtime-system 
centric, Programming-language centric and Compiler-technology centric. Jackal 
(Section 3) is a Compiler-technology centric DSM that involves shipping data to the 
machine requesting memory. As an optimization, it uses function shipping whenever 
possible.  

Jackal is a fine-grained DSM implementation of Java programming language. Java 
inherently supports parallel programming with the use of multi-threading. In practice 
it became apparent that writing high-performance multithreaded applications using 
only Java's limited built-in functionality was difficult. Since Jackal doesn't have 
support for concurrent utilities, our work focuses to provide these packages efficiently 
in Jackal. Concurrent utilities are made for building efficient concurrent applications. 
Main constituents of concurrent utilities are Locks, Thread Pool Executor, and 
Atomic Variables. 
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2   Java Memory Model  

Original Java Memory Model (JMM) contained certain unintended side effects and 
drawbacks. These drawbacks of JMM are addressed in Java Specification Request 
133 (JSR-133) [5]. JSR-133 does not retain the concept of a single main memory but 
instead uses a more distributed approach that allows the use of hierarchical caches. 
This allows some threads to observe updates to main memory made by other threads 
earlier than others. Jackal implements JSR-133 and it does not comply with the 
original Java Memory. Jackal only violates the JMM when the programs are not 
properly synchronized. 

3   Brief Introduction to Jackal  

Jackal consists of a compiler and runtime system that together provide an object-
based DSM. It uses a native compiler rather than a JIT compiler or byte-code 
interpreter. Jackal uses compiler to add access checks to a program and implements 
aggressive optimizations [3] to reduce the number of messages sent over the network.  
If the object about to be accessed is not present or not in the correct read or write 
mode, the access check calls the runtime system to cache it.  

Jackal communicates by using Upcalls, these are remote procedure calls and are 
similar to active messages. Since in active messages there is only one buffer, only one 
of the threads or processes can send RPC at a time. In Jackal this buffer is protected 
by the lock namely ‘MANTA_RTS_LOCK’, so before performing any RPC one 
needs to obtain this lock.  

4   Design and Implementation of Concurrent Utilities 

This section presents algorithms and the design optimizations used in implementing a 
subset of Concurrent Utilities. Following are the descriptions of the key words used 

Allocation-home is the node where the object is first allocated. 
    Logical-home is the node maintaining the master copy of the object. 

4.1   Implementation of ReentrantLock 

Ticketing lock mechanism is used in implementing ReentrantLock. Logical-home of 
the lock object is used to gain or release the lock. A synchronization queue for each 
lock is maintained at the lock object's Allocation-home. The thread that needs a lock 
sends request to the lock object's Logical-home for a ticket and waits on 
synchronization queue for its turn. Whenever a thread’s turn comes it is removed 
from the queue and resumed. Since the synchronization queue can be large, it is not 
moved across the network to avoid the network bandwidth consumption. 

Since locking and unlocking makes synchronization points, the thread that 
encounters these points must flush the cached objects to their respective Logical-
home nodes and should make local copies invalid. By the time the lock request arrives 
at Logical-home the protocol action might have taken and Logical-home might have 
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migrated. To avoid this we use the runtime system lock ‘MANTA_RTS_LOCK’, that 
is also required by the runtime system to perform protocol specific action, before 
sending lock request.  

Atomic library developed by HP [6] is used for atomically updating a variable. The 
functions in this library allow us to atomically swap the contents of a variable, and 
atomically add a value to a variable. 

Ex: to swap AO_compare_and_swap_full(reference to a variable, current, update). 

4.1.1   Description of Methods in the ReentrantLock Class 
lock(): This method is used to acquire the ReentrantLock.  

• Since lock method is a synchronization point, according to JMM thread’s 
local memory is flushed. We perform upcall to lock object’s allocation home 
to see whether the requesting thread is already the owner of the lock. If yes, 
the state (indicates how many times the lock has been taken) of the lock 
object at Logical-home will be incremented and the thread is allowed to 
continue through the critical section. Otherwise following step is executed. 

• At the Logical-home of the lock object a ticket (counter) will be generated 
for the thread. Using the current turn of the object it is checked whether the 
lock can be taken. If the ticket of the thread is equal to the current turn then 
the state is incremented and the thread is allowed to continue through the 
critical section. Otherwise the following step is executed. 

• If the lock is in use then an upcall will be generated to the Allocation-home 
of the lock object, where this request is queued, and the thread will be 
blocked. A queue entry includes information such as thread pointer, lock 
object pointer, thread’s ticket and how many times it wants to acquire the 
lock (used in condition variables). 

unlock(): This method is used to release the ReentrantLock. 
• Since this is also a synchronization point, first we need to flush the thread’s 

cached data before performing any Upcall (according to JMM). 
• Perform an Upcall to lock object's allocation home then we see whether the 

current thread is the owner of the lock or not.  
• If yes, we perform an Upcall to the logical home and decrement the state of 

the object, otherwise the method exits. 
• If the state is decremented to zero then object's current_turn is incremented 

and an Upcall is performed to Allocation-home to dequeue the request, 
which has a ticket equal to the current_turn, from the synchronization queue. 

• A signal is generated to the thread corresponding to the dequeued request 
and this thread will continue through the critical section. 

await(): Check whether the thread is the owner of the lock. If yes the lock's state is 
saved along with pointer to thread and the node id on which this thread is 
being executed on the corresponding condition queue (maintained at 
condition objects home node). Lock is released using the unlock() method. 

notify(): Signals the longest waiting thread on a condition. This method will dequeue 
the first node from the condition queue and enqueues it to the corresponding 
lock objects synchronization queue.  
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notifyAll():Same as notify() except it signals all threads waiting on a condition.  

All above modules are implemented in C language using Java Native Interface 
(JNI). 

4.1.2   Optimization 

• Since the Synchronization queue is maintained at the Allocation-home of 
the object, all enqueue and dequeue requests are forwarded to this node 
making it a bottleneck. We maintain the queue at every node in the 
cluster. We use only the Logical-home to acquire or release the lock. Even 
if Logical-home migrates, a synchronization queue will be available 
locally thus avoiding the bottleneck. 

• Also we tried better optimization by registering the number of acquires 
from different nodes. This optimization depends on the assumption that 
the node that mostly acquired the lock may also acquire it mostly in 
future. 

4.2   Implementation of Atomic Variable 

Atomic variable is maintained at a single node in the cluster. All updates to the 
variable are forward to that node where these updates are done atomically. Node 
assignment to the atomic variables is done in a round robin fashion. 

4.2.1   Methods in Atomic Class 
Following are few methods which performs an RPC to the atomic integer home 
 
int get(), int getAndSet(newvalue), boolean compareAndSet(int expect, int update), int 
getAndIncrement(), int decrementAndGet(), int getAndDecrement(), int getAndAdd(int 
delta),  int incrementAndGet(), int addAndGet(int delta) 

4.3   Implementation of NonBlocking Queue 

Operations on this queue are atomic and non-blocking. Even though it is not part of 
Concurrent Utilities, we make use of NonBlocking Queue in ThreadPoolExecutor. 
Since there are no synchronization points in Non Blocking queue implementation, we 
need to explicitly broadcast the diffs whenever the queue is modified. 

4.4   Implementation of ThreadPoolExecutor 

ThreadPoolExecutor is implemented using Random work stealing [1]. A pool of 
threads is created on each node and each thread will have two phases: execution phase 
and steal phase. Local thread pool size depends on the number of processors available 
in the node. We use a Non Blocking queue of works at each node in a cluster to 
increase the cache locality. With the use of a work queue at each node, there is high 
probability that most of the computation is local.  
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Thread Pool size has two user-imposed limits: core pool size and maximum pool 
size. The following steps show what happens when a job is submitted: 

 
• If the thread pool is shutdown no new job can be submitted. 
• If the pool size (number of threads) is less than core pool size a new thread 

will be created and the submitted job is assigned to it. 
• If the pool size is greater than the core pool size, the job is submitted to the 

work pool for later execution. 
• If the submission to the work pool fails because of the limits imposed on the 

work queue, and if the pool size is less than the maximum pool size, a new 
thread is created and the submitted job is assigned to it. 

• In rest of the cases the job is rejected. 

4.4.1   Methods in ThreadPoolExecutor Class 
ThreadPoolExecutor(): is a constructor which takes core pool size and maximum pool 
size and keep-alive-time as some of its parameters. It is the time until which the thread 
waits for the job to be available, if failure, terminates. execute(): submit the job to the 
Thread Pool. Other methods are shutdown(), getTask() and  workerDone(). 

4.5   Experimental Results 

We ran following standard Benchmark programs using the developed lock package 
with optimized and unoptimized versions of lock utility: 

• Watermaster: Simulation of water molecule for splash benchmark. 
• Cholesky factorization:  
• Asp: All-pair shortest Path problem. 

Table 1. Experimental results of Watermaster and Cholesky 

Application Parameter On 2 CPUs (seconds) On 4 CPUs (seconds) 
WaterMaster 1728 mols 24.262 21.549 
Cholesky 2080 cells 16.826 22.492 

Table 2. Optimized and unoptimized versions of lock utility using Watermolecule simulation  

No. of Iterations Un-optimized (seconds) Optimized (seconds) 
25  284.107  271.038  234.884  211.436 
50  560.746  541.898  526.203  509.167 
100  1124.508 1083.562  920.128  881.303 

5   Conclusion and Future Work 

We implemented ReentrantLock, Atomic variable and ThreadPoolExecutor in Jackal. 
The results obtained prove that these utilities are efficient. There are numerous 
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directions to extend the work. Work is in progress to optimize ThreadPoolExecutor, 
using hierarchical work queues instead of Random work stealing. 
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Abstract. We propose a generalized scheme that can convert any algo-
rithm that self-stabilizes under an unfair central daemon into a random-
ized one that self-stabilizes under a distributed daemon, using only con-
stant extra space and without IDs. If the original algorithm is anonymous
the resulting self-stabilizing algorithm is also anonymous. We provide a
detailed complexity analysis that show that the expected slowdown is
upper bounded by O(n3).

1 Introduction

A self-stabilizing algorithm is a distributed algorithm designed to converge to a
desired global system state without any external coordination or global system
initialization. Each node participates in the distributed algorithm based on local
knowledge: its own state and the states of its immediate neighbors. The goal is
to achieve some global objective – a predicate defined on the states of all the
nodes in the network – based on local actions where individual nodes have no
global knowledge about the network. Self-stabilizing algorithms are robust (fault
tolerant) in the optimistic sense that the distributed system may temporarily
behave inconsistently but a return to correct system behavior is guranteed in
finite time while traditional robust distributed algorithms follow a pessimistic
approach in that it protects against the worst possible scenario which demands
an assumption of the upper bound on the number of faults.

A self-stabilizing algorithm is usually written as a collection of production
rules at each node: each rule specifies a condition and an action. The condition
is a boolean predicate on the state of the node and the states of its neighbors;
the action or move is a change in the state of the node executing the action. A
node is privileged at a particular time if the condition of one or more of its rules
is satisfied. Note that a node might stop being privileged if a neighbor moves.
We work in the shared-variable model in which a node can directly read its
neighbors’ variables. We restrict attention to undirected, bidirectional links. All
computation by a node is completed in one atomic step.

In order to analyze the correctness and time complexity of a self-stabilizing
algorithm, a daemon or an execution model(run time environment) is assumed:
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the daemon plays the role of both scheduler and adversary. In the literature,
there are several daemons, and several possible attributes of those daemons.
The central daemon (or serial daemon) chooses or taps exactly one privi-
leged node to move at each step. In contrast, the distributed daemon taps a
nonempty subset of the privileged nodes to move at each step. These daemons
are considered adversarial. A daemon can be fair or unfair. For a (weakly) fair
daemon , every node that is continuously privileged is tapped eventually; for an
unfair daemon, there is no such restriction.

In general, algorithms and protocols are designed (and analyzed) assuming
a specific daemon; and, an algorithm designed for one daemon may not work
with another daemon in a straightforward way. In order to simplify algorithm
development, it would be useful to have mechanisms or procedures to convert
an algorithm, designed for one daemon to work with other daemons. These
procedures are sometimes called transforms [6]. The concept of daemon can be
thought of as two parts: The central daemon promises exclusivity (local mutual
exclusion), while the fair daemon promises each processor gets its turn (fairness
or clock synchronization). Most of the work on local mutual exclusion, fairness or
daemon conversion assumes IDs. This includes the ULME algorithm of [2], the
alternator of [4], the conversions of [11] based on the dining philosophers problem,
the fairness enhancements of [9], the timestamp-based transforms of [10], and
algorithms in the book [3]. Awerbuch et al. [1] provided algorithms for clock
synchronization for both anonymous and ID-based networks.

Randomization can be used to ensure local mutual exclusion, and hence to
convert a central-daemon algorithm to a distributed-daemon one. One approach
is to use randomness to obtain “approximate” IDs (such as a neighborhood-
unique numbering [5]) for the nodes. However, this requires a stabilization
period to establish the node IDs and non-constant additional space. Shukla et
al. [12] provided a method using randomness that can be used to convert some
specific central-daemon algorithms to run under a distributed daemon.

In this paper, we propose a general algorithm, that converts any arbitrary
algorithm (stabilizing under an unfair central daemon) randomization We show
that, by using randomness but not to one that self-stabilizes under a distributed
daemon. The proposed algorithm has three distinct advantages: (1) it is appli-
cable to all self-stabilizing algorithms in central daemon; (2) it does not assume
that the nodes in the network have unique IDs—it works for anonymous al-
gorithms (using node identifiers for reference purpose only). The resulting algo-
rithm is scalable (especially suitable for dynamic networks; deaprture and arrival
of new nodes are most efficient); and (3) the conversion is achieved with a single
additional bit at each node (so that if the original algorithm ran in constant
space the transformed one does too). The trade-off is a slow-down. We mea-
sure the running time of the algorithms in terms of the maximum number of
steps needed for the algorithm to converge to a stable legitimate state in the
worst case. We provide the correctness and convergence analysis of the proposed
algorithm and an upperbound of the resulting slowdown.
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2 The Conversion Algorithm

Let S be a given arbitrary self-stabilizing algorithm that works for an unfair, cen-
tral daemon. We want to design a general conversion algorithm that transforms
S to a new self-stabilizing algorithm S′, that works for a distributed daemon.

The algorithm/transform is presented as the code for a node i. For the new
algorithm S′, we add to each node i a boolean flag b(i) in addition to the S-
variables (the variables that are used by the algorithm S at each node i). The
design approach is to make this flag b(i) true if the node i is privileged for the
underlying algorithm S and is the only node in its neighborhood that has its b-
flag set; when two (or more) adjacent nodes are simultaneously S-privileged and
have their flags set, the nodes randomly determine a new value of their flag bits.
A node i can execute the underlying algorithm S only if it is indeed privileged
for S and is the only node in its neighborhood that has its b-flag set. We define
the boolean predicate pS(i) (in terms of S-variables at node i) as true iff node i
is privileged for algorithm S in a given system state. The notation N(i) denotes
the set of neighbors of node i. The new algorithm S′ is shown as Algorithm 1
[we use Algorithm 1 and Algorithm S′ interchangeably].

Algorithm 1. Using randomness for exclusivity
Variables: binary b(i) (and variables needed for S)
BitClear: if b(i) = 1 and not pS(i)

then set b(i) = 0
BitSet: if pS(i) and b(i) = 0 and ∀j ∈ N(i) : b(j) = 0

then set b(i) = 1
BitToss: if pS(i) and b(i) = 1 and ∃j ∈ N(i) with b(j) = 1

then set b(i) = Random (toss a fair coin to determine the new value of b(i))
Step: if pS(i) and b(i) = 1 and ∀j ∈ N(i) : b(j) = 0

then execute one step of S at i

Note: In Rule BitToss, setting b(i) to Random means tossing a fair-coin to
determine the new value of b(i) (either 0 or 1).

2.1 Correctness Analysis

Lemma 1. Under a distributed daemon, Algorithm 1 (Algorithm S′)
– achieves local exclusivity for S, i.e., no two adjacent nodes execute the un-

derlying algorithm S (executing Rule Step) concurrently;
– cannot terminate while there is an S-privileged node (i.e., Algorithm 1 ter-

minates only when Algorithm S terminates).

Proof. – For node i to be able to execute Rule Step, at the point it is tapped
it must have its b-bit set, and none of its neighbors can have their b-bit set.
Thus, if node i is privileged for Rule Step of Algorithm 1 in a given system
state, no neighbor j of node i can also be privileged for Rule Step. Thus two
adjacent nodes cannot execute Rule Step simultaneously.
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– Assume Algorithm 1 terminates. Then, if a node has its b-bit set, it must be
privileged for one of Rules BitClear, BitToss and Step (since their hypotheses
are exhaustive). So, when Algorithm 1 terminates, each node i has b(i) = 0.
But then there cannot be a S-privileged node, since any such node would
be privileged for Rule BitSet. So, when algorithm S′ terminates, there is no
S-privileged node.

2.2 Convergence Analysis

Thus it remains to show that, no matter what the distributed daemon does,
there is progress on S. That is, we need to show that the expected time between
two consecutive steps of S is bounded. So, define:

T is a maximal interval (sequence of steps executed by the distributed
daemon) such that Rule Step is not executed.

The steps within T are denoted by an integer variable t, t ≥ 0. If the daemon is
perpetually lucky, T can be infinite; but we now argue that the expected length
of T is bounded.

Definition 1. The set of S-privileged nodes during the interval T is denoted by
P ; by the definition of T , the set P does not change during T . The set of nodes
that have their b-bit set at the start of step t is denoted by B(t) and the set of
those with their b-bit clear is denoted by C(t) [B(t) ∪ C(t) = V , V is the set of
nodes in the graph].

Definition 2. We define a node i of P as stuck if b(i) = 1 and b(j) = 0 for
each neighbor j of node i. We define a node i in C(t) − P as dead [a dead node
cannot make any move while it is dead].

This terminology is motivated by the following lemma:

Lemma 2. During the interval T :

(a) a stuck or dead node cannot move;
(b) a node in B(t) − P can move only to become dead.

Proof. (a) A stuck node is privileged only for Rule Step of Algorithm 1 and by
definition the Rule Step is not executed during the interval T .

(b) Since P does not change during T , the only move a node in B(t) − P can
make is to clear its b-bit; this places it in C(t + 1) − P , i.e., it becomes dead.

Note: A node in C(t) ∩ P (= P − B(t)) can execute only Rule BitSet; by doing
so, the node either becomes a stuck node or it enters the set $ = P ∩ B − stuck.
A node in B(t) ∩ P − stuck can execute only Rule BitToss: depending on the
result of the coin, this puts it in C(t+1) or B(t+1) — the node either becomes
stuck, or remains in the set B(t + 1) ∩ P − stuck or enters the set P − B(t + 1).
The possible movement of a node from set to set is depicted in Figure 1.

The intuition behind the subsequent analysis is that if the interval T is to
continue for a long time, then the daemon must keep on tapping the non-stuck
S-privileged nodes, clearing and setting their bits, without creating stuck nodes.
This we formalize using a potential function argument.
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B − P

P − B

V − P − B

$ = P ∩ B − stuck

stuck

Fig. 1. Set changes without a Step

Intervals Without Stuck Or Dead Nodes Arising

Define a maximal subinterval T # of T such that no new stuck or dead
node is created.

Observation 3. By Lemma 2, T is divided into at most n such intervals.

We now bound the expected length of T#.

Definition 3. (a) H(t) is defined to be the subgraph induced by the nodes in the
set B(t), and m(t) denotes the number of components of H(t) that contain only
nodes of P (S-privileged).
(b) q(t) denotes the number of nodes in B(t) that are S-privileged, i.e., q(t) =
|B(t) ∩ P |.
(c) We define a potential function φ(t) as follows:

φ(t) = q(t) − (n + 1) × m(t).

It is obvious that −n2 − n ≤ φ(t) ≤ n. We will now focus on the potential
function. It is sufficient to bound how long before the potential function runs
out, since that is a bound on the length of T #. If it were the case that φ(t) always
decreased, then one would immediately have an O(n2) bound on the length of
T #. Unfortunately, though φ(t) mostly decreases, the daemon can get lucky.
But we will show that in order for the daemon to get the potential function to
increase, the daemon must run the risk that T # ends.

Definition 4. Let A(t) denote the subset of nodes tapped by the daemon at
time t.
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Note that at time t, each node in A(t) is privileged for S′. We may assume
that no node of A(t) is in B(t) − P , since that node would become dead, thus
terminating T #.

Observation 4. We may assume that the subgraph induced by A(t) is connected.

Proof. Since the daemon is trying to make the interval T # as long as possible,
one may assume that if one step can be split into two independent steps that
are equivalent, the daemon does so. So if the subgraph induced by A(t) were not
connected, the daemon would tap the different components in consecutive steps.

If all nodes in A(t) execute Rule BitToss, then it is possible for there to be no
change (all coins come up 1). However:

Observation 5. We may assume that every step results in a change in the
global state.

Proof. Recall that the daemon is adversarial. It follows that if A(t) was the
correct choice for the daemon the first time, and nothing changed, it is the
correct choice the next time. And if nothing changes then, it is the correct
choice again. Since the probability of nothing changing is at most 1

2 (actually it
is smaller), the expected number of steps before there is a global change is 2. So,
for a constant factor of 2 in the analysis, we may assume that every step results
in a change in the global state.

Lemma 6. If A(t) ⊆ B(t) but not all of a component of H(t), then the potential
function φ decreases.

Proof. Every node of A(t) executes Rule BitToss. Since A(t) is not all of a com-
ponent of H(t), m(t) cannot decrease. On the other hand, q(t) decreases unless
every node has its coin come up 1; that possibility is taken care of by Observa-
tion 5. The result follows.

Lemma 7. If A(t) �⊆ B(t), then the potential function φ decreases.

Proof. Then A(t) contains a node i of P − B(t). The node i has b(i) = 0 and
such a node is privileged only if all its neighbors have a clear b-bit. Since the
subgraph induced by A(t) is connected, it follows that every node in A(t) and
all their neighbors have clear bits. Further, in the step, each node in A(t) sets
its b-bit, and thus A(t) forms a new component of H(t +1). It follows that m(t)
increases while q(t) increases by at most n; thus φ decreases.

If the hypotheses of the above two lemmas do not hold, then A(t) is all of
a component of H(t). In this case, all of A(t) execute Rule BitToss. Note that
|A(t)| ≥ 2, since otherwise the single tapped node would be stuck.

Lemma 8. Suppose A(t) is all of a component of H(t). Suppose |A(t)| = y and
that z nodes’ coin tosses come up so that they remain with bit set. (We assume
z = y does not occur, by Observation 5.)

(a) If 2 ≤ z < y, then φ decreases.
(b) If z = 0, then φ increases by less than n.
(c) If z = 1, then T # ends.
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Proof. Note that q(t + 1) = q(t) − (y − z).

(a) Assume 2 ≤ z < y. In this case, no component disappears, and indeed,
the component A(t) might split; it follows that m(t) does not decrease while q(t)
does decrease. Thus φ decreases.

(b) Assume z = 0. In this case, q(t) decreases by y, but the component A(t)
of H(t) disappears, so that m(t + 1) = m(t) − 1. It follows that φ increases by
less than n.

(c) Assume z = 1. In this case, the node which remains with bit set becomes
stuck, and T # ends.

We call the three cases of Lemma 8 Events (a), (b) and (c).

Lemma 9. The probability of Event (c) is at least twice the probability of Event (b).

Proof. Since the coin tosses are independent, in any one step, the chance of
Event (c) is y2−y, while the chance of Event (b) is 2−y. If we adjust for excluding
the possibility of z = y, both probabilities are divided by 1 − 2−y, so their ratio
remains y. The result follows since y ≥ 2.

Finally, before we are able to bound the length of T #, we need to introduce
a simple gambling game.

A Gambling Game
Consider a gambling game defined as follows. Let ψ0 and x be positive inte-
gers, and α a number between 0 and 1. Consider a person Damon who starts
a gambling game with ψ0 chips. At each step Damon pays 1 chip and has two
choices:

– He can choose to not gamble. In this case the step ends.
– He can choose to gamble. In this case he tosses a coin: if the coin comes up

heads, he gains x+1 chips; but if it comes up tails, the game ends. The coin
comes up heads with probability α.

The game ends when either the coin comes up tails or Damon runs out of money.
Damon’s goal is to maximize the length of the game.

Lemma 10. Under optimal strategy by Damon, the expected length of the gam-
bling game is ψ0 + xα/(1 − α).

Proof. Suppose that if Damon were to take the coin and toss it repeatedly, then
it would come up heads L times before coming up tails. Then, no matter what
Damon does, the game will last at most ψ0 +Lx steps. On the other hand, there
is a simple strategy that guarantees the game lasts this long: Damon should wait
until having only 1 chip left each time to gamble.

Since L is a geometric random variable, the expected value of L is α/(1 − α).
It follows that the expected length of the game is at most ψ0 + xα/(1 − α), and
Damon can achieve this by gambling only when he has 1 chip left.
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Lemma 11. For Algorithm 1, consider amaximal interval T # such that Rule Step
is not executed and no node becomes dead or stuck. Then the expected length of
T # is at most O(n2) steps, no matter the daemon’s choices.

Proof. By Lemmas 6 and 7, the potential function φ always decreases unless
A(t) is a component of H(t). Call such a choice of A(t) a component choice .
Say y = |A(t)| and z nodes keep their bit set.

Now, suppose we give the daemon further powers; this can only make the
daemon’s job easier. We give the daemon the power to partially choose the
future with a component choice. Specifically, the daemon can choose whether
Event (a) occurs or not; that is, he can choose whether z ≥ 2 or not. We define a
gamble as the event that the daemon chooses that z is to be less than 2. (Note
that if y = 2 then a component choice is automatically a gamble.)

It follows that the expected length of T# is at most the expected length of
the gambling game for Damon playing optimally, with the following parameters.
The total number of coins is ψ0 = n2 + 2n, the difference between the upper
and lower extremes of the potential function. The chance of success α is the
conditional probability of Event (b) given that it is not Event (a), which is at
most

max
y≥2

2−y/(2−y + y2−y) = max
y≥2

1/(1 + y) = 1/3.

And the increase if lucky is (at most) x = n.
So by Lemma 10, the expected length of T # is at most n2 + O(n).

Theorem 1. Any algorithm S that self-stabilizes under an unfair central dae-
mon can be converted to a randomized one S′ that self-stabilizes under an unfair
distributed daemon, using constant extra space, without IDs, and with at most
O(n3) expected slowdown.

Proof. Since T is divided into at most n such intervals T # (see Observation 3),
it follows that the expected length of T is at most O(n3). This establishes the
theorem.

We suspect that the above analysis can be improved to show that the slow-
down is at most O(n2).

2.3 Conclusion

These results reaffirm that in the deterministic ID-based shared-variable model,
all daemons are equally powerful. The same result holds in link-registers, since
link-registers and shared-variable are equivalent in ID-based networks.

The interesting question is of comparing the power of daemons in determin-
istic anonymous networks. A distinguished node (root) and link-registers suffice
to allow leader election and thus the assigning of IDs, and hence daemons are
equally powerful. However, without a root, in both the link-register and uni-
form shared-variable case, the results of [8,7] and others on rings show that the
distributed and central daemon have different powers.
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Abstract. We propose the first snap-stabilizing wave algorithm for ano-
nymous networks. In the worst case, a process decides in O(n + D) time
units, where n and D are the number of process and the diameter of
the network, respectively. The proposed algorithm uses a self-stabilizing
underlying unison protocol. If the underlying unison is stabilized when
a process request a wave, then a decide event occurs in an optimal time,
i.e., O(D) time units. The proposed solution is generic in the sense that,
it can be used for any static or dynamic scheme which is feasible in
an anonymous network. In particular, as an application of our scheme,
we provide a snap-stabilizing causal atomic broadcast for anonymous
networks, which can be used as a pipeline of messages.

1 Introduction

Wave algorithms (or, Total algorithms) [16] are widely used as the basis to solve
many network control problems. A wave algorithm is a distributed algorithm
where the participation of all processes in the network is required before a par-
ticular event, called a decision, is taken. Wave algorithms include well-know and
basis schemes of distributed systems such as Spanning Tree Construction (STC),
Token Circulation (TC), Propagation of Information with Feedback (PIF), etc.
Wave algorithms are also related to message broadcasting [13]. They are often
designed to be executed either only once or infinitely often. In the former case,
they leads the whole system toward a fixed point and are said to be static. They
mainly refer to STC algorithms. In the latter case (TC and PIF) are said to be
dynamic. Solutions to these basic problems can then be used as the basis for the
solution to a wide class of problems in distributed computing, mainly in order to
improve the coordination of the processes. So, designing efficient fault-tolerant
wave algorithms is an important task in the distributed computing research.

The concept of self-stabilization [9] is a general technique to design a system
to tolerate arbitrary transient faults. A self-stabilizing system, regardless of the
initial states of the processors and initial messages in the links, is guaranteed
to converge to the intended behavior in finite time. Snap-stabilization was first
introduced in [4]. A snap-stabilizing protocol guarantees that the system always

� This research is supported in part by Région Picardie (France), Project “APREDY”.
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maintains the desirable behavior. In other words, a snap-stabilizing algorithm is
also a self-stabilizing algorithm that stabilizes in 0 steps. Obviously, any snap-
stabilizing protocol is optimal in terms of the worst-case stabilization time.

Related Works. Many self-stabilizing wave algorithms for arbitrary networks
have been proposed in the literature, e.g., [1,7,10,14,15]. Snap-Stabilizing wave
algorithms for arbitrary networks are given in [5,6]. All the above solutions
assume the existence of a particular process called the root. Waves algorithms and
their applications in anonymous networks are discussed in [16,17]. Among the
numerous results in [16,17], the author shows that there exists no wave algorithm
for anonymous arbitrary networks with no bound on the diameter. The solutions
in [16,17] are not stabilizing. In [11], the author propose the first self-stabilizing
wave algorithms for anonymous networks. The waves algorithms in [11] are based
on r-operators which are general tools ensuring the global convergence of the
system toward a fixed point. Such protocols for anonymous networks are also
proposed in [12,8]. None of the above solution is snap-stabilizing.

Contributions. In this paper, we propose the first snap-stabilizing wave algo-
rithm for anonymous networks. Our solution is based on the fundamental alge-
braic properties which were used in the design of the unison developed in [3].
In the worst case, a process decides in O(n + D) time units, where n and D
are the number of process and the diameter of the network, respectively. If the
underlying unison is stabilized when a process request a wave, then a decide
event occurs in optimal time, i.e., O(D) rounds1.

The proposed solution is generic in the sense that, it can be used for any static
or dynamic scheme which is feasible in an anonymous network. In particular,
as an application of our scheme, we provide a snap-stabilizing causal atomic
broadcast for anonymous networks. Our broadcast protocol can be used as a
pipeline (or, stream) of messages, i.e., several messages can be launched at each
clock pulse, and thereby, minimize the latency, i.e., the time required between
the sending of two successive messages. It also keeps the order in which the
messages are sent.

Paper Outline. The remainder of the paper is organized as follows. We formally
describe notations, definitions, and the execution model in Section 2. In the same
section, we also state what it means for a protocol to be snap-stabilizing. The
problem considered in this paper followed by the solution and its correctness
proof are given in Section 3. The snap-stabilizing causal atomic broadcast is the
purpose of Section 4. Finally, we make some concluding remarks in Section 5.

2 Preliminaries

Distributed System. A distributed system is an undirected connected graph,
G = (V, E), where V is a set of nodes—|V | = n, n ≥ 2—and E is the set
1 We use the term of round in order to compute the time complexity — refer to [6,10]

for its definition.
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of edges. Nodes represent processes, and edges represent bidirectional commu-
nication links. A communication link (p, q) exists iff p and q are neighbors. D
denote the diameter of the network. The distributed system is considered to be
arbitrary and anonymous, i.e., we consider no particular topology nor unique
identifiers on processes. The set of neighbors of every process p is denoted as Np.
The degree of p is the number of neighbors of p, i.e., equal to |Np|. The distance
between two processes p and q, denoted by d(p, q), is the length of the shortest
path between p and q.

The program of a process consists of a set of registers (also referred to as
variables) and a finite set of guarded actions of the following form: < label >::
< guard > →< statement >. Each process can only write to its own registers,
and read its own registers and registers owned by the neighboring processes.
The guard of an action in the program of p is a boolean expression involving the
registers of p and its neighbors. The statement of an action of p updates one or
more registers of p. An action can be executed only if its guard evaluates to true.
The actions are atomically executed, meaning the evaluation of a guard and the
execution of the corresponding statement of an action, if executed, are done in
one atomic step.

The state of a process is defined by the values of its registers. The configuration
of a system is the product of the states of all processes. Let a distributed protocol
P be a collection of binary transition relations denoted by �→, on Γ , the set of all
possible configurations of the system. P describes an oriented graph S = (Γ, �→),
called the transition graph of P . A sequence e = γ0, γ1, . . . , γi, γi+1, . . . is called
an execution of P iff ∀i ≥ 0, γi �→ γi+1 ∈ S. A process p is said to be enabled
in a configuration γi (γi ∈ Γ ) if there exists an action A such that the guard
of A is true in γi. We consider that any enabled processor p is neutralized in
the computation step γi �→ γi+1 if p is enabled in γi and not enabled in γi+1,
but does not execute any action between these two configurations. (The neutral-
ization of a processor represents the following situation: At least one neighbor
of p changes its state between γi and γi+1, and this change effectively made
the guard of all actions of p false.) We assume an unfair and asynchronous
distributed daemon. Unfairness means that even if a processor p is continu-
ously enabled, then p may never be chosen by the daemon unless p is the only
enabled processor. The asynchronous distributed daemon implies that during
a computation step, if one or more processors are enabled, then the daemon
chooses at least one (possibly more) of these enabled processors to execute an
action.

Events, Causal DAG’s and Cuts.

Definition 1 (Events). Let γ0γ1 . . . be a finite or infinite execution. For all
p ∈ V, (p, 0) is an event. Let γt �→ γt+1 be a transition. If the process p executes
a guarded action during this transition, we say that p executes an action at time
t + 1. The pair (p, t + 1) is said to be an event (or a p-event). Events so that
the guard does not depend on the shared registers of any neighbor are said to be
internal.
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Definition 2 (Causal DAG). The causal DAG associated is the smallest re-
lation � on the set of events such that the following two conditions hold: (1)
Let (p, t) and (p, t′) be two events such that t > t0, t′ is the greatest integer such
that t0 ≤ t′ < t. Then, (p, t′) � (p, t); (2) Let (p, t) and (q, t′) be two events such
that (p, t) is not an internal event, q ∈ Np, t > t0, and t′ is the greatest integer
such that t0 ≤ t′ < t. Then, (q, t′) � (p, t).

Denote the causal order on the sequence γ0γ1 . . . by �. Relation � is the reflexive
and transitive closure of the causal relation �. The past cone of an event (p, t)
is the causal-DAG induced by every event (q, t′) such that (q, t′) � (p, t). A past
cone involves a process q iff there is a q-event in the cone. We say that a past
cone covers V , iff every process q ∈ V is involved in the cone. The cover of an
event (p, t), denoted by Cover(p, t), is the set of processes q covered by the past
cone of (p, t).

Definition 3 (Cut). A cut C on a causal DAG is a map from V to N, which
associates a process p with a time tCp . We mix this map with its graph: C =
{(

p, tCp
)
, p ∈ V

}
.

The past of C, denoted by ]←, C], is the set of events (p, t) such that t ≤ tCp .
Similarly, we define the future of C, denoted by [C, →[, as the set of events (p, t)
such that tCp ≤ t. A cut is said to be coherent if (q, t′) � (p, t) and (p, t) �

(
p, tCp

)
,

then (q, t′) �
(
q, tCq

)
. A cut C1 is less than or equal to a cut C2, denoted by

C1 � C2, if the past of C1 is included in the past of C2. If C1 and C2 are coherent
cuts such that C1 � C2, then [C1, C2] is the induced causal DAG defined by the
events (p, t) such that

(
p, tC1

p

)
� (p, t) �

(
p, tC2

p

)
. A sequence of events is any

segment [C1, C2] where C1 and C2 are coherent cuts satisfying C1 � C2. Any
event of C1 is called an initial event.

Snap-Stabilization. Let X be a set. x 
 P means that an element x ∈ X
satisfies the predicate P defined on the set X .

Definition 4 (Snap-stabilization). The protocol P is snap-stabilizing for the
specification SPP on E if and only if the following condition holds: ∀γ ∈ C :
∀e ∈ Eγ :: e 
 SPP .

Remark 1. To prove that an algorithm is a snap-stabilizing wave algorithm, we
need to show that: (1) Starting from any arbitrary configuration, if a process p
needs to initiate a wave, then p initiates it in a finite time; (2) Starting from
a configuration where a process p initiates a wave, then the protocol works
according to its specification.

3 Snap-Stabilizing Waves in Anonymous Networks

3.1 Problem Definition

The problem is formally defined in [16,17]. It is specified for non-faulty environ-
ments, implying that at least one process initiates the algorithm. The following
definition is similar as in [16,17], except that the initialization is formally stated.
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Definition 5 (Wave). A computation e = γ0, . . . , γi, γi+1, . . . is a wave iff the
following condition holds:

If a process p requests a decision in γ0 �→ γ1, then:

[DECISION] there exists t > 0 and a process p′ such that p′ decides in the tran-
sition γt−1 �→ γt, and
[TERMINATION and DEPENDENCY] for each process q, there is a finite num-
ber of transitions γi−1 �→ γi (i ∈ [0, t]) of e in which q executes an action of which
the decision made by p′ depends on.

3.2 Algorithm

Algorithm SWT is formally described in Algorithm 3.1. According to the result
in [16,17], each process knows D, an upper bound of the actual diameter. Let us
consider the overall system architecture of our solution. The system is made of
three layers: The lower layer is the unison in [3], the middle layer is the Wave
Toolbox (Algorithm SWT , described in this paper), and the upper layer is an
application. Note that it is not required for the application layer to have the
knowledge of the underlying unison. The toolbox being snap-stabilizing, it must
guarantee that each requested wave computation eventually receives the correct
result.

The description of Algorithm 3.1 requires that we first borrow some definitions
and basic properties from [3]. Let Z be the set of integers and K be a strictly
positive integer. Two integers a and b are said to be congruent modulo K, denoted
by a ≡ b[K] if and only if ∃λ ∈ Z, b = a + λK. Denote ā the unique element
in [0, K − 1] such that a ≡ ā[K]. Define min(a − b, b − a) as the distance on the
torus [0, K − 1] denoted by dK(a, b) . Two integers a and b are said to be locally
comparable if and only if dK(a, b) ≤ 1. We then define the local order relationship
≤l as follows: a ≤l b

def⇔ 0 ≤ b − a ≤ 1. If a and b are two locally comparable
integers, we define b � a as follows: b � a

def= if a ≤l b then b − a else − a − b.
Let X be the set {−α, . . . , 0, . . . , K − 1}, where α is a positive integer. Let ϕ

be the function from X to X defined by: ϕ(x) def= if x ≥ 0 then x + 1 else x+1.
The pair (X , ϕ) is called a finite incrementing system. Let tailϕ = {−α, . . . , 0}
and ringϕ = {0, . . . , K −1} be the sets of “extra” values and “expected” values,
respectively. The set tail∗ϕ is equal to tailϕ \ {0}. A reset on X consists in
enforcing any value of X to −α.

In Algorithm 3.1, each process p maintains a clock register p.r using an incre-
menting system (X , ϕ) such that:

1. α is greater than or equal to TG (upperbounded by n) to ensure the stabi-
lization of the underlying unison [3], where TG is the size of the greatest hole
of G, i.e., the length of the longest chordless cycle of G if G contains cycle,
2 otherwise (G is acyclic);

2. K is greater than 3D +5 — this lowerbound is explained later. Note that K
must be greater than CG to ensure the liveness of the underlying unison [3],
where CG is the cyclomatic characteristic of G, i.e., the smallest length of
the longest cycle in the set of all the cycle basis of G, 3 otherwise (G is
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Fig. 1. Principle of Algorithm 3.1

acyclic). Note that CG is upperbounded by min(n, 2D). So, K > 3D + 5
ensures the liveness of the unison.

Let us refer to Figure 1 to informally describe our main idea. Given a process
p, the underlying unison ensures that after p has successively executed 2D + 3)
times Action NA, every process q (�= p) successively executed at least D times
Action NA — shown in Subsection 3.3. So, to make sure that a decide event
causally depends on at least one event of each process, Process p is required to
execute at least 2D + 3 normal actions. However, there are two cases leading
Process p to sets its register p.r to 0: Process p sets p.r to 0 by executing either
(1) Action NA (p.r := ϕ(p.r) s.t. p.r = K), or (2) Action CA (p.r := ϕ(p.r)
s.t. p.r = −1). So, some neighbors of a process p with p.r = 0 can be confused
to know whether or not p participates to a normal computation — i.e., either p
ends (or masks) a reset propagation or p participates to a normal computation.
To avoid ambiguity and to make sure that p sets p.r to 0 by executing Action NA
only, the above counting (2D + 3 normal actions) starts only when p.r > D and
p.r ≤ K − 2D − 4. This explains why K is required to be greater than 3D + 5.

In order to handle the scheme described in Figure 1, we use the variable
Counterp ∈ {0 . . . 2D + 2}. Since the countdown is initialized executing Ac-
tion NA, it is enough to set it to 2D + 2 to count 2D + 3 normal actions.

We also need an extra variable, Requestp. Combined with Counterp, Requestp
is used to implement the synchronization interface between the application layer
and the Wave Toolbox. Requestp takes its value in {wait, in, out}. When the
application layer needs to launch a wave, the process running the application
layer sets Requestp to wait. Then, Algorithm SWT changes Requestp from
wait to in once the condition D < p.r ≤ K − 2D − 4 holds, i.e., the countdown
of normal action is initiated. Eventually, the application layer is granted to decide
when Counterp is equal to 0. On completion of the decision, the application layer
process sets Requestp to out.

Note that the resets do not disrupt this scheme: When a reset occurs (Ac-
tion RA), Resquestp is reset to wait. This has no effect on the application layer,
except that the process has to wait longer for the decide event. In the worst
case (i.e., resets are still propagated in the network), a process decides in α+K
rounds. Since α and K are of the order of n and D, respectively, the service time
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Algorithm 3.1. (SWT ) Snap-Stabilizing Wave for any process p

Constants and Variables:
Np: the set of neighbors of process p; p.r ∈ χ; Counterp ∈ {0 . . . 2D + 2};

Uses:
Requestp ∈ {wait, in, out};

Boolean Functions:
ConvergenceStepp ≡ p.r ∈ tail∗ϕ ∧ (∀q ∈ Np : (q.r ∈ tailϕ) ∧ (p.r ≤tailϕ q.r));
LocallyCorrectp ≡ p.r ∈ ringϕ ∧ (∀q ∈ Np, q.r ∈ ringϕ ∧ ((p.r = q.r)

∨ (p.r = ϕ (q.r)) ∨ (ϕ (p.r) = q.r)));
NormalStepp ≡ p.r ∈ ringϕ ∧ (∀q ∈ Np : (p.r = q.r) ∨ (q.r = ϕ(p.r)));
ResetInitp ≡ ¬LocallyCorrectp ∧ (p.r �∈ tailϕ);
Readyp ≡ (p.r > D) ∧ (p.r ≤ K − 2D − 4);

Actions:
NA : NormalStepp → p.r := ϕ(p.r);

if ((Requestp = wait) ∧ (Readyp))
then Counterp := 2D + 2; Requestp = in;
elseif ((Requestp = in) ∧ (Counterp > 0))
then Counterp := Counterp − 1;

CA : ConvergenceStepp → p.r := ϕ(p.r);
RA : ResetInitp → p.r := −α (reset); Requestp := wait;

Application layer (external rules):
Req : (Requestp = out) ∧ (Requested Wave) → Requestp := wait;
Res : (Requestp = in) ∧ (Counterp = 0) → < DECIDE > ; Requestp := out;

(i.e., the time to complete a requested wave) is in the worst case O(n + D). If
the underlying unison is stabilized when a process request a wave, then a decide
event occurs in optimal time, i.e., O(D) rounds.

3.3 Correctness Proof

In this subsection, we prove that Algorithm SWT is snap-stabilizing for the
wave specification. The proof outline is as follows: Using the notions of causal
DAG’s coherent cuts, we first show that each process can locally detect coherent
cuts, by the way, allowing detection of decide events. This result leads to the
prove the correctness of Algorithm SWT . Due to the lack of space, some of the
formal proofs are omitted.

Local detection of coherent cuts. In this subsection, we show that, given a
process p, starting from a configuration such that p.r is equal to any u greater
than D, if p executes 2D + 3 consecutive normal actions without setting p.r to
0, then the cut Cu+D+1 is well-defined and coherent.

Definition 6 (Normal Dependance Relation). Let (p, t) and (q, t′) be two
events. (q, t′) normally depend on (p, t) if (p, t)→(q, t′), and q executes Ac-
tion NA at time t′. We denote this normal dependency relation as follows:
(p, t) N→ (q, t′). Denote (p, t) ≤N (q, t′) if there is a normal actions path from
(p, t) to (q, t′).
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Definition 7 (N-Sequence). When a process p consecutively executes several
normal actions N→ (p, t0)

N→ (p, t1)
N→ . . .

N→ (p, tx), it executes an N -sequence.

In the sequel, we describe process behaviors in terms of N -sequence, and we
assume that no process sets its clock register to 0 — 0 can nevertheless be the
initial value.

Lemma 1. Let p and q be two neighboring processes. If p executes an N -sequence
N→ (p, t0)

N→ (p, t1)
N→ (p, t2) such that p.r is equal to u, u + 1, u + 2 in t0, t1,

t2, respectively, with ∀i ∈ {1, 2} : u + i �= 0, then between t0 and t2, q executes a
normal action (q, t′1) such that q.r = u + 1, and (p, t0) ≤N (q, t′1) ≤N (p, t2).

Proof. At time t0, q.r is equal to u − 1 or u. Let us assume by contradiction
that (q, t′1) does not exist. It means that at time t2, q.r = u + 2 although q.r is
equal to at most u. A contradiction. �

The following theorem directly follows by induction of Lemma 1 on the length
of an N -sequence:

Theorem 1. Let p and q be two neighboring processes. If p executes an N -
sequence N→ (p, t0)

N→ (p, t1)
N→ . . .

N→ (p, tx) with x ≥ 3 and such that p.r is
successively equal to u, u+1, . . . , u+x with ∀i ∈ {1, x}, u+ i �= 0, then between
t0 and tx, q also executes an N-sequence N→ (q, t′1)

N→ (q, t′2)
N→ . . .

N→ (q, t′x−1)
such that q.r is successively equal to u+1, . . . , u+x−1, and (p, t0) ≤N (q, t′1) ≤N

(q, t′x−1) ≤N (p, tx).

Theorem 1 establishes the link between the behavior of two neighboring pro-
cesses. By induction on the distance between p and any other process, Corollary 1
follows from Theorem 1:

Corollary 1. Let p and q be two processes, such that d(p, q) = k ≤ 1. If p

executes an N -sequence N→ (p, t0)
N→ (p, t1)

N→ . . .
N→ (p, tx) of length x with

x ≥ 1 + 2k and such that p.r is successively equal to u, u + 1, . . . , u + x with
∀i ∈ {1, x} , u + i �= 0, then between t0 and tx, q also executes an N-sequence
N→ (q, t′k) N→ (q, t′k+1)

N→ . . . (q, t′x−k) of length x−2k such that q.r is successively
equal to u + k, . . . , u + x − k, and (p, t0) ≤N (q, t′k) ≤N (q, t′x−k) ≤N (p, tx).

Now, let us prove that if p executes a particular N -sequence, then every process
reaches once the same clock value, designing a coherent cut. Lemma 2 follows
from Corollary 1:

Lemma 2. Let p and q be two processes. If p executes an N -sequence N→ (p, t0)
N→

(p, t1)
N→ . . .

N→ (p, t2D+3) such that p.r is successively equal to u, u+1, . . . , u+
2D+3 with ∀i ∈ {1, 2D + 3} , u+ i �= 0, then between t0 and t2D+3, there exists
t ∈]t0, t2D+3[ such that (q, t) is a normal action. At this time t, q.r = u+D +1,
and (p, t0) ≤N (q, t) ≤N (p, t2D+3).

Informally, if a process executes a normal action sequence of length 2D + 3,
every process reaches at least once the same value. Now, let us show that in a
particular case, this value is reached only once.
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Lemma 3. In Lemma 2, if D < u ≤ K − 2D − 4, then there exists a single
t ∈]t0, t2D+3[ such that: (1) (q, t) is a normal action, (2) at time t, q.r = u+D+1,
and (p, t0) ≤N (q, t) ≤N (p, t2D+3).

Proof. Assume by contradiction, that there exists two events (q, t) and (q, t′)
holding the 3 conditions. Assume that t′ < t. So, (q, t′) < (q, t), and during
the action sequence (q, t′) → . . . → (q, t), q.r necessarily reaches at least once 0
(following a reset, or by incrementation). Thus, in this actions sequence, there
exists an N -sequence (q, t′0) → . . . → (q, t) such that q.r is successively equal to
0, 1, . . . , u+D+1. Since u > D, this N -sequence is longer than 2D+1, meaning
from Corollary 1 that in ]t′0, t[ ⊂ ]t0, t2D+3[, p.r reaches D. This contradicts the
fact that p.r is successively equal to {u, u + 1, . . . , u + 2D + 3} in ]t0, t2D+3[. �

In the sequel, we assume that p executes an N -sequence N→ (p, t0)
N→ (p, t1)

N→
. . .

N→ (p, t2D+3) such that p.r is successively equal to u, u + 1, . . . , u + 2D + 3
with ∀i ∈ {1, 2D + 3} , u + i �= 0 and D < u ≤ K − 2D − 4 — recall that
K > 3D + 5. Now, let us define a coherent cut, according to the behavior of p.

We are now able to define a coherent cut as follows: For each q ∈ V , we denote
the event (q, tD+1

q ) as the single normal action (by Lemmas 2 and 3) executed by
q such that: (1) At time tD+1

q , q.r = u + D + 1, and (2) (p, t0) ≤N (q, tD+1
q ) ≤N

(p, t2D+3).
Since p executes an N -sequence of length 2D+3, by Corollary 1, each process

q executes an N -sequence N→ (q, tDq ) N→ (q, tD+1
q ) N→ (q, tD+2

q ) of length equal to

at least 3 such that (p, t0) ≤N (q, tDq ) N→ (q, tD+1
q ) N→ (q, tD+2

q ) ≤N (p, t2D+3).
Denote Cp,D+1 the cut

{
(q, tD+1

q ), p ∈ V
}
.

We now show that the cut Cp,D+1 is coherent for each couple of neighboring
processes. Next, we generalize that Cp,D+1 is coherent for any couple of processes.

Lemma 4. Let p1 and p2 be two neighbors. The cut Cp,D+1 is coherent for p1
and p2, which means that if (p2, t2) ≤ (p1, t

D+1
p1

) then (p2, t2) ≤ (p2, t
D+1
p2

).

Proof. If tD+1
p1

≤ tD+1
p2

, then the lemma trivially holds. Assume that tD+1
p1

>

tD+1
p2

. By definition of (p1, t
D+1
p1 ), the following N -sequence exists: (p1, t

D
p1

) N→
(p1, t

D+1
p1

) N→ (p1, t
D+2
p1 ). So, p2 executes a normal action denoted (p2, t

′) with
t′ ∈

]
tDp1

, tD+2
p1

[
such that q.r reaches value u + D + 1. By Lemmas 2 and 3,

(p2, t
′) = (p2, t

D+1
p2

). So, there exists: (p2, t
D
p2

) N→ (p2, t
D+1
p2

) N→ (p2, t
D+2
p2 ). Obvi-

ously, tD+2
p2 > tD+1

p1
. So, (p2, t2) < (p2, t

D+2
p2 ). Thus, (p2, t2) ≤ (p2, t

D+1
p2

). �

The following theorem follows by induction of Lemma 4:

Theorem 2. The cut Cp,D+1 =
{
(q, tD+1

q ), q ∈ V
}

is coherent, which means for
each pair (q0, q), if (q0, t0) ≤ (q, tD+1

q ) then (q0, t0) ≤ (q0, t
D+1
q0

).

It follows from Theorem 2 that every process is able to detect any coherent cut
by executing an N -sequence which is long enough, possibly after many resets.
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Algorithm SWT is Snap-Stabilizing. We first need the predicate WU over

the set of configurations, Γ , as follows: WU(γ)
def≡ ∀p ∈ V, ∀q ∈ Np : (p.r ∈

ringϕ) ∧ (|p.r − q.r| ≤ 1) in γ. In the sequel, we abuse notation, referring to
the corresponding set of configurations simply by WU . Since α ≥ TG and K >
3D + 5, the following lemma holds:

Lemma 5 ([3]). The following properties are true in every execution of Algo-
rithm SWT starting from any arbitrary configuration γ:

Closure: In every execution starting from a configuration γ such that WU(γ)
holds, then in every γ′ of any execution starting from γ, WU(γ′) holds.

Convergence: In every execution starting from an arbitrary configuration γ,
there exists a configuration γ′ such that WU(γ′) holds.

Liveness: In every execution starting from a configuration γ such that WU(γ)
holds, then every process p executes p.r := ϕ(p.r) infinitely often.

If a0, a1, a2, . . . ap−1, ap is a sequence of integers such that ∀i ∈ {0, . . . , p − 1},

ai is locally comparable to ai+1, then S =
p−1∑

i=0
(ai+1 � ai) is the local variation

of this sequence. In WU , the clock registers of neighboring processes are locally
comparable. Define the delay on a path μ = p0p1 . . . pk, denoted by δμ, as the

local variation of the sequence p0.r, p1.r, . . . , pk.r, i.e., δμ =
k−1∑

i=0
(pi+1.r �l pi.r)

if k > 0, 0 otherwise (k = 0). The delay between two processes p and q is said
to be intrinsic if it is independent on the choice of the path from p to q. The
delay is intrinsic iff it is intrinsic for every p and q in V . It is shown in [3] that
if K > CG, then the delay is intrinsic. In that case, the intrinsic delay defines
a total preordering on the processes in V , so called precedence relation. Given a
configuration in WU , the absolute value of the delay between two processes p
and q is equal to or less than the distance d(p, q) in the network. Let γ0γ1 . . . be
an infinite execution starting in WU . Let p0 be a maximal process, according to
the precedence relation for γ0. Let ⊥0 = p0.r at time 0.

We now borrow the following theorem from [2]:

Theorem 3 ([2]). Let u ≥ ⊥0 + D. If Cu+δ is a set of decide events, then
[Cu, Cu+δ], δ ≥ D, is a wave.

We are now ready to prove our final result w.r.t. Remark 1. From the algorithm
and Lemma 5, we can easily show the following lemma:

Lemma 6. In every execution starting from any arbitrary configuration γ, ∀p ∈
V , Requestp is infinitely often equal to out.

From Theorem 3, Theorem 2, Lemma 6, Lemma 5 and Remark 1, the following
theorem holds:

Theorem 4. Algorithm 3.1 (SWT ) is a snap-stabilizing Wave Protocol.
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4 Snap-Stabilizing Causal Atomic Broadcast

In this section, we show how to use Algorithm 3.1 as a basis to build a snap-
stabilizing causal atomic broadcast protocol for anonymous arbitrary networks.
We first define the problem to be solved, and then, we describe our solution.

Problem Statement
The Causal Atomic Broadcast (CAB) is to design a protocol so that the follow-
ing properties are true in every execution [13]:

Total Order: If two processes p and q both deliver two messages m1 and m2,
then p delivers m1 before m2 if and only if q delivers m1 before m2.
Causal Order: If the broadcast of a message m1 causally precedes the broadcast
of a message m2, then no process deliver m2 unless it has previously delivered m1.

Snap-Stabilizing CAB Protocol. The principle of our solution, in the remain-
der referred to as Algorithm SCAB, is as follows: In addition of the registers used
by Algorithm 3.1, each process p maintains a set of messages into the register
p.M . When a process p needs to broadcast a message m (requested by the appli-
cation using the broadcast protocol), p adds m to p.M — p.M := p.M ∪ {m}.
Each time p executes its normal action, while getting the values of its neighbor
phase clocks, p stores the (new) messages received from its neighbors into p.M —
p.M := p.M

⋃
q∈Np

q.m. During a transition γt �→ γt+1, p delivers the messages
to the application layer belonging to the message sets of its neighbors which are
not in its own message set, i.e., messages in

⋃
q∈Np

q.m \ p.m.
Clearly, the above simple principle provides an efficient message broadcasting.

However, since messages are infinitely often added to the message sets, each
process requires an infinite amount of memory. A straightforward solution to
deal with this problem is that each process p removes the delivered messages
from p.M . But an earlier elimination of messages could caused loss of messages
and multiple delivering. Notice that Algorithm 3.1 ensures that between two
coherent cuts [Cu, Cu+D], any broadcasted messages has been received by every
process of the system. In other words, each process must remain each message
during at least two coherent cuts. This can be achieved by marking each message
with the phase number when the broadcast is initiated.

So, we modify the above principle by marking each message m added to p.M
with a stamp xm equal to p.r. This allows each p to remove every messages m in
p.M such that xm satisfies xm − p.r > D. Note that, due to the unpredictable
initial configurations and transient errors, p.M may contains incorrect messages.
Since the range of xm ∈ ringϕ, this mechanism also ensures that after having ex-
ecuted D normal action, the set of messages is cleaned up of incorrect messages.

Clearly, properties of both causal and total order are guaranteed by the un-
derlying unison. Furthermore, since our protocol is based on Algorithm 3.1, from
Theorem 3, Theorem 2, and Theorem 4, the following theorem holds:

Theorem 5. Algorithm SCAB is a snap-stabilizing Causal Atomic Broadcast
protocol.
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5 Conclusion

We proposed two snap-stabilizing protocols for anonymous networks. The former
is a generic wave algorithm. It can be used for any static or dynamic schemes
which is feasible in an anonymous network. The latter protocol is a causal atomic
broadcast, which can be used as a pipeline of messages.
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Abstract. Switching between protocols based on environment is an elegant idea
of enabling adaptation in distributed systems. Also self-stabilizing algorithms
have been proposed as a mechanism to handle transient failures in distributed
systems. In this work we illustrate self-stabilizing distributed protocol switching
by proposing a self-stabilizing algorithm for dynamically switching between a
BFS tree and a DFS tree. At low network load, the BFS tree may be used for
broadcasting messages since it also minimizes delay. At higher network load, the
DFS tree may be used to reduce the load on any one node. Both trees are rooted
at the common broadcast source. Different properties relating to the delivery of
broadcast messages under different failure conditions are investigated.

Keywords: self-stabilization, protocol switching, BFS tree, DFS tree, broadcast.

1 Introduction

The performance of a distributed system depends on its environment. However, the
environment may change with time. So it is necessary for a distributed system to be
adaptive under changing environments. Adaptation can be achieved in various ways, by
modifying the runtime parameters of the algorithm [1] or by incorporating the ability to
adapt directly into a system [2]. However these techniques are less general and often ap-
plication specific. In many distributed systems, it may happen that the same problem has
multiple protocols, each of which performs differently under different environments. In
such cases adaptation can be achieved by dynamically switching between them as the
environment changes.

A self-stabilizing system [3] can start in an arbitrary initial state and still converge
to some desired legitimate state in finite time. Such a property is desirable for any
distributed system, because after any unexpected perturbation such as a transient failure,
the system eventually recovers and returns to a legitimate state without any outside
intervention.

In this paper, we illustrate self-stabilizing distributed protocol switching by propos-
ing a self-stabilizing distributed algorithm for switching from a BFS tree to a DFS tree.
The switching from a DFS tree to a BFS tree is similar and is omitted in this paper.
Topology of a distributed system is often used by various applications like routing,
broadcasting etc. BFS tree and DFS tree are two well known topologies. At low net-
work load, a BFS tree may be used for broadcast as it reduces the broadcast delay since
the path length from the root of the BFS tree to any other node is always minimum.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 203–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



204 S. Karmakar and A. Gupta

However at higher load, a DFS tree may be used to reduce the load on any one node
since the degree of a node in a DFS tree is generally lower than that in a BFS tree.
Therefore the system can adapt to the network load, which is dynamically changing, by
dynamically switching between a BFS tree and a DFS tree. In fact, the algorithm will
work for switching between any two spanning trees of the network. Also the different
guarantees that can be provided on the delivery of broadcast messages during switch-
ing and under different failure conditions are investigated. More specifically we show
that under no failure, each broadcast message is correctly delivered to all the nodes in
spite of switching. For arbitrary failure, the switching eventually completes with the
proper tree as the output. The broadcast properties that can be guaranteed under limited
transient failure (single fault) are also investigated.

Bar-Noy et al. [4] proposed a method of dynamically changing between different
byzantine agreement protocols. Arora et al. [5] proposed a method to switch from one
state to another in a distributed system without requiring a global freeze. Liu et al. [6]
described a method to build a hybrid protocol which adapts by dynamically mapping
the state of a process in one protocol to the state in another. Mocito and Rodrigues [7]
proposed an algorithm that dynamically switches between different total order algo-
rithms with negligible interference to the data flow. Jain et al. [8] proposed a method of
switching between two connected dominating sets while always maintaining some con-
nected dominating set of the network. Karmakar and Gupta [9] proposed a distributed
algorithm for dynamically switching between a BFS tree computation protocol and a
DFS tree computation protocol. They also ensured that each broadcast message is cor-
rectly delivered to all the nodes in spite of switching. However the algorithm proposed
in [9] is not fault-tolerant. In [10], they proposed a fault-tolerant version of the protocol
that can tolerate arbitrary crash faults. This paper discusses the self-stabilizing aspect
of distributed protocol switching, and investigates the effect of transient failures on the
delivery of broadcast messages under protocol switching.

The rest of the paper is organized as follows. Section 2 contains the system model.
Section 3 describes the self-stabilizing algorithm for distributed protocol switching and
presents an outline of the proof of correctness of the protocol and its properties.

2 System Model

The system is modeled as a connected graph G(V, E) where V is the set of nodes
and E is the set of edges. Each node has a unique identifier. For ease of exposition it is
assumed that each node can read from each neighbor in its 2-hop neighborhood, but can
modify only its own variables. The algorithm can be easily changed (using the scheme
proposed in [11]) to work in a model in which a node can only read the state of its 1-hop
neighbors. Each node i maintains a FIFO buffer Bi for sending messages. Whenever
node i intends to send a broadcast message it places the message in the buffer. Similarly
whenever node i wants to receive the broadcast messages sent by its parent j, it reads
Bj . This simulates the broadcast of a message. For simplicity, the buffer size is assumed
to be infinite in this paper. The buffer may become corrupted due to a transient failure.
The fault model assumes the transient failure of a node. Three different time parameters
are defined for such failures. Ts is the time when the faulty behavior of a node starts,
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Tss is the time when the faulty behavior of the node stops, and Tr is the time when the
faulty node recovers from the failure (i.e. legitimate state is reached). The behavior of
the faulty node between Ts and Tss can be arbitrary. Each node executes a program.
The program for a node is specified using guarded statements of the form G → A
where G is the guard, and A is the action. The action A is executed if and only if G is
true. So the program at any node i contains a sequence of statements {S1, S2, . . . , Sn}
where each Sj is of the form G → A. The j-th statement of the program at node i is
denoted by Sj(i). The guard corresponding to Sj(i) is denoted by Gj(i) and the action
corresponding to Sj(i) is denoted by Aj(i).

3 Self-stabilizing Distributed Protocol Switching

Let Ni denote the neighbors of each node i ∈ V . Each node i maintains a binary
variable bi and an integer variable T i

M . Both bi and T i
M may become corrupted due

to transient failure. Let max(Bi) denote the index of the last message placed in the
message buffer of i. When node i wants to read n broadcast messages from the mes-
sage buffer of j, node i executes a function read(Bj , n). The function reads n topmost
messages from the buffer of j.

Let T be a BFS tree of G rooted at a node r. Let T ′ be a DFS tree of G rooted at
the same node r. Also let there exist a third spanning tree T ′′ of G rooted at r. T ′′ can
be any spanning tree of G including T and T ′. These spanning trees are assumed to be
fixed and known apriori. If bi = 1 then node i uses T for broadcast. Similarly if bi = 0
then i uses T ′ for broadcast. Ideally each node i in the graph should have the same bi

so that each node uses the same tree for broadcast of messages. At root node r, br is
assigned as a function of the overall load on the network which is monitored using the
spanning tree T ′′. Let this function be defined by f(L). Based on the overall load of
the system, the root node r initiates the use of a particular tree. The spanning tree T ′′ is
used to propagate br to all other nodes. Let pi denote the parent of i in the spanning tree
T ′′. Let U(i) denote the predicate bi �= bpi . Let Ci denote the set of children of node
i in the spanning tree T ′′. Let X(i) ≡ U(i) ∧ [(∀j ∈ Ci)¬U(j)] ∧ ¬U(pi). For root
node X(i) ≡ U(i) ∧ [(∀j ∈ Ci)¬U(j)] whereas for leaves X(i) ≡ U(i) ∧ ¬U(pi).
Let i be a node such that X(i) = true. Clearly X(i) = true at a node i if i is about
to switch from one protocol to another. Such switches must be controlled so that in the
absence of any failure, each broadcast message is correctly delivered to all the nodes. To
ensure this, each broadcast message transmitted using protocol P1 at each j ∈ {i}∪Ni

should happen before the switching at i from P1 to P2 . Similarly messages transmitted
using protocol P2 at each j ∈ {i} ∪ Ni should happen after the switching at i from
P1 to P2. In this work, P1 is the BFS tree and P2 is the DFS tree. Let Y (i) ≡ (∀j ∈
Ni)[(T

j
M ≥ T i

M )]. Let p(bi) denote the parent of i according to the current value of
bi. The protocol for any node i is given in Figure 1. Let this protocol be denoted by Q.
Statement S1 and S2 along with S5 and S6 control the flow of broadcast messages under
no failure. However an error in bi at i may propagate along the spanning tree T ′′. So in
an intermediate state some of the nodes will use T for broadcast whereas some other
nodes will use T ′, and therefore some nodes may send broadcast messages erroneously.
To reduce the number of messages broadcast erroneously, it is necessary to contain the
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(S1) X(r) ∧ Y (r) → br = f(L)

(S2) X(i) ∧ Y (i) → bi = bpi

(S3) ¬X(r) ∧ br �= f(L) → br = f(L)

(S4) ¬X(i) ∧ U(i) ∧ ¬U(pi) → bi = bpi

(S5) ¬U(i) ∧ T i
M �= max(Bi) → T i

M = max(Bi)

(S6) ¬U(i) ∧ (∀j ∈ Ni)(bj = bi) ∧ T i
M = max(Bi)

∧ T
p(bi)
M = max(Bp(bi)) ∧ (T i

M < T
p(bi)
M )

→ read(Bp(bi), T
p(bi)
M − T i

M )

Fig. 1. Protocol Q: fault-containing self-stabilizing distributed protocol switching

propagation of faults. In this paper we contain the propagation of a single fault. This is
done by statement S3 and S4. The fault is repaired by the faulty node itself and in this
process only the faulty node and its neighbors make a constant number of moves. The
legitimate state of the protocol is given by the following definition.

Definition 1. At legitimate state, the protocol Q is in a state where U(i) is false at each
i and Y (i) is true at each i.

It can be proved that the protocol is self-stabilizing and satisfies the property that under
no failure each broadcast message is correctly delivered to all the nodes. Also some
additional broadcast properties can be guaranteed under single transient failure.

3.1 Outline of Proof of Correctness

Lemma 1. If no guard of Q is enabled then for all i, U(i) is false.

Proof. Since no guard of Q is enabled, G2(i) and G4(i) are both false at each node i.
Now X(i) can be either true or false. Let X(i) = true at some i. If Y (i) = true then
G2(i) = true, which is a contradiction. Again if Y (i) = false then ∃j ∈ Ni : T j

M <
T i

M . There can be the following subcases.

Subcase 1: j has not switched and bj = bi. In this case, if T j
M = T i

M then obviously
this is a contradiction. If T j

M �= T i
M then T j

M < T i
M and j must be a descendant of

i in T ′′. Suppose k ∈ Ci in T ′′ and T k
M < T i

M . By G5(k), T k
M = max(Bk). Also

by G5(i), T i
M = max(Bi). So by G6(k), k will read each broadcast message from

p(bk) when none of the neighbors of k have switched (i.e. ∀x ∈ Nk : bk = bx). So
eventually T k

M = T i
M . Applying similar argument for x where x ∈ Ck in T ′′, we

can argue that eventually T j
M = T i

M where j is a descendant of i in the spanning
tree T ′′. This is again a contradiction.

Subcase 2: j has switched and bj = bpi . So j must have executed A2(j). So Y (j) must
have been true. So (∀k ∈ Nj)T k

M ≥ T j
M . Since i ∈ Nj , T i

M ≥ T j
M . But before
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switching of j, bj = bi. Hence T i
M = T j

M . Since T j
M increases monotonically

based on the receive of a message, therefore after switching of j, T j
M ≥ T i

M . This
is a contradiction.

So eventually Y (i) = true . If Y (i) = true then G2(i) = true, which is a contradic-
tion. So X(i) cannot be true at any i. So X(i) must be false at each i. So U(i) ∧ (∀j ∈
Ci)¬U(j) ∧ ¬U(pi) is false at each i. Hence U(i) must be false at each i. ��

Lemma 2. If no guard of Q is enabled then for all i, Y (i) is true.

Proof. By Lemma 1, U(i) = false at each i. Let there be a node i such that Y (i) =
false. So ∃j such that G5(j) = true or G6(j) = true. This is a contradiction. Hence
by S5(i) and S6(i), eventually Y (i) = true at each i. ��

Theorem 1 (Partial Correctness). If no guard is enabled in the system, then the system
is in a legitimate state.

Proof. The proof follows from Lemma 1, Lemma 2, and Definition 1. ��

Lemma 3. From any arbitrary state, eventually U(i) is false at each i.

Proof. At each node i, either X(i) = true or X(i) = false. If X(i) = false then by
S3(i) or S4(i), U(i) eventually becomes false. Let X(i) = true. Now Y (i) = true or
Y (i) = false. If Y (i) = true then by S1(i) or S2(i), U(i) = false at each i. Again if
Y (i) = false, then by arguments given in Lemma 1, eventually Y (i) = true. Hence
by S1(i) or S2(i), U(i) = false at each i. ��

The following theorem follows easily from Lemma 3.

Theorem 2 (Termination). From any arbitrary state, the algorithm Q eventually
terminates.

Lemma 4. Under no failure each broadcast message m is eventually correctly read by
all the nodes.

Proof. There can be two cases.

Case 1: There is no failure and no switching is in progress. So for each i, X(i) =
false. So by S3 and S4, ∀i, j : i �= j, bi = bj . Hence U(i) = false for each
i. So if T i

M �= max(Bi) then by S5(i), eventually T i
M = max(Bi) for each i.

Let i has not yet read a message m from p(bi) and thus T i
M < T

p(bi)
M . By S6(i),

i will eventually read the broadcast message m from p(bi) and thus eventually
T i

M = T
p(bi)
M will hold. Since ∀i, j : i �= j, bi = bj , each node i will read m from

p(bi) using the same bi. So each broadcast message m is correctly read by all the
nodes.

Case 2: There is no failure but switching is in progress. So ∃i, X(i) = true. So U(i) =
true. So G5(i) = false and G6(i) = false. So i stops reading any broadcast
message. However by S2(i), until X(i)∧Y (i) = true, i does not switch. If Y (i) =
false then by arguments similar to that in Lemma 1, eventually Y (i) = true.
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However by S6(i), i has already stopped reading any broadcast message. Let m
be the last broadcast message read by i from p(bi) before i switches. Now after
i switches, it will read each broadcast message using p(¬bi). Since the message
buffer at each i is FIFO therefore each message read earlier to m is read by each
node i using p(bi). Similarly each message read after m is read by each node i
using p(¬bi). Hence each message is read by each i using the same bi. So each
broadcast message is correctly read by all the nodes. ��

The following lemmas can be proved.

Lemma 5. Under single transient failure, each broadcast message read by a child of
the faulty node i before time Ts is eventually correctly read by all the non-faulty nodes.

Lemma 6. Under single transient failure, each broadcast message m that has not yet
been read by the faulty node i before Tss is eventually correctly read by all the nodes.

It is easy to see that under single transient failure, irrespective of whether switching is
in progress or not, any broadcast message m that is at the faulty node i between Ts and
Tss may be lost. So unless rebroadcast is allowed, the delivery of these messages is not
guaranteed.
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Abstract. The chromatic sum of a graph G is the minimum sum of
colors in a vertex coloring of G. This problem has many interests like
in networks, where it models the minimization of the total charge of a
network. As systems are more and more large and dynamic, distributed
approaches are needed to manage them. In this paper we present a self-
stabilizing algorithm to determine a minimal sum of colors for a graph.
Such a coloring is determined with at most O(nΔ2) changes of colors,
where Δ is the maximum degree of the graph.

1 Introduction

In a distributed system, a node exchanges information only with its neighbor-
hood. Every node has a set of local variables to determine a local state of the
node. The state of the entire system, called global state, is the union of the local
states of all the nodes in the system. Thus, each node has a partial view of the
global state. The objective in a distributed system is to obtain automatically
a desirable global final state (called legitimate state) from an illegitimate state.
These illegitimate states are due to malfunctions or perturbations which bring
the system in an undesirable state. One of the goals of a distributed system is so
to bring back (and keep) the system in a legitimate state if malfunctions perturb
it, without the interference of an external agent. Such systems, able to reach a
legitimate state in a finite number of steps, are called self-stabilizing systems,
first introduced by Dijkstra [4] in 1974. Several graph problems arise naturally in
distributed systems. For example, self-stabilizing algorithms for finding spanning
trees, matchings, independent sets have been studied [1,10,17]. Graph coloring
is also a very attractive field in which self-stabilizing algorithms are studied. In
1993, Ghosh and Karaata [6] proposed a self-stabilizing algorithm to color planar
graphs with six colors by transforming it in a directed acyclic graph. Sur and
Srimani [20] presented a vertex coloring algorithm for bipartite graphs. Shukla et
al. [18] gave a randomized self-stabilizing coloring of several classes of bipartite
graphs and trees. In 2000, Gradinariu and Tixeuil [7] showed algorithms to color
the arbitrary networks. Their algorithms use at most Δ + 1 colors and stabi-
lize in O(nΔ). More recently, Hedetniemi et al. [9] presented two self-stabilizing
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algorithms which use at most Δ + 1 colors. In 2005, Huang et al. [11] exhibed
a self-stabilizing algorithm to color planar graphs with six colors, but, in com-
parison to [6], they do not construct a directed acyclic graph and decrease the
quantity of memory required for the algorithm.

In our study, we are interested in a particular graph coloring. We consider
graphs without self loops or multiple edges. Let G be a graph with a vertex set
V and an edge set E. A k-coloring of G is defined as a function c on V (G) =
{x1, x2, . . . , xn} into a set of colors C = {1, 2, . . . , k} such that for each vertex xi,
with 1 ≤ i ≤ n, we have c(xi) ∈ C. A proper k-coloring is a k-coloring satisfying
the condition c(xi) �= c(xj) for every pair of adjacent vertices xi, xj ∈ V (G). The
chromatic number χ(G) is the minimum number of colors in a proper coloring
of G. Instead of considering the number of colors in a proper coloring, we study
in this paper, the sum of these colors. The chromatic sum, denoted Σ(G), is the
minimum sum of colors among all proper colorings of G. The minimum number
of colors used in a coloring with the minimum sum of colors is called the strength,
s(G), of G (note that s(G) ≥ χ(G)).

The concept of chromatic sum was introduced independently by Kubicka [13]
and Supowit [19]. Chromatic sum problem has many important applications in
scheduling ([2]), VLSI routing ([19]),. . . Thus, a lot of authors were interested in
this parameter. In [14], Kubicka and Schwenk proved the NP-completeness of the
chromatic sum problem. Then the problem was studied for restricted families of
graphs. Thus, in [14] authors gave a polynomial time algorithm to find the chro-
matic sum of trees. In [3], Bar-Noy and Kortsarz were interested in the minimum
color sum problem for bipartite graphs. They proved that this problem admits
no polynomial approximation scheme, unless P = NP , and they presented a
10/9-approximation algorithm. Jiang and West presented in [12] a method to
construct for each integer k ≥ 1, a tree T with s(T ) = k that has maximum
degree 2k − 2. In [8], Hajiabolhassan et al. proposed an upper bound for the
strength of a graph G depending on the maximum degree of G and an invariant
based on linear orderings of the vertices. More recently, Salavatipour [16] proved
the NP-hardness of finding the strength for graphs with Δ(G) = 6 and gave
polynomial algorithms for the sum coloring of chain bipartite graphs and k-split
graphs. In 2004, Nicoloso [15] showed an upper bound for the strength of any
interval graph: s(G) ≤ min{n, 2χ(G)−1}. And in 2005, Effantin and Kheddouci
[5] studied the chromatic sum for several classes of distance and circulant graphs.

This coloring initiated several studies because its fields of application are vast
like network environments where the chromatic sum can be used to minimize
(or to limit) the total charge of the network. Thus, in this article, we propose a
self-stabilizing algorithm to compute a minimal color sum in a proper coloring
of a graph. A self-stabilizing approach enables to make the system entirely au-
tonomous. The idea is to minimize locally the sum of colors of a node and its
neighbors. Thus, we define a local coloring of a node i as the coloring of i and
its neighborhood N(i). We let d(i) = |N(i)|, the number of neighbors of vertex
i, or its degree, and we let Δ = max{d(i)|i ∈ V }. Note that C(S) defines the set
of colors of the vertex set S.
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2 Algorithm

In a self-stabilizing algorithm, a node can change its local state by making a
move. In our work, a move represents the color change of a node. In the algo-
rithm, a privileged node is defined as a node able to move its color and that of its
neighborhood. In our approach, we consider a serial model where no two privi-
leged nodes run simultaneously. A central daemon selects, among all privileged
nodes, the next to consider. Thus, if several nodes are privileged, we cannot
predict which node will be selected next. Moreover, we consider a synchronous
model where every node executes the same action at the same time.

The principle of the algorithm is as follows. We consider the local coloring
of a node i. Suppose that i has no color. What are the minimum colors of its
neighbors, to keep a proper coloring ? Thus, we define for each node i, a table
T i

new of size at most Δ containing the smallest possible color of the node when
each of its neighbor has no color (i.e. T i

new[j] = min{q|q /∈ C(N(i)\{j})}, for
any j ∈ N(i)). Thus, T i

new[j] contains the color of the node i if the color of its
neighbor j is not considered. Then, any node i will be able to evaluate a new
coloring for it and its neighborhood (by considering the colors of T j

new[i] for its
neighbors j ∈ N(i)). Consequently, we can compare the current local coloring of
i with this possible new local coloring. If the color sum of this new local coloring
of i is lower than the color sum of its current local coloring, then i becomes a
privileged node and the current local coloring of i can be replaced by the new
local coloring found.

We then propose a first procedure used by the main procedure to compute
the table T i

new. A particular case must be distinguished. Suppose that two (or
more) neighbor nodes, j and j′, are adjacent to the same node i. When j and j′

compute their tables T j
new and T j′

new, they may find a same color for T j
new[i] and

T j′

new[i] (which can bring a non proper color). To keep a proper coloring, only
one of them will be able to compute Tnew[i] (that with the highest color).

Procedure 1. FindNewColors() (applied on the node i)
BEGIN
Let L =

⋃
j∈N(i) c(j).

Let c = min{q|q /∈ L}.
For all j ∈ N(i) do

if there exists a node k adjacent to i and j such that c(k) > c(i) then
//i.e. to find a new color for T i

new[j] and to avoid a non proper coloring,
//i must not be adjacent to a neighbor of j with a highest color.

T i
new[j] = c(i).

else
//else T i

new[j] takes the smallest possible value.
if c(j) > c then T i

new[j] = c. else T i
new[j] = c(j). endif.

endif.
endfor.
END.

Proposition 1. For a node i, the table T i
new is computed in time O(Δ2).
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Proof. Since the node i has at most Δ neighbors, the data L and c are computed
in time O(Δ). Then, for every neighbor of i, the determination if it is adjacent
to another neighbor of i can be done in O(Δ) and a new color is determined in
O(1). Therefore the time needed is O(Δ2). ��

Next, we can present the main procedure. This procedure runs continuously on
each node to detect any perturbation of the system. When a node i executes the
following procedure, we distinguish three steps. The first step is the computation
of its table T i

new (done by Procedure 1). The second step is the evaluation of
the color sums of the current and the new local colorings. Finally the third step
is the affectation of the new coloring if i is the privileged nodes elected by the
central daemon. Nevertheless, since the first condition to have a legitimate state
is the property of the coloring, a step 0 is proposed to verify this property. Thus,
during the first execution of the procedure, this step enables to find a proper
coloring of the graph (if it is not) and for the others, this step maintains a proper
coloring (although the Procedure 1 generates only proper colorings).

Procedure 2. (applied on the node i)
BEGIN
//step 0: verify the property of the coloring
if c(i) �= min{q ≥ 1|q /∈ C(N(i))} then c(i) �= min{q ≥ 1|q /∈ C(N(i))}.endif.
//step 1: compute a new possible coloring
FindNewColors().
//step 2: compare the current coloring with the possible coloring found
Let Q = min{q|∀j ∈ N(i), q /∈ T j

new[i]}.
Let Σcurrent = c(i) +

∑
j∈N(i) c(j).

Let Σnew = Q +
∑

j∈N(i) T j
new[i].

//step 3: determine the privileged nodes
if Σnew < Σcurrent then

i becomes privileged.
endif.
if i is the privileged node elected by the central daemon then

c(i) = Q.
∀j ∈ N(i), c(j) = T j

new[i].
endif.
END.

The last action (where neighbors of i get new colors) can be done by a sending
of a message to inform these nodes to change their color. Then, the procedure
can start again when this step is done.

Now, we study this algorithm to determine if it self-stabilizes. Firstly, we can
see that the algorithm gives a legitimate state for the graph.

Proposition 2. Procedure 2 gives a legitimate state for the graph.

Proof. A legitimate state consists in a proper coloring where we search to de-
crease the sum of colors. The step 0 of the Procedure 2 gives a proper coloring.
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Thus Procedure 1 is applied only on a proper coloring. Moreover, in the Proce-
dure 1, for two neighbors adjacent to a same node, only one can change its color
(to maintain the property of the coloring). Nevertheless, while the local coloring
of a node i can be decreased, i becomes privileged and the central daemon selects
only one privileged node to change its local coloring. The final coloring is then
a legitimate state for the graph. ��
Secondly, we bound the number of privileged nodes that can appear.

Lemma 1. At most nΔ privileged nodes can be selected by the central daemon.

Proof. If every node was colored with the smallest color (i.e. 1), then the color
sum would be n. By the same way, if every node was colored with the highest
color (i.e. Δ+1), the color sum would be nΔ+n. Moreover, to have a privileged
node i, the color sum of the new local coloring of i must be strictly lower than
that of its current local coloring. Thus, for each privileged node, the total sum
of colors decreases by at least 1. Thus, at most (nΔ + n) − n = nΔ privileged
nodes change their local coloring. ��
Thus, we can evaluate the time and the number of moves used by the algorithm.

Theorem 1. A legitimate state is reached in O(nΔ2) moves.

Proof. If a privileged node changes its local coloring, it can modify the coloring
of at most Δ + 1 nodes. By Lemma 1, at most nΔ privileged nodes are selected
by the central daemon, which implies O(nΔ2) changes of colors. ��
Theorem 2. A minimal sum of colors of the graph is computed in time O(nΔ3).

Proof. In Procedure 2, the step 0 (to have a proper coloring) is done in time
O(Δ), while the computation of new local coloring (step 1) is proved in time
O(Δ2) (Proposition 1). Since the computation is synchronous, all the nodes
have executed Procedure 1 before running the remaining of the Procedure 2.
Thus, the step 2 is done in time O(Δ), and since the algorithm is distributed,
the color change of a node and its neighborhood can be done in O(1) (step 3).
Thus, for each node elected by the central daemon, a new local coloring is found
in time O(Δ2). By Lemma 1, there are at most nΔ privileged nodes selected by
the central daemon. Thus, the algorithm converges in time O(nΔ3). ��
Thus, the algorithm determines a legitimate state for G in a finite number of
moves without external intervention. It is a self-stabilizing algorithm.

3 Conclusion

The color sum given by this algorithm is an upper bound for the chromatic sum.
As we saw, we use a serial model where only one privileged node is selected at
the same time. It is possible for the central daemon to choose several privileged
nodes to be computed in parallel, but to avoid a non proper coloring, two selected
nodes must be at distance at least 4 in the graph. Thus, two neighbors of two
distinct privileged nodes are not neighbors. The color change of these nodes then
enables to keep the coloring proper.
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Abstract. Fixed Task Priority (FTP) scheduling algorithms are priority-
driven scheduling algorithms in which all jobs generated by each recur-
rent task are restricted to have the same priority. The multiprocessor
FTP scheduling of sporadic task systems is studied in this paper. A new
sufficient schedulability test is presented and proved correct. It is shown
that this test offers non-trivial quantitative guarantees, including a pro-
cessor speedup bound.

1 Introduction

A real-time system is often modelled as a finite collection of independent recur-
ring tasks, each of which generates a potentially infinite sequence of jobs. Every
job is characterized by an arrival time, an execution requirement, and a dead-
line, and it is required that a job complete execution between its arrival time
and its deadline. Different formal models for recurring tasks place different re-
strictions on the values of the parameters of jobs generated by each task. One of
the more commonly used formal models is the sporadic task model [15,6], which
is described in Section 2.

In this paper, we consider real-time systems that are modeled by the sporadic
task model and implemented upon a platform comprised of several identical
processors. We assume that the platform

– is fully preemptive: an executing job may be interrupted at any instant in
time and have its execution resumed later with no cost or penalty.

– allows for global inter-processor migration: a job may begin execution on any
processor and a preempted job may resume execution on the same processor
as, or a different processor from, the one it had been executing on prior to
preemption.

– forbids intra-task parallelism: each task may have at most one job executing
on at most one processor at each instant in time, regardless of how many
jobs of the task are awaiting execution and how many processors are idle.
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We study the behavior of a particular class of scheduling algorithms, known as
Fixed Task Priority (FTP) scheduling algorithms [3] when scheduling systems
of sporadic tasks upon such preemptive platforms. We discuss FTP scheduling
algorithms in greater detail in Section 2; due to various pragmatic considerations,
FTP scheduling algorithms are widely favored by real-time systems designers.

Our results, and their significance. First, we present, and prove the correctness
of, a new test for determining whether a given sporadic task system is guaranteed
to meet all deadlines upon a specified computing platform, when scheduled using
a specified FTP scheduling algorithm. Next, we demonstrate that the Deadline
Monotonic FTP scheduling algorithm is optimal from the perspective of this
test: if a task system is deemed by this test to meet all deadlines for any FTP
scheduling algorithm, then the Deadline Monotonic scheduling algorithm is also
deemed to meet all deadlines. Furthermore, we provide several different quan-
titative characterizations of the performance of this test; for instance, we show
that any sporadic task system that is feasible (i.e., can be scheduled using an op-
timal clairvoyant algorithm) is identified by our test as being scheduled to meet
all deadlines by the Deadline Monotonic algorithm upon a platform in which
each processor is approximately four times as fast.

Previous tests for determining whether sporadic task systems can be success-
fully scheduled using FTP scheduling algorithms have only been applicable to
task systems in which every sporadic task generates a job after the deadline of
its previous job has elapsed (such task systems are called constrained-deadline
task systems – see Section 2). Since, as stated above, our machine model forbids
the simultaneous execution of multiple jobs of the same task, getting rid of this
restriction turns out to be surprisingly challenging. We believe that one of the
major contributions of the research presented in this paper is a general tech-
nique for dealing with task systems that do not observe this restriction, thereby
enabling the analysis of the behavior of scheduling algorithms on sporadic task
systems that are not constrained-deadline.

Organization. The remainder of this paper is organized as follows. In Section 2,
we formally define the task and processor models used in this research, and pro-
vide some additional useful definitions. In Section 3, we briefly describe some
related research. In Section 4, we derive some technical results that are used
in later sections. In Section 5, we present, and prove the correctness of, a new
schedulability test for FTP scheduling. In Section 6, we apply this test to the
well-known Deadline Monotonic [13] FTP priority assignment scheme. In Sec-
tion 7, we provide a quantitative characterization of the efficacy of this new
schedulability test for Deadline Monotonic priority assignment.

2 Model and Definitions

§1. Task model. A sporadic task τi = (Ci, Di, Ti) is characterized by a worst-
case execution requirement Ci, a (relative) deadline Di, and a minimum inter-
arrival separation parameter Ti, also referred to as the period of the task. Such
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a sporadic task generates a potentially infinite sequence of jobs, with successive
job-arrivals separated by at least Ti time units. Each job has a worst-case execu-
tion requirement equal to Ci and a deadline that occurs Di time units after its
arrival time. We refer to the interval, of size Di, between a job’s arrival instant
and deadline as its scheduling window. A sporadic task system is comprised of
several such independent sporadic tasks. Task system τ is said to be an implicit-
deadline sporadic task system if it is guaranteed that each task has its relative
deadline parameter equal to its period, and a constrained-deadline sporadic task
system if it is guaranteed that it has its relative deadline parameter no larger
than its period. A task system that may not be constrained-deadline is said to
be an arbitrary-deadline sporadic task system.

Throughout this paper, τ denotes an arbitrary-deadline sporadic task system
comprised of n tasks: τ = {τ1, τ2, . . . τn}, with τi = (Ci, Di, Ti) for all i, 1 ≤ i ≤ n.

§2. Processor model. In this paper, we study the scheduling of sporadic task
systems upon a platform comprised of m identical processors, where m is an
integer ≥ 1. For the most part (except, e.g., in Lemmas 4 and 5), we assume
that all processors are of unit computing capacity: a job completes one unit of
execution by executing upon a processor for one unit of time. We assume that
the platform is fully preemptive, and allows for global inter-processor migration.
However, each task may have at most one job executing on at most one processor
at each instant in time.

§3. Fixed Task Priority (FTP) scheduling. Priority-driven scheduling algorithms
operate as follows: at each instant in time they assign a priority to each job that is
awaiting execution, and choose for execution the jobs with the greatest priority.
Fixed Task Priority (FTP) scheduling algorithms are a subclass of the class of
priority-driven algorithms for scheduling systems of recurring tasks, in which it is
required that there is a unique priority associated with each task, and all the jobs
generated by the task are assigned this priority. The Deadline Monotonic (dm)
scheduling algorithm [13] is an example of a FTP scheduling algorithm. The dm

scheduling algorithm assigns priority to jobs according to the relative-deadline
parameter of the task that generates them: the smaller the relative deadline, the
greater the priority. On the other hand, the Earliest Deadline First scheduling
algorithm [14,9] is not an FTP algorithm, since different jobs generated by the
same task generally have different priorities.

We adopt the convention of representing task priorities by positive integers,
with lower numbers denoting greater priority. Under this convention, a FTP
scheduling algorithm on a given sporadic task system τ is completely specified
by specifying the priority assignment on τ :

Definition 1 (priority assignment). A priority assignment π :{1, 2, . . . , n}→
{1, 2, . . . , n} is a one-one function denoting which task is assigned what priority,
with the interpretation that task τπ(i) is assigned priority i. ��

As stated above, deadline monotonic priority assignment assigns priorities in in-
verse order of the relative deadline parameter: the smaller the relative deadline
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parameter, the greater the priority (with ties broken arbitrarily). We will abuse
notation somewhat, and let dm denote both the deadline monotonic schedul-
ing algorithm, and the deadline monotonic priority assignment on τ : i < j ⇒
Ddm(i) ≤ Ddm(j).

§4. Processor speedup bounds. A given sporadic task system is said to be feasible
upon a particular platform if there exists a schedule meeting all deadlines, for
every collection of jobs that may be generated by the task system. A given
sporadic task system is said to be (global) π-schedulable if FTP scheduling of the
task system with priority assignment π meets all deadlines for every collection of
jobs that may be generated by the task system. A schedulability test for a priority
assignment π determines whether the given system is π-schedulable. Such a test
is exact if is correctly identifies all π schedulable systems, and sufficient if it
identifies some, but not necessarily all, π-schedulable systems (however, it must
not incorrectly declare some non π-schedulable system to be π schedulable).

Processor speedup bounds are one metric that may be used for quantifying the
quality of sufficient schedulability tests. A sufficient schedulability test is said to
have a processor speedup bound of c (c ≥ 1) if

– Any task system deemed schedulable by the test is guaranteed to actually
be so; and

– For any task system that is not deemed schedulable by the test, it is the case
that the task system is actually not schedulable upon a platform in which
each processor is 1

c times as fast.

Intuitively speaking, a processor speedup bound of c for a sufficient schedulability
test implies that the inexactness of the test penalizes its user by at most a
speedup factor of c when compared to an exact test. The smaller the processor
speedup bound, the better the sufficient schedulability test: a processor speedup
bound of 1 would mean that the test is in fact an exact one.

3 Related Work

FTP scheduling is widely used in real-time systems design and implementation.
A comprehensive design methodology — the Rate-Monotonic Analysis (RMA)
Methodology [12] — that is based upon FTP scheduling upon uniprocessor plat-
forms has been developed. It has been shown [13] that the Deadline Monotonic
priority assignment (dm) is optimal for constrained-deadline sporadic task sys-
tems upon uniprocessors: if any FTP scheduling algorithm guarantees to meet
all deadlines for such a task system, then so can dm.

Upon multiprocessors, FTP scheduling of implicit-deadline sporadic task sys-
tems has been studied in [1]. The FTP scheduling of constrained-deadline spo-
radic task systems using Deadline Monotonic (dm) priorities was studied in [2,7],
and the results obtained were subsequently extended to arbitrary-deadline task
systems in [4].
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In [11], a sufficient test very different from the ones in [2,7,4] was derived for
determining whether a given constrained-deadline sporadic task system is dead-
line monotonic schedulable upon a preemptive multiprocessor platform com-
prised of m unit-capacity processors. Unlike the tests in [2,7,4], the test in [11]
comes with an associated processor speedup bound. One of the results in this pa-
per is to demonstrate that this speedup bound holds for the more general arbitrary-
deadline sporadic task model as well.

4 Some Task and System Properties

For any sporadic task τi = (Ci, Di, Ti), the density δi of task τi denotes the
ratio (Ci/ min(Di, Ti)) of its execution requirement to the smaller of its relative
deadline and its period.

For any priority assignment π and any integer k, 1 ≤ k ≤ n, δmax(π, k) and
Dmax(π, k) denote the largest density and the largest relative deadline
from among the k highest-priority tasks in τ :

Dmax(π, k) def=
k

max
j=1

(Dπ(j)); δmax(π, k) def=
k

max
j=1

(δπ(j))

The concepts of demand bound function and load find widespread use in real-
time schedulability analysis. We provide formal definitions below; for further
detail, consult, e.g., [8].

Definition 2 (dbf). For any interval length t, the demand bound func-
tion dbf(τi, t) of a sporadic task τi bounds the maximum cumulative execution
requirement by jobs of τi that both arrive in, and have deadlines within, any in-
terval of length t. ��

It has been shown [6] that dbf(τi, t) = max
(
0, (

⌊
t−Di

Ti

⌋
+ 1)Ci

)
.

Definition 3 (load). For any priority assignment π and any k, a load param-
eter is defined as follows:

load(π, k) def= max
t>0

(∑k
j=1 dbf(τπ(j), t)

t

)

��

Efficient algorithms have been designed for computing load both exactly in
pseudo-polynomial time, and approximately to any arbitrary desired degree of
accuracy in polynomial time — see, e.g., [5,10].

In constrained-deadline task systems — those in which Di ≤ Ti ∀i — a job
becomes eligible to execute upon arrival, and remains eligible until it completes
execution1. In systems with Di > Ti for some tasks τi, we require that at most

1 Or its deadline has elapsed, in which case the system is deemed to have failed.
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one job of each task be eligible to execute at each time instant. We assume
that jobs of the same task are considered in order of arrival; hence, a job only
becomes eligible to execute after both these conditions are satisfied: (i) it has
arrived, and (ii) all previous jobs generated by the same task that generated it
have completed execution. This gives rise to the notion of an active task: briefly,
a task is active at some instant if it has some eligible job awaiting execution at
that instant. More formally,

Definition 4 (active task). A task is said to be active in a given schedule at
a time-instant t if some job of the task is eligible to execute at time-instant t.
That is, (i) t ≥ the greater of the job’s arrival time and the completion time of
the previous job of the same task, and (ii) the job has not completed execution
prior to time-instant t. ��

The following Lemma relating density and dbf will be used later in this paper.

Lemma 1. For all tasks τi and for all t ≥ 0, t × δi ≥ dbf(τi, t).

Proof Sketch: This lemma is easily validated informally by sketching dbf(τi, t)
as a function of t, and comparing this with the graph for t× δi, a straight line of
slope (Ci/ min(Di, Ti)) through the origin. dbf(τi, t) is a step function comprised
of steps of height Ci, with the first step at t = Di and successive steps exactly Ti

time units apart. The graph of δi lies above the plot for dbf(τi, t), for all t. (For
Di < Ti, the graph for δi touches the plot for dbf(τi, t) at t = Di; for Di = Ti,
the two touch at all integer multiples of Ti; and for Di > Ti the two plots never
touch.) ��

Recall that Dmax(π, k), δmax(π, k) and load(π, k) respectively denote the largest
relative deadline, largest density, and maximum possible normalized cumulative
execution requirement, of the k highest-priority tasks. Not surprisingly, therefore,
they are all monotonically non-decreasing with the number of tasks considered;
this is formally asserted by the following lemma.

Lemma 2. For a given priority assignment π, Dmax(π, k), δmax(π, k) and
load(π, k) are all monotonically non-decreasing in k:

Dmax(π, k)≤Dmax(π, k + 1)
∧

δmax(π, k)≤δmax(π, k +1)
∧

load(π, k)≤load(π, k +1)

(1)

��

5 An FTP Schedulability Test

In this section, we derive (Theorem 1) a sufficient schedulability test for the FTP
scheduling of arbitrary-deadline sporadic task systems upon multiprocessors. As
can be seen from the statement of Theorem 1, this test determines schedulability
of a task system τ under a priority assignment π based upon the values of the
densities, relative deadlines, and loads of τ .
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�
time

ta td(td − Dπ(k))

�

�

�

�

�

�

Fig. 1. Example: defining ta for the case Dπ(k) ≥ Tπ(k). Three jobs of τπ(k) are shown.
Task τk is not active prior to the arrival of the first of these 3 jobs, the first job
completes execution only after the second job arrives, and the second job completes
execution only after the third job arrives. Thus, the task is continuously active after
the arrival of the first job shown, and ta is hence set equal to the arrival time of this
job.

Let τ = {τ1, τ2, . . . , τn} denote a collection of sporadic tasks, to which pri-
orities have been assigned according to the FTP priority-assignment scheme π.
Consider any legal sequence of jobs of task system τ , on which a deadline miss
occurs. Suppose that a job of the k’th-highest priority task — i.e., a job of task
τπ(k) — is the one to first miss a deadline, and that this deadline miss occurs
at time-instant td. Discard from this sequence of jobs all those jobs that have
priority lower than τπ(k)’s priority. Consider the FTP schedule of this new –
“reduced”– sequence of jobs. Since jobs of priority lower than τπ(k)’s have no
effect whatsoever on the scheduling of jobs of priority ≥ τπ(k)’s, this schedule,
too, will see a deadline miss of a job of τπ(k) at time-instant td, and this will
be the first deadline miss in the schedule. Henceforth in this section, we will
consider this FTP schedule of the reduced sequence of jobs.

Let ta denote the earliest time-instant prior to td, such that τπ(k) is active2

throughout the interval [ta, td]. We can make the following assertions about ta:

– ta is the arrival time of some job of τπ(k).
– ta ≤ td − Dπ(k). This follows from the observation that the job of τπ(k) that

misses its deadline at td arrives at td − Dπ(k). If Dπ(k) < Tπ(k), then ta is
equal to this arrival time of the job of τπ(k) that misses its deadline at td.
If Dπ(k) ≥ Tπ(k), however, ta may be the arrival-time of an earlier job of
τπ(k)— see Figure 1. In either case, we have

td − ta ≥ Dπ(k). (2)

– Let C denote the cumulative execution requirement of all jobs of τπ(k) that
arrive ≥ ta, and have deadline ≤ td. (In the example of Figure 1, C = 3Cπ(k).)
By definition of dbf and Lemma 1, we have

C ≤ dbf(τπ(k), td − ta) ≤ δπ(k) × (td − ta). (3)

Let W (ta) denote the total amount that all jobs, other than those generated
by task τπ(k), that have deadline ≤ td execute over the interval [ta, td), plus C.

2 See Definition 4 to recall the definition of active task .
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(Informally, W (ta) denotes the amount of work that the FTP schedule needs
–but fails– to execute over [ta, td).) Since jobs of τπ(k) receive strictly less than C
units of execution over [ta, td), all m processors must be executing jobs of tasks
other than τπ(k) for a total duration greater than (td − ta −C) over this interval.
Hence it must be the case that

W (ta) > (td − ta − C)m + C (4)

Since all this work is to execute over [ta, td), all the jobs contributing to it must
have scheduling windows that overlap with [ta, td). In order for these schedul-
ing windows to overlap with [ta, td), all such jobs must arrive no earlier than
Dmax(π, k) time units prior to ta (i.e., after ta−Dmax(π, k)), and have their dead-
lines no later than Dmax(π, k) time units after td (i.e., before td + Dmax(π, k)).
In other words, all these jobs have their arrival times and deadlines within the
(2Dmax(π, k) + (td − ta))-sized interval [ta − Dmax(π, k), td + Dmax(π, k)). By
definition of load, we therefore have

W (ta) ≤ (td − ta + 2Dmax(π, k)) × load(π, k)
⇒ (By Inequality 4) (td − ta − C)m + C < (td − ta + 2Dmax(π, k))× load(π, k)
≡ m(td − ta) − (m − 1)C < (td − ta + 2Dmax(π, k)) × load(π, k)

≡ m − (m − 1)
C

td − ta
<

(

1 + 2
Dmax(π, k)

td − ta

)

× load(π, k)

⇒ (By Inequality 3) m − (m − 1)δπ(k) <

(

1 + 2
Dmax(π, k)

td − ta

)

× load(π, k)

⇒ (By Inequality 2) m − (m − 1)δπ(k) <

(

1 + 2
Dmax(π, k)

Dπ(k)

)

× load(π, k) (5)

Thus, we see that Condition 5 is necessary for a deadline miss to occur; equiva-
lently, the negation of Condition 5 is sufficient for all deadlines to be met:

Theorem 1. A sufficient condition for arbitrary-deadline sporadic task system
{τ1, τ2, . . . , τn} to be global FTP schedulable under priority assignment π is

∀ k : 1 ≤ k ≤ n :
[

load(π, k) ≤
m − (m − 1)δπ(k)

1 + 2(Dmax(π, k)/Dπ(k))

]

��

The following corollary immediately follows, based on the trivial observation
that δπ(k) is, by definition, ≤ δmax(π, k):

Corollary 1. A sufficient condition for arbitrary-deadline sporadic task system
{τ1, τ2, . . . , τn} to be global FTP schedulable under priority assignment π is

∀ k : 1 ≤ k ≤ n :
(

load(π, k) ≤ m − (m − 1)δmax(π, k)
1 + 2(Dmax(π, k)/Dπ(k))

)

(6)

��
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6 The Optimality of dm

We now prove that any sporadic task system deemed schedulable for some FTP
priority assignment scheme by the test of Corollary 1, is also deemed schedulable
for the dm priority assignment scheme by the test of Corollary 1.

Let π1 denote a priority assignment such that τ with priority assignment π1 is
deemed schedulable by the schedulability test of Corollary 1, in which the tasks
at the �’th and (� + 1)’th priorities are not in deadline-monotonic order, i.e..
Dπ1(�) > Dπ1(�+1)). We will demonstrate that the priority assignment obtained
from π1 by swapping the priorities of these two tasks is also deemed schedulable
by the schedulability test of Corollary 1.

Lemma 3. Let π1 denote a priority assignment such that τ with priority assign-
ment π1 is deemed schedulable by the schedulability test of Corollary 1, in which
Dπ1(�) > Dπ1(�+1). Let π2 denote a priority assignment identical to π1, except that
the tasks at the �’th and (� + 1)’th priority levels are swapped. Task system τ with
priority assignment π2 is also deemed schedulable by the test of Corollary 1.

Proof: Let π1(�) = a and π1(� + 1) = b. It is readily verified that for k =
1, 2, . . . , � − 1, and for k = � + 2, . . . , n, Equation 6 evaluates identically for
π ← π1 and for π ← π2. Below, we show that if Equation 6 is satisfied for k = �
and k = � + 1 for π ← π1, then it is satisfied for k = � and k = � + 1 for π ← π2
as well.

Suppose that Equation 6 is satisfied for k = � and k = � + 1 for π ← π1.

– To see that Equation 6 is satisfied for π ← π2 for k = �, consider task τb,
which is the task at priority level � in π2. Observe that
1. load(π2, � + 1) = load(π1, � + 1), since both loads are computed over

exactly the same set of tasks.
2. By Lemma 2, load(π2, �) ≤ load(π2, � + 1).

These two facts together yield the fact that load(π2, �) ≤ load(π1, �+1).
By a similar argument, it can be shown that Dmax(π2, �) ≤ Dmax(π1, � + 1).
Also, δmax(π2, �) ≤ δmax(π1, � + 1) and Dπ2(�) = Dπ1(�+1). It immediately
follows that since Equation 6 is satisfied for k = (� + 1) for π ← π1, it is
satisfied for k = � for π ← π2.

– To see that Equation 6 is satisfied for π ← π2 for k = � + 1, consider task
τa, which is the task at priority level (� + 1) in π2. Observe that the set of
(�+1) highest-priority tasks in π2 is equal to the set of (�+1) highest-priority
tasks in π1. Hence, load(π2, � + 1) = load(π1, � + 1). For the same reason,
Dmax(π2, � + 1) = Dmax(π1, � + 1), and δmax(π2, � + 1) = δmax(π1, � + 1).
However, Dπ2(�+1) > Dπ1(�+1) by choice of � and � + 1 as priorities violating
deadline monotonic order. It follows that since Equation 6 is satisfied for
k = (� + 1) for π ← π1, it is satisfied for k = � + 1 for π ← π2. ��

Theorem 2 immediately follows, by repeated applications of Lemma 3:

Theorem 2. Any task system that is deemed schedulable by the schedulability
test of Corollary 1 for any priority assignment is also deemed schedulable for the
dm priority assignment.
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7 A Processor Speedup Bound for dm

For the dm priority assignment, Corollary 1 may be specialized as follows:

Theorem 3. Sporadic task system τ is global-dm schedulable upon a platform
comprised of m unit-capacity processors, provided

load(dm, k) ≤ 1
3

(
m − (m − 1)δmax(dm, k)

)
(7)

for all k, 1 ≤ k ≤ n.

Proof Sketch: Immediately follows from the statement of Corollary 1, by ob-
serving that Dmax(dm, k) is exactly equal to Ddm(k) for all k, by very definition
of deadline monotonic scheduling. ��

We will obtain a processor speedup result for the dm schedulability test of
Theorem 3. But first, a lemma on necessary conditions for dm schedulability:

Lemma 4. Any sporadic task system τ that is dm-schedulable upon a multipro-
cessor platform comprised of m speed-x processors must satisfy

δmax(dm, k) ≤ x and load(dm, k) ≤ mx (8)

for all k, 1 ≤ k ≤ n.

Proof Sketch: Suppose that task system τ is dm-schedulable upon m speed-x
processors. We first prove that δdm(k) ≤ x, for each task τi:

– In order to be able to meet all deadlines of τi if τi generates jobs exactly Ti

time units apart, it is necessary that Ci/Ti ≤ x.
– Since any individual job of τi can receive at most Di × x units of execution

by its deadline, we must have Ci ≤ Di × x; i.e., Ci/Di ≤ x.

Putting both conditions together, we get (Ci/ min(Ti, Di)) ≤ x. Taken over all
tasks in τ , this observation yields the condition that δmax(dm, k) ≤ x.

To prove that load(dm, k) ≤ mx, recall the definition of load(dm, k) from
Section 1. Let t′ denote some value of t which defines load(dm, k):
t′ def= argmaxt>0

(
(
∑k

i=1 dbf(τi, t))/t
)

. Suppose that all tasks in {τ1, τ2, . . . , τk}
generate a job at time-instant zero, and each task τi generates subsequent jobs
exactly Ti time-units apart. The total amount of execution that is available over
the interval [0, t′) on this platform is equal to mxt′; hence, it is necessary that
load(dm, k) ≤ mx if all deadlines are to be met. ��

Using Theorem 3 and Lemma 4, we obtain below a bound on the processor
speedup that is sufficient in order for the test of Theorem 3 to identify dm-
schedulability:

Lemma 5. Any sporadic task system that is feasible upon a multiprocessor plat-
form comprised of m speed-x processors platform is determined to be global-dm

schedulable on m unit-capacity processors by the dm-schedulability test of Theo-
rem 3, provided

x ≤ m

4m − 1
(9)
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Proof: Suppose that τ is dm schedulable upon a platform comprised of m speed-
x processors. From Lemma 4, it must be the case that load(dm, k) ≤ mx and
δdm(k) ≤ x. For τ to be determined to be dm-schedulable upon m unit-capacity
processors by the test of Theorem 3, it is sufficient that:

load(dm, k) ≤ 1
3
(m − (m − 1)δmax(dm, k))

⇐ mx ≤ 1
3
(m − (m − 1)x)

≡ x ≤ m/(4m − 1) ��

Lemma 5 above bounds from above the values of x such that task systems feasible
on speed-x processors are correctly identified as being dm-schedulable by the test
of Theorem 3. The processor speedup bound of Corollary 2 is obtained by taking
the multiplicative inverse of this x:

Corollary 2. The dm-schedulability test of Theorem 3 has a processor speedup
bound of (4 − 1

m ). ��

Corollary 2 expresses the processor speedup bound as a function of the num-
ber of processors m in the platform. The bound increases with increasing m,
approaching 4 as m → ∞.

We already know that global dm is not an optimal scheduling algorithm. It is
also easy to show that the schedulability test of Theorem 3 is not optimal. The sig-
nificance of this processor speedup result lies in what it tells us about the “good-
ness” of both global dm and of our schedulability test: in essence, it is asserting
that a processor speedup of (4 − 1

m ) (which is always < 4) compensates for both
the non-optimality of global dm and the inexactness of our schedulability test.

8 Conclusions

We have derived a new sufficient schedulability test for determining whether a
given sporadic task system is FTP schedulable for a given priority assignment
upon a preemptive multiprocessor platform, when global inter-processor migra-
tion is permitted. To our knowledge, this is the first non-trivial FTP schedula-
bility test that may be be applied to the analysis of arbitrary-deadline sporadic
task systems.

We have proved that the well-known Deadline Monotonic (dm) FTP priority
assignment scheme is optimal from the perspective of our schedulability test.
We have obtained a processor speedup bound for our test when applied to dm:
This speedup bound of (4− 1

m ) tells us that any arbitrary-deadline sporadic task
system that is feasible upon a multiprocessor platform is correctly identified by
our test as being dm-schedulable upon a platform in which each processor is no
more than four times as fast.
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Abstract. Data Grids seek to harness geographically distributed resources for 
large-scale data-intensive problems. The issues that need to be considered in the 
Data Grid research area include resource management for computation and 
data. Computation management comprises scheduling of jobs, load balancing, 
fault tolerance and response time; while data management includes replication 
and movement of data at selected sites. As jobs are data intensive, data 
management issues often become integral to the problems of scheduling and 
effective resource management in the Data Grids. Therefore, integration of data 
replication and scheduling strategies is important. Such an integrating solution 
is either non-existent or work in a centralized manner which is not scalable. The 
paper deals with the problem of integrating the scheduling and replication 
strategies in a distributed manner. As part of the solution, we have proposed a 
Distributed Replication and Scheduling Strategy (DistReSS) which aims at an 
iterative improvement of the performance based on coupling between 
scheduling and replication, which is achieved in distributed and hierarchical 
fashion. Results suggest that, in the context of our experiments, DistReSS 
performs comparable to the centralized approach when the parameters are tuned 
properly in addition to being more scalable to the centralized approach. 

Keywords: Data Grids, Scheduling, Replication, Clustering. 

1   Introduction 

Today’s scientific as well as industrial world requires processing of vast amount of 
distributed data. Collaborative scientific experiments, in domains as diverse as global 
climate change high energy physics, and computational genomics generate petabytes 
of laboratory data [1]. Data management is also important in high volume and 
transaction-oriented enterprise application domains of Energy, Utilities, Finance and 
Retail, where large volume of data related to sales, customers and products reside in 
remote corporate data centers. Such data is routinely touched for transactional and 
analytic (data mining) purposes. The combination of large data sizes, geographic 
distribution of users and resources, diverse data sources, and computationally 
intensive analysis results in complex and stringent performance demands that are not 
satisfied by any existing data management infrastructure. A large scientific 
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collaboration may generate many queries that involve supercomputer-class 
computations on gigabytes or terabytes of data. Similarly, distributed analytical query 
for real-time enterprise would require complex materialized views and data cubes to 
be built and are very performance intensive [2]. The current research on Data Grid is 
motivated by these considerations, and effort is on to design and produce an 
integrated architecture of computer systems, storages and networks with advanced 
data discovery, transport and scheduling protocols in wide area, multi-institutional, 
heterogeneous environments. Efficient and reliable execution of queries in Data Grid 
requires proper placement and replication of data assets at different sites as well as 
scheduling of the query jobs on the data taking the replication and other system 
properties (such as processor speeds and network latency) into consideration. The 
problem, though referred in a few recent literature (e.g., see [3,4,5]), has not been 
addressed adequately yet. In this work, we have proposed an integrated scheduling 
and replication strategy which works in a distributed and hierarchical manner. 

2   Motivation 

In a Data Grid the total time to execute a job depends on the computation time to 
execute a job and the latencies involved in bringing the data files to the execution site 
from the remote locations. Therefore, the total time depends on the computing 
resource chosen for job execution and the location of the data file(s) the job needs to 
access. Therefore data locality needs to be taken into account in any scheduling 
decisions and data management strategies like data replication would reduce the 
overall latency of data access and job completion considerably. Hence, there should 
be a coupling between data locality achieved through data replication mechanisms 
and scheduling.  Again, because of the inherent distributed nature of the grid, a 
centralized replication and scheduling strategy will incur a huge cost and may not be 
feasible in many cases. Therefore, there is a need for integration of replication and 
scheduling needs to be done in a distributed and scalable manner. In this paper a 
distributed interaction approach between scheduling and replication called Distributed 
Replication and Scheduling Strategies (DistReSS) is provided.  

Most of the works in this field have concentrated either on replication or 
scheduling aspects of the problem. Work on scheduling algorithms, which considered 
data locality/storage issues as secondary to job placement are [5], [6], [7]. Work on 
data replication strategies for Grids includes [8] and [9]. An economy based 
replication strategy had been proposed in [10] and a detailed implementation of 
replication strategies in European Data Grid (EDG) has been published in [11]. 
Recently, some work has been carried out which combines the scheduling and 
replication strategies to provide better overall performance in Data Grids [12], [13]. 
Real effort to combine scheduling and reapplication was undertaken by Ranganathan 
et al. [14]. An efficient centralized replication and scheduling strategy that addresses 
these issues has been proposed by us in [15] and performance of the scheduling has 
been evaluated in [16]. 

The centralized way of integrating scheduling and replication as proposed in [15] 
will not be efficient because of the inherent distributed nature of the grid. In this 
paper, we propose a replication-scheduling algorithm which iteratively improves the 
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performance of the Data Grids in a distributed and hierarchical manner. The key 
contribution of the paper lies in the idea of the possible integration between 
scheduling and replication in a hierarchical and distributed manner. The main 
objectives of the paper include: (a) Developing distributed and hierarchical replication 
strategy called DistReSS which takes help of the traffic history information to 
replicate data at specific sites. (b) Developing distributed and hierarchical scheduling 
strategies to schedule jobs at each site so that the latency between job submission and 
job execution is minimized. (c) Evaluating the algorithms through simulation studies. 

The rest of the paper is organized as followed. In the next sub-section, we list out 
the DistReSS architecture and some assumptions made. In Section 3, we define the 
scheduling and replication problems in a Data Grid. Section 4 outlines our DistReSS 
algorithm in detail with suitable examples. In Section 5, we present and discuss the 
performance test results vis-à-vis some other approaches. We conclude in Section 6 
by pointing out the salient contributions and future work. 

2.1   DistReSS Architecture 

Figure 1 shows the architecture of DistReSS system. DistReSS architecture allows 
users to submit a job to the Global Scheduler (GS). The sites are arranged in a Virtual 
Clusters (VC). The algorithm for creating and maintaining VCs will be discussed later 
in the paper.  The GS has information about the VCs and submit the jobs to the head 
of the VC called the VC Core (VCC). It is to be noted that VCC is a site which 
performs the VC level scheduling. Any site can claim to be a VCC, and VCC election 
can be carried out in a random manner or based on some heuristics Once the job 
reaches a VCC, it schedules the job to the corresponding site based on the information 
exchanged within the VC.  Within a site there are Local Scheduler (LS) and a data set 
scheduler (DS). LS determines in which order the jobs will be executed within a site 
and DS determines which files will be replicated within the site.  

 

 
Fig. 1. DistReSS Architecture 

The assumptions made throughout the paper are: (a) The Data Grid is considered to 
be an undirected graph. Hence, the transfer cost is same both ways. (b) Each site has a 
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local scheduler and the scheduling policy can vary from site to site. (c) Jobs are non-
preemptable and times to execute the jobs are considered to be proportional to the size 
of the data required for the job. (d) Data files are transferred into or out of a site in a 
sequential manner through a single port. 

3   Distributed Replication and Scheduling Strategies (DistReSS) 

Please note the symbols defined in Table 1. We model a job request as a 3-tuple J = 
< F

~
, 

PC
~  >, where F

~
is the list of files needed by the job and 

PC
~  is the computation 

time required by the job J at a site having processing power P and which possesses all 
the files in F

~
. A site is modeled as a 3-tuple S = <

sPVF ,,ˆ >, where F̂ is the set of 

files stored in the site S, V is the storage capacity at that site and 
sP is the computation 

capacity at that site.  It is to be noted that 
sP  is expressed in sec/GB. In [14], the 

authors have stated that 
sP  varies between 10 sec/GB to 50 sec/GB. The Job 

Scheduling (JS) problem states that: Let Ĵ = {
nJJJ .......2,1
} be a set of jobs, and Ŝ = 

{
nSSS .......2,1
} be the set of sites, then the problem is to schedule the jobs Ĵ  to the sites 

Ŝ , such that the average latency between submitting the jobs and execution of the 
jobs is minimized. T

SF ji
D  mjni ...1,...1 ==∀ , a Demand Matrix, is created based on  

 
Table 1. List of Symbols 

SYM DEFINITION 

iS iF  iτ  Site i  , File i, Size of iF   

iP  iq
iV  Comp. capability, queue size  of  iS , storage capacity of  iS  

ijδ  Expected latency to transfer iF  from jS  to other sites 

ijω  Computational latency to execute the job i in jS  

ijΔ  Minimum latency required to move a file iF  to site jS  
T

SF ji
D  Number of requests for iF  in iS in time  T 

iFη
iF

~  Normalized Demand for iF  in time T, Files needed by job i 

ij
sC  Cost function used for optimization in the Scheduling Problem 

ij
RC  Cost function used for optimization in the Replication Problem 

jF̂  φ  List of files present in site j   Number of files in the system 

SU λ  Utility of Site S Lowest Utility Site 

FO Fβ  Owner of the File F , Called Frequency of the File F 

ijL  Latency of Job i in site j 
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a set of jobs J within a time interval T. The replication involves creation of identical 
copies of data files and their distribution over the nodes in a Grid. The Data 
Replication (DR) problem states that: Let T

SF ji
D be a demand matrix and  Ŝ  be a set of 

sites; the aim is to distribute a set of files to the sites, so that the latency is minimized 
based on the demand matrix and the volume constraint at each site is maintained. 

3.1   Solution Overview 

DistReSS strategy integrates the replication and scheduling strategies in a scalable 
manner. As mentioned earlier, scheduling and replication work hand-in-hand to 
provide better overall performance in terms of overall latency. By employing better 
replication strategies the latency in bringing the files to the scheduled sites in reduced, 
while scheduling takes this replication information through a History Table to do 
more efficient scheduling. However, maintaining a History Table for all the files in a 
large and dynamic grid is not a trivial problem, and results in scalability issues. To 
deal with this scalability problem DistReSS defines Virtual Cluster (VC) which will 
be used extensively in this paper. A group of grid sites form a Virtual Cluster (VC) to 
take the responsibility of the replication and scheduling within the group. The VC 
elects a cluster leader called the Virtual Cluster Core (VCC). A virtual cluster 
conducts all communications to another virtual cluster only through VCC. VCC takes 
care of the replication and scheduling strategies in a cluster as it maintains the local 
cluster information. Replication can happen across the VCs also. The process is 
illustrated in Figure 2. Replication strategy involves two strategies: while Intra-VC 
replication is essentially based on the information available within a VC, the inter-VC 
replication depends on broad VC level information exchange. Scheduling, similarly, 
has two components: Intra-VC and inter-VC scheduling. In addition to scheduling and 
replication, there is also cluster management which influences both scheduling and 
replication. Therefore, the strategies to integrate these three components form the 
basis of the DistReSS approach.  The different components of the DistReSS approach 
are: (i) Scheduling, (ii) Replication (iii) VC Management. 

Inter-VC Job 
Scheduling

Intra-VC Job 
Scheduling

Inter-VC 
Replication

Intra-VC 
Replication

VCC 
Management

VC Core 
Selection

Replication

Scheduling Managing 
Virtual Clusters

 

Fig. 2. Interaction between different components of DistReSS 
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3.2   Scheduling in DistReSS 

Before describing the scheduling approaches, let us define some terms which will be 
used in the description. 

Multiplicative Factor (M): This factor is used to estimate the effect of queue on the 
latency of jobs. α is a configurable constant. The expression of M is provided below. 

iq in the expression indicates the queue size of the site where the job is scheduled. 

q indicates the average queue of the system. 

qq

qq

i

i
i +

+
=Μ

.α  (1) 

Job Latency (
ijL ): Let ikii fff ...., 21  be the set of files required initially by a job iJ  to 

be scheduled at site 
jS . Then the total time required to execute the job 

iJ  is 

ij

k

r
jiij r

L ω+Δ=∑
=1

 (2) 

It is to be noted that in Equation (2) the assumption made is that all the files are 
required by the job at the start of the execution.  

Scheduling Cost ( ij
sC ): This indicates the cost of scheduling a job i onto a site j. If 

not otherwise stated, the scheduling cost is given by: 

iij
s
ij MLC .=  (3) 

The multiplicative factor M is able to capture the effect of queue on the scheduling 
decisions. From Equation 3 it is clear that scheduling cost is dependent on the cost 
latency of job execution in the scheduled site as well as the job queues at that site. 
Through the selection of α importance is either given to the queue latency or the 

current job latency. When 
q

qi =0, the ij
sC becomes equal to α.ijL . Therefore, for low 

α sites having 0 or small queue values have lesser ij
sC , and the job gets scheduled to 

sites having lesser queue lengths. For high values of α  the latency of the jobs are 
given higher priorities and the importance of queue lengths are minimized. 

To schedule a job to a particular site in DistReSS, two different steps are involved: 
(i) Inter-VC scheduling and (ii) Local VC scheduling. In case of Inter-VC scheduling, 
the jobs are scheduled to the VCs based on the VC level information available at the 
global scheduler. In case of Local or intra-VC scheduling, the job is scheduled to a 
particular site within the VC selected in the first step.  

 
Inter-VC Scheduling (IVS): To schedule across VCs, the information available at the 
global scheduler level are: (i) the files present in each VC, (ii) the average queue size 
of the VC, (iii) the VC core and (iv) Inter-VC topology information.  The jobs are 
scheduled based on the scheduling cost indicated in Equation 3. Let us take an 
example. Let there are three virtual clusters and each of them has 4 sites. The file 
distribution in each site is also shown. The information available to the global 
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scheduler is the queue information and the file information (mentioned in boxes 
above each VC). Let the job be J=<D1, D4, D6, D12>. The numbers by the side of the 
lines joining the VCs indicate the latency to move a unit file across the clusters. The 
values are calculated with the VC Core as the reference. The latencies to schedule 
jobs at VC1, VC2 and VC3 are 30, 20 and 30 seconds respectively. Now, assuming 
α = 0.1 (using Equation 1), the cost of scheduling at VC1, VC2 and VC3 are 13.8, 18 
and 9.75 respectively. Therefore, in this case, the job is scheduled at the VC3, which 
is also the VC having the least queue. However, it is to be noted that when α = 0.5, 
the job is scheduled at VC2. Therefore, the performance of the scheduling algorithm 
depends on the value of alpha. In the simulation section, the simulation studies are 
carried out for different values ofα . 

Intra-VC or Local VC Scheduling (LVS): Within a VC, a cost based job scheduling 
strategy is proposed [15]. Cost ( s

ijC ) of scheduling a job 
iJ  onto a site 

jS is defined 

as the combined cost of moving the data into the site 
jS , latency to compute the job 

iJ  in the site 
jS  and the wait time in the queue in the site 

jS . The job is scheduled 

onto the site which has the minimum s
ijC . 

3.3   Replication in DistReSS 

We start by defining some operational terms. 

Normalized Demand (
iFη ):

iFη  is defined as the ratio of the demand for the file iF  

to the demand of all files. Normalized demand for the file 
iF  within VC 

jVC is 

defined as the sum of normalized demand of all sites within the VC and is represented 

as j

i

VC

Fη . 

Called Frequency ( j
Fi

β ): j
Fi

β is defined as the number of times the file iF  is called 

from different sites from the current site j. This determines the usefulness of the file 
within the site. 

Expected Latency: Expected file latency (
ijδ ) of a file 

iF  to be replicated in site 
jS  is 

defined as the average latency of moving the file from site 
jS  to any other site where 

the job will be scheduled. Let the probability of a job scheduled in site 
kS  requiring 

the file 
iF  be ikp .  

File Owner (
FO ): A site is called the owner of a file F if a site stores a file which is 

never replaced.  
Similar to scheduling, replication in DistReSS can also be of two types: (i) Inter-

VC Replication and (ii) Intra-VC Replication. In case of Inter-VC replication, the 
replication is done based on the information collected as part of the IVS scheduling 
strategy. On the other hand, intra-VC replication (or Local Replication) is done based 
on the History Table collected as part of the LVS strategy. 
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Inter-VC Replication (IVR): IVR strategy has three phases – Seek, Capture and 
Replace. In the Seek phase, each VCC seeks to capture a new file by probing the 
other VCCs. In the capture phase, a file is captured from a VC and in the replace 
phase the captured file replaces one of the files stored inside the VC. A file is said to 
be captured if the VCC can find a file stored in some other VC (

jVC ) having a non-

zero j

i

VC

Fη . When the file has been captured, the VCC instructs all the sites within its 

VC to look for a site where the file can be stored. Each site within the VC sends the 

value of 
iFη where iF is the file which has been captured. The site having the 

maximum 
iFη is selected because the site has the maximum normalized demand for 

the captured file. The file is then immediately stored in the selected site if there is 
space. However, if there is no space a replacement file within the site is searched. The 

file which has the lowest j
Fi

β (unless the site is the file owner) is selected as the 

replacement file because the file which is replaced has the least usefulness among all 
the files within the site.  

Local VC Replication (LVR):  Similar to the IVR strategy, LVR strategy also has 
three phases – Seek, Capture and Replace. All the files stored within a site are sorted 
in terms of their Expected Latency. In the seek phase, each site probes the other sites 
within a VC if there is a site which has a file whose Expected Latency is lower than 
the file having the Expected Latency stored in the VC. For example, let a site S1 has 
files F1, F2, and F3 with Expected Latencies 1, 2 and 3 seconds respectively. S1 
sends a PROBE message to S2 mentioning the maximum Expected latency is 3 secs. 
If S2 has a file F4 with lower Expected latency, it replies. S1 replaces the file F3 with 
F4. This has been explained in detail in [15]. 

3.4   Virtual Clustering in DistReSS 

Based on the scheduling and replication information, Virtual Clusters are created and 
maintained. Before going into details about the clustering approaches we define some 
terms which will be used in discussing the clustering approaches. 

Utility (U): Utility of a site S in a VC is defined as the files transferred from the site to 
the rest of the VC, multiplied by the ratio of the number of jobs scheduled to that site 
by the total number of jobs within the VC. A low utility indicates that the files stored 
in the site has very little utility to the rest of the VC and also the number of jobs 
scheduled in that site in the VC is very low. 

Lowest Utility Site ( λ ): The site within a VC having the lowest utility. 

Inter-VC Relation: A VC (VC1) is said to be stronger than the other VC (VC2) if the 
sum of the demands for the file in the VC1 is greater than VC2. 

Min and max site Limit: Each VC has a minimum and maximum number of sites it 
can contain. This is determined in advance by the grid administrator based on the 
number of clusters in the system. 
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The different steps of the clustering process are: (i) VC Initialization, (ii) VCC 
Selection and (iii) VC Maintenance. For the cluster initialization, a K-means cluster 
approach can be used. A VCC can be selected as the center of the cluster thus formed. 
In this section, we will discuss about the VC Maintenance in detail. 

VC Initialization: This can be done using a random algorithm, or a sophisticated K-
means approach can be applied. The center created as a result of the K-means 
algorithm can result in VCC selection. It is to be noted any other algorithm can be 
selected to solve this problem. 

VC Maintenance: In this step, each VC tries to add a site from the other VCs in a 
greedy manner. A VC (VC1) tries to add a site from another VC (VC2) if both the 
conditions take place: (a) VC1 is stronger than VC2, (b) The maximum limit of VC1 
is not attained, (c) The minimum limit of VC2 is not attained. 

Let the utility of 
2VCλ be 

1U  and the utility of 
2VCλ when added to VC2 be

2U . Once 

the above three conditions are satisfied, 
2VCλ  is added to VC1 if

12 UU > . 

Let us now look at the running times and storage complexity of DistReSS vis-à-vis 
the centralized algorithm. 

Running time for Scheduler: The worst case running time for the scheduler in case of 

the non-hierarchical centralized approach is O( fn 2 ), where n is the number of sites 

and f is the number of files in the grid system. In case of DistReSS, the worst case 
running time is O( fcnfc 22 )/(+ ), where c is the number of clusters. If nc = , then 

the worst case running time for DistReSS becomes O( nf ), which is O(n) less than 

the centralized non-hierarchical approach. 

Storage Requirements: In case of DistReSS, storage required at the VC level is the list 
of files present in each cluster. The storage size required to store such information is 
O( cf ) or O( fn ). To maintain the history table and called frequency information, 

the storage size required is O( fcn ./ ) or O( fn. ). In case of centralized algorithm, 

O( nf ) storage is required in addition to queue information for each site. 

4   Performance Studies 

Extensive simulations were conducted using Network Simulator (NS-2) [17] to 
evaluate the effectiveness of the distributed mechanism proposed in this paper. The 
DistReSS mechanism is compared with a centralized scheduling/replication approach. 

For the experiments, the various inputs were generated as follows: (a) Random grid 
topologies were generated based # nodes, # links. (b) The processing speed at the 
nodes is considered constant at 10 second/Gb of data. (c) Number of jobs requesting a 
particular file is distributed exponentially. This gives an elliptical file distribution per 
job with an average of 7 and total files in the system (φ ) as 20. The initial file 

distribution in the Grid is random. We also consider no background traffic in the Grid 
networks and the average bandwidth simulated is 20 Mbps. (d) Other default 
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parameters: Number of sites = 100, Number of links = 200, Storage limit at each node 
= 10 GB, number of clusters = 10. 

4.1   Selection of α 

In this set of experiments, latency is calculated and plotted for different values of 

VCα and siteα . In Figure 3, a variation of latency is plotted against VCα  and siteα  (x 

and z axes respectively). It is a 3-D figure. For low values of VCα  and siteα , the jobs 

are dispersed off to different sites, resulting in low queues at each site during 
scheduling. This can be seen from Figure 4, which shows the variation of AMQ with 

VCα  and siteα . For high values of VCα  and siteα  the jobs are scheduled to sites 

which has the least latency ignoring the queues resulting in increase in queue length. 

Figure 6 confirms this observation. From the figures, a value of VCα = 0.1 and siteα = 

0.3 results in lowest latency, though VCα = 0.1 and siteα = 0.1 results in lowest 

queue. For the subsequent experiments, we choose VCα = 0.1 and siteα = 0.3 as the 

choice results in the lowering of latency. 

0

20

40

60

80

100

120

Latency

100-120

80-100

60-80

40-60

20-40

0-20

 
0

50

100

150

200

250

300

AMQ

250-300

200-250

150-200

100-150

50-100

0-50

 

Fig. 3. Variation of Latency with VCα  Fig. 4. siteα , (b) Variation of AMQ with VCα , 

siteα  

4.2   Comparison with Centralized Approach 

In the next set of experiments, the DistReSS approach is compared with the 
centralized scheme. Centralized scheme, with cost based scheduling, has all the queue 
information and performs centralized replication.  

In Figures 5, 6 and 7, average latency is varied with bandwidth, number of nodes 
and storage limit respectively. In all these cases, the average latency decreases with 
the increase in the different parameters. When bandwidth increases, the time required 
to bring the number of files across sites decreases, resulting in the trend shown in 
Figure 7. The performance of the DistReSS approach (mentioned as Distributed in the 
Figure) is 5-7% worse than the centralized scheme. 

When the number of sites to schedule jobs increases, there are multiple options to 
schedule jobs. Therefore, the queue size at each site decreases resulting in the 
decrease in average latency. The trend is shown in Figure 6. The difference between  
 



 Scalable and Distributed Mechanisms for Integrated Scheduling and Replication 237 

0

50

100

150

200

250

300

5 10 15 20 25

BW (MB/s)

L
aa

te
n

cy
 (

se
cs

)

Distributed

Centralized

 

0

50

100

150

200

250

300

25 50 75 100 125 150

Number of Nodes

L
at

en
cy

 (
se

cs
)

Distributed

Centralized

 

Fig. 5. Variation of Latency with bandwidth Fig. 6. Variation of Latency with #sites 

the DistReSS approach and the centralized scheme reduces as the number of sites 
increases. This is because with more sites, the queues decrease and the effect of the 
scheduling and replication algorithm reduces. This can also be observed when the 
increase in the number of sites do not reflect in the same decrease in average latency 
(when number of sites >75). 

With the increase in the storage limit of the sites the average latency shows a 
similar trend. After the storage limit reaches a certain limit (10GB in Figure 7), the 
average latency more of less become static. This is because most of the commonly 
used files are present in all the sites resulting in a low average latency. In this case, 
the average latency for DistReSS does not go above 5% of the centralized scheme. 
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Fig. 7. Variation of Latency with storage Limit Fig. 8. Variation of scheduling time with size 

Figure 8 shows the variation of computation overhead at the scheduler with the 
number of nodes. Computation overhead is measured by the number of comparisons 
the scheduler performs before coming to a scheduling decision. The distributed 
approach (DistReSS) requires significantly less computation than its centralized 
counterpart. 

5   Conclusions 

In this paper, a distributed and scalable replication and scheduling approach called 
DistReSS has been proposed. The DistReSS approach provides a technique of 
integrating scheduling and replication techniques in a distributed and hierarchical 
manner. The technique is O(n) times faster than the centralized scheme and requires 
O( n ) less storage than the centralized scheme. Several experiments have been 
conducted to evaluate the effectiveness of the centralized scheme vis-à-vis the 
centralized scheme. The performance of the DistReSS approach is comparable to that 
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of the centralized scheme (within 5-7%). Therefore, DistReSS provides a scalable 
alternative to the centralized scheme without sacrificing the performance too much.  

As part of future work, a theoretical framework for selecting cluster size of a VC 
will be derived and an adaptive α based technique will be developed and analyzed.  
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Abstract. This paper presents a distributed Grid-based Density Clus-
tering using Triangle-subdivision (DGDCT), capable of identifying ar-
bitrary shaped embedded clusters as well as multi density clusters over
large spatial datasets. Experimental results are presented to establish
the superiority of the technique in terms of scale-up, speedup as well as
cluster quality.

1 Introduction

Clustering is the process of division of a data set into subsets or clusters, so
that the similarity of points in each partition is as high as possible, while points
in different partitions are dissimilar [1]. It is very effective in discovering hid-
den patterns of data sets and is an important research topic. Major clustering
techniques have been classified into partitional, hierarchical, density based, grid
based and model based. Among these techniques, the density-based approach is
famous for its capability of discovering arbitrary shaped clusters of good quality
even in noisy datasets [2]. Grid-based clustering approach is well known for its
fast processing time especially for large datasets. In this paper, an efficient dis-
tributed intrinsic cluster detection algorithm (DGDCT) is presented, which can
handle massive spatial datasets with better cluster quality. The method exploits
a grid based technique to group the data points into blocks and the density of
each grid cell calculated. The blocks are then clustered by a topological search
algorithm. For finer clustering result, a triangle-subdivision method is used. The
algorithm finds quality clustering even over variable density space.

2 Related Works

This section reports a selected review on some of the relevant density based, grid
based and parallel and distributed clustering techniques.

The idea behind density based clustering approach is that the density of points
within a cluster is higher as compared to those outside of it. DBSCAN [2] is
a density-based clustering algorithm capable of discovering clusters of various

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 239–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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shapes even in presence of noise. However, due to the use of the global density
parameters, it fails to detect embedded or nested clusters.

Grid based methods are computationally efficient which divide the data space
into a finite number of cells that form a grid structure on which the clustering
operations are performed. It has many advantages such as the total number of
the grid cells is independent of the number of data points and is insensitive to the
order of input. Among the popular grid based clustering techniques, STING [3]
uses a multi-resolution approach, which is query-independent and easy to paral-
lelize. However the shapes of clusters have horizontal or vertical boundaries but
no diagonal boundary is detected. WaveCluster [4] is capable in detecting out-
liers and is very fast. However, it is not suitable for high dimensional data sets.
CLIQUE [5] automatically finds subspaces of the highest dimensionality and is
insensitive to the order of input. pMAFIA [6] an improved version of CLIQUE,
uses the concept of adaptive grids for detecting the clusters. It is not scalable
w.r.t. dimension.

Real life datasets have a skewed distribution and may also contain nested
cluster structures, the discovery of which is very difficult. Chameleon [7] can
handle multi-density datasets at the cost of time complexity. SNN [8] finds clus-
ters of varying shapes, sizes over multi-density datasets, however, the degree of
precision is low in finding outliers. In [9], clusters are found based on the idea
of density-isoline, however, each cluster cannot be separated efficiently. Density-
grid based algorithm [10] uses a uniform density threshold which causes the low
density clusters to be lost. OPTICS [11] and EnDBSCAN [12] can identify em-
bedded clusters over varying density space. However, these are very sensitive to
the input parameters. EnDBSCAN [12] can detect embedded clusters, however,
with the increase in the volume of data, it’s performance degrades.

Parallel and distributed computing is expected to relieve current clustering
methods from the sequential bottleneck, providing the ability to scale massive
datasets and improving the response time. Such algorithms divide the data into
partitions, which are processed in parallel. The results from the partitions are
then merged. The distributed DBSCAN algorithm [13]based on low cost dis-
tributed memory multi-computers can be found to be scalable both in terms of
speedup and scale-up. The parallel k-means algorithm [13] is based on shared
nothing architecture. PDBSCAN [13], also uses a shared-nothing architecture
which offers nearly linear speedup and has excellent scale-up and size-up behav-
ior. DBDC [14] is scalable to large datasets and gives clusters of good quality.
In [13], a parallel version of the AutoClass system, P-AutoClass is described.
In [13], a Collective Hierarchical Clustering (CHC) algorithm for analyzing dis-
tributed and heterogeneous data was presented.

Based on our selected survey and experimental analysis, it has been observed
that most of the techniques are incapable in handling multi-density datasets as
well as multiple intrinsic or nested clusters over massive datasets qualitatively. To
overcome these shortcomings, this paper presents a grid-density based clustering
algorithm which can effectively find clusters according to the structure of the
embedding space over massive datasets.
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3 Theoretical Background of the Work

In a grid-density based clustering approach, the data space is divided into grid
cells and the grid cells whose densities are similar are merged. The adaptive
grid cell represents the maximal space that can be covered by the similar dense
grid cells. Here, we introduce some definitions which are used in DGDCT.

Definition 1. Cell Density: The number of spatial point objects within a par-
ticular grid cell.

Definition 2. Useful Cell: Only those cells which are populated i.e., which con-
tain data points will be treated as useful cell.

Definition 3. Neighbor Cell: Those cells which are edge neighbors or vertex
neighbors of a current cell are the neighbors of the current cell.

Definition 4. Density Confidence of a cell: If the ratio of the densities of the
current cell and one of its neighbors is greater than or equal to some β (user
input) then β is the density confidence between them. Two cells P1 and Q1 will
be merged into the same cluster if β ≤ dn (P1) / dn (Q1) where dn represents
the density of that particular cell.

Definition 5. Reachability of a cell: A cell p is reachable from a cell q if p is
a neighbor cell of q and cell p satisfies the density confidence condition w.r.t.
cell q.

Definition 6. Triangle Density: The number of spatial point objects within a
particular triangle of a particular grid cell.

Definition 7. Useful Triangle: Only those triangles which are populated i.e.,
which contain data points will be treated as useful triangle.

Definition 8. Neighbor Triangle: Those triangles which have a common edge
to the current triangle are the neighbors of the current triangle. Figure 1 shows
the neighbor triangles (shaded) of the current triangle P.

Fig. 1. Neighbor triangles of the triangle P

Definition 9. Density Confidence of a triangle: Two triangles can be merged
into the same cluster, if the ratio of the densities of the current triangle and one
of its neighbors is greater than or equal to β/4 i.e. β / 4 ≤ dn (TP1) / dn (TQ1),
where dn represents the density of the particular triangle.
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Definition 10. Reachability of a triangle: A triangle p is reachable from a trian-
gle q if p is a neighbor triangle of q and triangle p satisfies the density confidence
condition w.r.t. triangle q.

Definition 11. Cluster: A cluster is defined to be the set of points belonging to
the set of reachable cells and triangles i.e. if p ∈ C and q is reachable from p
w.r.t. β, then q ∈ C, where p and q are cells or triangles.

Definition 12. Noise: Noise is simply the set of points belonging to the cells (or
triangles) not belonging to any of its clusters. Let C1, C2, ....Ck be the clusters
w.r.t. β, then noise = {no p | p ∈ n×n,∀i : no p /∈ Ci}, where no p is the set of
points in cell p and Ci (i=1,...,k).

Both cell-reachability and triangle-reachable relation follows symmetric and
transitive property within a cluster C.

3.1 Density Confidence

The density confidence for a given set of cells or triangles reflects the general
trend of that set. If the density of one cell (or triangle) is abnormal from the
others it will not be included in the set. Similarly, each useful cell has a density
confidence with each of its neighbor cells. If the density confidence of a current
cell with one of its neighbor cell does not satisfy the density confidence condition
than that neighbor cell is not included into the local dense area. On the contrary,
if it satisfies the condition than the neighbor cell is treated as a part of the local
dense area and merged with the dense area. In comparison to other methods
of setting a global threshold, this method has the ability to recognize the local
dense areas in variable density space.

3.2 Use of Triangle-Subdivision

Triangle is a special form of a quadrilateral i.e. triangles are degenerated quadri-
laterals with two of the vertices merged together. Triangle-subdivision is adopted
for interpolation of data with better accuracy as compared to that in rectangle.
This is because of the fact that partitioning of the data set can be performed
more efficiently in triangular shape than in rectangular shape due to its smaller
space dimension.

4 The Proposed Technique

The proposed architecture adopts shared nothing architecture. It considers a
system having k-nodes where the entire dataset D is located in any of the nodes
(say node 1). Node 1 executes a fast partitioning technique to generate the k
initial partitions. The partitions are then sent to k nodes (including itself) for
cluster detection using a grid-density based clustering technique (GDCT) which
can operate over variable density space. Finally, the local cluster results are
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received from the nodes at the initiator node (node 1) and a merger module is
used to obtain the final cluster results. Basically the technique works in three
phases and the output of each phase becomes the input of the subsequent phase.

Phase I
Phase I of the architecture is executed in one of the nodes (node 1). The dataset
is spatially divided into equal size square grid cells and density of each grid
cell is computed. The square mesh is then partitioned with some overlap be-
tween adjacent partitions and distributed over k available computers (nodes).
No subsequent movement of data between partitions will take place.

Initially, the data space is divided into n×n non-overlapping square grid cells,
where n is a user input, and maps the data points to each cell. It then calculates
the density of each cell.

Assuming, the grid mesh D contains the set of n×n objects say, D = O0, O1,
O2, ...., O(n×n)−1. Suppose, Oj = (a0j , a1j , a2j ,.., a(d−1)j; dn) represents a grid
cell with d real-valued attributes ai, i=0,.,d-1 and density dn. The ith attribute
value of object Oj is drawn from domain aj. If there are k clients, the grid mesh
D is partitioned into k subsets D0, D1, ...., D(k−1) ordered in sequence. We refer
the clients by the corresponding partition Dj that it receives for processing.

D = D0 ∪ D1 ∪ D2 ∪ · · · ∪ Dk−1

Di ∩ Dj �= φ for i, j = 0, · · · , (n × n) − 1
= φ for | i, j |≥ 2, i = 0, · · · , (n × n) − 1, j = 0, · · · , (n × n) − 1

The partially overlapped partitions are shown in Fig. 2 for 2D case. An overlap
of one grid cell occurs between two adjacent partitions. The overlapped regions
are much smaller than the partitions. The grid cells in the overlapped regions are
locally clustered in both the adjacent partitions. Thus they provide the informa-
tion for merging together the local clustering results of two adjacent partitions.
The overlapped width should be at least one cell width because adjacent cells
are neighbors according to Definition 3. The grid mesh D is partitioned in this
manner based on the values of a selected attribute of the data objects say as.
The values of as have a range of [min as, max as]. We need to select (k + 1)
constants in the given range. Let ci, i = 1,· · ·, k+1 represent the constants such
that ci = min as, ck+1 = max as and ci < ci+1. Therefore the overlapped region
can be represented as,

Di = {∃j(Oj ∈ D) | ci − cell width ≤ asj ≤ ci+1}, i = 2, · · · , k − 1
Di = {∃j(Oj ∈ D) | ci ≤ asj ≤ ci+1 + cell width}, i = 1
Di = {∃j(Oj ∈ D) | ci − cell width ≤ asj ≤ ci+1}, i = k

Load Balancing. Partition Di is sent to processor Pi, i=1,· · ·,k for concurrent
clustering. Since no data movement takes place after the partitions are created,
care has been taken so that each processor receives nearly equal number of data
objects for processing. We assume that the processing speeds of the processors
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Fig. 2. Overlapped spatial partitioning of a 2D data set

are equal. The range of as is divided into intervals of width of one cell width
and the frequencies of data in each interval is counted. The load balancing is
done in a manner similar to [13] which ensures that each partition gets number
of objects nearly equal to N/k.

Phase II
This phase is executed in each of the k nodes and plays the actual role of cluster-
ing. Here, each node executes GDCT over the partition of data received from the
initiator node. The cells of the partition received are sorted according to their
density values and the cell with the highest density becomes the cluster initiator.
The remaining cells are then clustered iteratively in order of their densities. A
neighbor search is conducted, starting at the highest density cell and inspecting
adjacent cells. If a neighbor cell is found which satisfies the density confidence
condition of a cell, then the neighbor cell is merged with the current cell to form
the adaptive grid, and the search proceeds recursively with this neighbor cell.
This search is similar to a graph traversal where the nodes represent the cells
and an edge between two nodes exists if the respective cells are adjacent and
satisfies the density confidence condition of a cell. When this process stops, the
first adaptive grid is formed which is an approximation of the innermost cluster
or the cluster with the maximum density, minus the boundary region. The cells
falling inside a particular adaptive grid are classified with the same cluster id.
The adaptive grid will reflect the rough cluster formed.

The cluster shape in the boundary region varies more since there is a tran-
sition from denser region to sparser region when we are considering intrinsic or
variable density clusters. Therefore, this region needs special analysis. So, after
the adaptive grid is formed, there might still be some points of the approximate
clusters that lie outside the adaptive grid as shown by the red ellipse (black
color ellipse for gray scale images) in Fig. 3. These points have been excluded
because the cells in which they reside have not satisfied the density confidence
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of a cell with its neighbor belonging to the adaptive grid so formed. This is be-
cause only a small portion of that part of the cluster has fallen in a different cell.
Therefore the density of that cell is much less than its adaptive grid neighbor.
Therefore, for finding the finer clustering, a cell is triangulated i.e. the cell is di-
vided into four triangles. Those cells in the adaptive grid having at least one of
its useful neighbor cells as unclassified are triangulated. The useful unclassified
cells which have at least one of its neighbor cells belonging to the most recently
formed adaptive grid are also triangulated. The data points of the cells that have
been triangulated are mapped to the respective triangles in which they fall using
the Barycentric coordinates [15]. Once the first adaptive grid has been formed,

Fig. 3. Example grid approximation for a dataset (n = 20)

the cells falling inside that particular adaptive grid are classified with the same
cluster id . The process then checks the neighbors of the last formed adaptive
grid cells. If any one of the neighbors is an unclassified useful cell then both
the adaptive grid cell as well as the unclassified neighbor cell is triangulated.
Suppose Pm is a cell of the adaptive grid last formed and cell Pi is one of its
unclassified useful neighbor cell where Pi ∈ Pi1, Pi2,· · ·, Pi8. Then Pi and Pm

is triangulated in a manner as shown in Fig. 4. During Triangle-subdivision, a
particular grid cell is divided into four triangles. Each of the triangles Tki inside
the cell Pi is verified for the following cases:

Case 1 : Tki has a neighbor triangle Tmi which is part of adaptive grid cell Pm,
then the two triangles Tki and Tmi are merged if their densities satisfy the den-
sity confidence condition of a triangle and triangle Tki obtains the cluster id
of Tmi.
Case 2 : Tki has a neighbor triangle Tji which has already been classified and the
densities of Tki and Tji satisfy the density confidence condition of triangles, then
Tki will be merged with Tji and Tki will be classified with the same cluster id
as Tji.

The process of triangle merging stops when no more triangles satisfy the den-
sity confidence condition of a triangle. When the process of triangle merging
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Fig. 4. Triangle-subdivision of grid cells (red polygon shows the adaptive grid or a
rough cluster)

stops the cluster with the maximum density is obtained. The process then starts
the next adaptive cell formation with the next maximum density cell from the set
of unclassified cells. The process continues recursively merging neighboring cells
that satisfy the density confidence condition of a cell. Therefore, the adaptive
grid formation and triangle-subdivision method are repeated alternately till all
the useful cells have been classified. The classified cells and triangles represent
the distinct clusters and finally the data points are assigned the cluster id of the
respective cells and triangles.

Procedure of GDCT
The execution of the algorithm includes the following 9 steps:

1. Create the grid structure
2. Compute the density of each cell
3. Sort the cells according to their densities
4. Identify the maximum dense cell from the set of unclassified cells
5. Traverse the neighbor cells starting from the dense cell and form the adaptive

grid (rough cluster)
6. Triangle-subdivision of the border cells of the adaptive grid which have at

least one of its neighbors as a useful cell
7. Triangle-subdivision of the unclassified neighbor cells of those border cells
8. Merge the triangles and assign cluster id
9. Repeat steps 4 through 9 till all cells are classified

The cluster expansion based on the grid cells detects embedded and nested
cluster structures since after expansion of a cluster the algorithm searches for
the next candidate cell which reflects a variation in density in the dataset. The
process starts expanding the new density region till there is again a density
variation. This process iterates till all the cells have been classified. The triangle
expansion gives a finer clustering result since the cluster expansion based on
cells misses some border points as can be seen in Fig. 3. The expansion based on
triangle-subdivision detects the border points which have been left out by cell
based expansion. Therefore, the quality of the clusters becomes highly accurate
in addition to detecting intrinsic and multi-density clusters.

During clustering, the algorithm considers only the grid cells to identify the
possible global and embedded clusters and assigns cluster id accordingly. For the
partition Di in node i, the grid cells in it will be assigned cluster id according
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to the clusters formed in that partition. The cluster id will be used during the
server based merging process.

The cluster expansion based on grid cells reduces the computation time as all
the data points are not considered for cluster expansion only the density infor-
mation of each cell is used. Moreover, the cluster id information is used during
Phase III merging process. It saves the cost of merging to a great extent. Finally,
Phase II transmits the cluster objects to the server along with the cluster id in-
formation.

Phase III
In Phase III, the cluster results received from the k nodes undergo a simpli-
fied, yet faster merging procedure to obtain the final clusters. Since the Phase
II process in a node may yield more than one cluster along with the embedded
clusters, so there are always possibilities for merging during Phase III operation.
The Merger module works as follows:

1. Join the partitions received from the k nodes according to their overlapping
marks.

2. Consider the marked grid cells (overlapping cells) of the candidate clusters.
3. If any of the marked grid cells is identified by different cluster ids by different

partitions (say l, m), then assign any one of the ids (say l) to that cell.
4. Assign all those cells having the same cluster id as that of the replaced id

(m) with l.

4.1 Complexity Analysis

Since the proposed technique is executed in three phases and each phase is
independent of each other, therefore, the total complexity will be the sum of the
complexities due to these three phases. The first phase, partitions the dataset
into n × n cells resulting in a complexity of O(N) where N is the total number
of data points and then partitioning the grid mesh into k partitions results in
a complexity of O(n × n), where n << N . Therefore (N/k) + t points will be
sent, where t is the average number of points present in an overlapped region.
Transmitting these (N/k) + t points to each node requires a communication time
of O((N/k) + t). The second phase is dedicated to sorting of the cells according
to density as well as clustering, which results in a complexity of O((n × r) log
(n×r)) + O(nc × m × (p + q)), where m is the number of cells in an adaptive grid
formed, nc is the number of clusters obtained, p and q are the average number
of border and neighbor cells that undergo triangle subdivision. The clusters
detected in this phase are re-transmitted to the initiator node with a transmission
cost of O((N/k) + t)). The third phase is responsible for merging of the clusters
resulting in O(N+k.t) time. The overall time complexity of distributed GDCT
will be O(N) + O(n × n) + O((N/k) + t)) + O((n × r) log (n × r)) + O(nc ×
m × (p + q)) + O((N/k) + t)). Now, since O(N) dominates the other terms,
therefore, the time complexity becomes O(N).
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5 Performance Evaluation

To evaluate the technique in terms of quality of clustering, we generated the
synthetic data set as shown in Fig. 5. The results are shown in Fig. 6. The results
obtained when the algorithm was applied on the Chameleon t4.8k.dat, t7.10k.dat
and t5.8k.datdatasets [8] are shown in Fig. 7 (a), 7(b) and 8 respectively. From
our experiments it has been found that the clustering result is dependent on the
threshold β which varies in the interval [0.5, 0.7]. From the experimental results

Fig. 5. Synthetic Fig. 6(a). Format- Fig. 6(b). After full Fig. 6(c). The final
Dataset ion of first cluster expansion five clusters

obtained, we can conclude that DGDCT is highly capable of detecting intrinsic
as well as multi-density clusters qualitatively. In the next section, we empirically
study the performance of the proposed DGDCT algorithm.

5.1 Performance and Scalability Analysis

Since there is no inter-processor communication except for a single processor
communicating with each of the remaining processors. Each processor has the
same specification i.e. PIV with 1 GHz speed and 128 MB RAM and the pro-
cessors are connected through Ethernet LAN of speed 10/100 Mbps. To smooth
out any variation, each experiment was carried out for five times and the average
result were taken and each reported data point is to be interpreted as an average
over five measurements. Our implementation is in C in Linux environment. Next,
we generated several synthetic datasets containing arbitrary number of arbitrary
shaped clusters having 2,00,000, 4,00,000, 6,00,000, 8,00,000 and 10,000,000 ob-
jects respectively and experimentation was carried out.

Parallel Execution Time: The parallel execution time, denoted by T (k), of
a program is the time required to run the program on a k-processor parallel
computer. When k = 1, T (1) denotes the sequential run time of a program on a
single processor. Our experiments reveal that the execution time decreases sig-
nificantly with the increase in the number of processors.

Speedup: Speedup is a measure of relative performance between a multipro-
cessor system and a single processor system, defined as, S(k) = T (1)/T (k). On
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Fig. 7(a). t4.8k.dat dataset Fig. 7(b). t7.10k.dat dataset

Fig. 8. Clusters obtained from t5.8k.dat dataset

experimenting it has been found that the speedup factor increases with the in-
crease in the number of processors. Figure 9 shows relative speedup curves for
two data sets with points N = 8×105 and 6×105. The number of dimensions
and the number of clusters are fixed for both the data sets. The solid line rep-
resents ”ideal” linear relative speedup. For each data set, a dotted line connects
observed relative speedups.

Efficiency: The efficiency of a program on n processors, i.e. E(k) is defined as
the ratio of speedup achieved and the number of processors used to achieve it.
E(k) = S(k)/k = T (1)/k.T (k). In case of the proposed technique we observed
that too many processors does not ensure the efficiency.

Scale-up: The scale-up characteristic of the proposed technique has been found
to be satisfactory with the increase in the number of processors as can be seen
from Fig. 10. Here the number of data points is scaled by the number of proces-
sors while dimensions and number of clusters are held constant.

Fig. 9. Relative Speedup curves Fig. 10. Scale-up curve
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While comparing to DBSCAN, OPTICS, EnDBSCAN, GDLC and Density-
isoline, the proposed DGDCT requires the number of grid cells, i.e. n and thresh-
old β as input parameters. However, from our experiments it has been observed
that the threshold β does not vary significantly with different datasets. GDCT
can effectively detect embedded clusters over variable density space as well as
multiple nested clusters.

6 Conclusions and Future Work

A distributed grid-density based clustering technique that can detect global as
well as embedded clusters qualitatively has been presented. Experimental results
are reported to establish the superiority of the algorithm in terms of scale-up
and speedup. However, there are scopes for scaling DGDCT to detect clusters
over high dimensional space.
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Abstract. Association rule mining is one of the most researched areas
because of its applicability in various fields. We propose a novel data
structure called Sequence Pattern Count, SPC , tree which stores the
database compactly and completely and requires only one scan of the
database for its construction. The completeness property of the SPC
tree with respect to the database makes it more suitable for mining as-
sociation rules in the context of changing data and changing supports
without rebuilding the tree. A performance study shows that SPC tree
is efficient and scalable. We also propose a Doubly Logarithmic-depth
Tree, DLT, algorithm which uses SPC tree to efficiently mine the huge
amounts of geographically distributed datasets in order to minimize the
communication and computation costs. DLT requires only O(n) mes-
sages for support count exchange and it takes only O(log log n) time for
exchange of messages, which increases its efficiency.

Keywords: Association rule mining, Distributed databases, Sequence
Pattern Count Tree, Incrementalmining, DoublyLogarithmic-depth Tree.

1 Introduction

Due to the explosive growth in the number, size and complexity of databases,
many geographically distributed organizations, the ever-growing number of ap-
plications and the high scalability of distributed systems, there is a need for
mining distributed databases [4]. Association Rule Mining (ARM), the mining
of frequent patterns in large transaction databases and many other types of
databases has been studied popularly in data mining research. The most impor-
tant component affecting the performance of any ARM algorithm is the number
of disk accesses required [1]. Recently alternative data structures were employed
in order to improve the efficiency of existing and new algorithms [5]. This mo-
tivated us to propose an approach that employs an abstraction called Sequence
Pattern Count, SPC, tree which is more compact and complete, and suitable
for incremental mining and changing support [10]. A SPC tree is constructed
using a single database scan and can be updated dynamically. Algorithm based
on this structure does not require any more database scans to generate frequent
itemsets [6].

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 251–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



252 P. Santhi Thilagam and V.S. Ananthanarayana

All proposed algorithms for mining association rules in distributed databases
focus on reduction of communication [3], efficient usage of memory, processing
power, ability to scale up the number of processors and associated data, ability
to increase the size of the database, decrease in response time with addition of
processors[4][8]. However, the majority of the parallel mining algorithms suffer
from high communication and synchronization overhead [2][7]. In this work, a
new distributed association rule mining approach is proposed that decreases
communication costs by introducing a new message exchange procedure and a
new computational efficient technique that reduces computation time. Our main
contributions reported in this paper are:

1. Communication optimization: Doubly Logarithmic-depth Tree algorithm is
used to minimize the communication costs in terms of number of messages
for support count exchange and time taken for exchange of these messages.

2. Minimization of the number of database scans: SPC tree structure is used
to make the mining process more efficient in terms of database scans in the
distributed environment, which requires only one scan of the database for
mining frequent itemsets.

2 Distributed Association Rule Mining

Let ‘DB’ be a database and ‘n’ be the processors of nodes namely P1, P2, . . . , Pn

which are connected over a computer network. Each processor has a local mem-
ory and a local disk. The processor can communicate only by passing messages
and we assume that there is no loss of message during communication and net-
work is completely reliable. Let the database DB be partitioned into n non-
overlapping blocks DB1, DB2, . . . , DBn where n is the number or processors
available and each partition DBi has the same schema. Let the size of DB and
the partitions DBi be D and Di respectively. For a given itemset X , let X.sup
and X.supi be the respective support counts of X in DB and DBi. The problem
is to find all frequent itemsets in DB[9].

2.1 Solution Approach

Distributed Association Rule Mining is explained in Algorithm 1 which consists
of the following phases:

SPC tree Construction – This preprocessing step allows us to store the DBi

compactly in main memory. The frequent-1 itemsets can be generated during
the construction of the SPC tree which will be used in mining process later.
SPC tree construction is explained in Algorithm 2. SPC tree Growth – This
algorithm adopts pattern-growth approach to mine all frequent itemsets from
the SPC tree which requires no more database scans. Communication between
processors – It uses DLT algorithm to exchange the local counts between the
processors in order to calculate the global count of each itemsets which is ex-
plained in Algorithm 3.
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Algorithm 1: Distributed Association Rule Mining using SPC Tree

Input: Database DB partitioned into n non-overlapping blocks
D1, . . . , Dn

Output: Frequent itemsets with respect to Database DB.
Steps:
1. Each processor Pi makes a pass over its database partition DBi

and builds a local SPC tree and local frequent-1 itemset with
respect to DBi.

2. All the processors synchronize after this step to exchange
their local frequent-1 itemset with all other processors using
Doubly Logarithmic-depth Tree (DLT) algorithm to get global
frequent-1 Itemset. Now all the processors have the same
global frequent-1 itemset.

3. Each processor Pi now computes the locally large frequent
itemset for each item in global frequent-1 itemset using DBi

and removes infrequent items from its SPC tree.
4. All the processors synchronize again at this point and exchange

their SPC trees(excluding infrequent items) with other nodes
using DLT algorithm and accumulate the total frequent itemsets
for each item in global frequent-1 itemset for
DB (DB1 ∪ DB2 ∪ . . . ∪ DBn).

5. Association rules are obtained by mining on this global
frequent count obtained after the second synchronization.

2.2 Sequence Pattern Count Tree

Node Structure: Each node in the SPC tree consists of five fields: start represents
the start of a partial sequence, end represents the end of a sequence, count
registers the number of transactions represented by the portion of the sequence,
child pointer - a pointer to the left most child from the node and sibling pointer
- a pointer to the right sibling of a node.

Definition 1. Sequence. A Sequence in a transaction is a non-empty succes-
sion of itemset(s) which form a subset in a given transaction.

Algorithm 2: Construction of SPC Tree

Input: A transaction Database DB
Output: SPC Tree for the given database DB
Steps:
Let DB be the transaction database.
Let T be the root of the SPC Tree.
for each transaction ti ∈ DB,
BEGIN
Let ki and kj be the start and end of a sequence Si in mi.

If no branch of T with start index ki exist,
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Create a new node for each Si, Sj , . . . in mi with count value
set to 1 for all nodes. Add this branch to T as child node.

Else
Increment the count of the node T if Snode = Smi or if the
sequence matches partially, split the node accordingly and
create a new node for unmatched S and rest of mi and insert
into T.

End if
END

Properties of the SPC tree: Given a transaction database, the corresponding
SPC tree stores all the information of the database completely. SPC tree repre-
sentation of the transaction database is compact. The maximum height of SPC
tree is half of the length of the transaction. SPC tree supports change of data
and allows mining with multiple minimum support values.

2.3 Analysis and Results

Datasets are generated with the data generator by IBM QUEST [11]. Experi-
ments are performed on a Pentium IV 1.6 GHz PC with 512MB RAM running
on Window 2000 server. We implemented the SPC tree using the IBM Quest
Database file which has a total of 2, 94,846 transactions having 1000 items. Our
experiments show that a small SPC tree is created by compressing quite large
database. Scalability of the SPC tree is tested against different datasets. The
Fig. 1 shows the time required to construct SPC tree, PC tree and memory re-
quirements of both the trees. The time required to mine is proportional to the
time required to traverse the SPC Tree. The Fig. 1 also shows the time required
to mine all the frequent itemsets from Table 1 Data Set 4.

Table 1. Datasets used

Data Set Size of database(MB) Number of items

Set 1 16.7 1000
Set 2 33.4 1000
Set 3 66.9 1000
Set 4 98.5 1000

2.4 Doubly Logarithmic-Depth Tree Algorithm (DLT)

DLT algorithm is used to exchange support count messages efficiently in a dis-
tributed environment. The time complexity required by this algorithm is min-
imized and turns out to be O(log log n). The number of message transfers
required by this algorithm is minimized and turns out to be O(n) at every syn-
chronization point, where ‘n’ is the total number of nodes.
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Fig. 1. Space and Time graph

Algorithm 3: Doubly Logarithmic-depth Tree for message exchange

Input: Configuration file containing ADDR: Internet address,
PORT: port number, MYNUM: node number, num: number of items,
sup: minimum support, n: total number of nodes,
level: number of levels in the doubly logarithmic tree.

Output: Globally frequent patterns.
Steps:
1. Start from level ‘k’. Every processor Pi where i = 2 ∗ j + 1

for j = 0, 1, . . . , n/2 sends its support count to the processor
Pi+1 which is its parent.

2. Pi+1 compute the sum of support counts from its local set and
the set received through the message.

3. For levels d = k − 1 to 0, do the following:
a. Consider the processors that were parents at (d + 1)th level.

b. Partition them into groups of 22(k−d−1)
children in order of

their numbering.
c. All the processors in a group send their computed support

counts to the processor Pi with the highest value of i.
Pi becomes their parent.

4. The sole parent Pi at the level d = 0 is the root of the
doubly logarithmic-depth tree and contains the computed
global count.

5. The global count is back propagated to all the other
processors by going down the path traversed in the steps 1-3.
The parent node at each stage sends the global count to each
of its children.
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3 Conclusion

In this paper, we proposed and studied an efficient and effective algorithm for
mining association rules in distributed databases. The DLT algorithm for mes-
sage passing achieves count exchange with O(n) message transfers in O(log log n)
time which is very efficient when compared to implementations using polling sites
which require O(n2) message transfers. It constructs a highly compact SPC Tree
which is substantially smaller than the original database and saves the costly
database scans in the subsequent mining process. From the experimental studies,
our algorithm has been found to be efficient.
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Abstract. We present a compile time list heuristic scheduling algorithm
called Low Cost Critical Path algorithm (LCCP) for the distributed
memory systems. LCCP has low scheduling cost for both homogeneous
and heterogeneous systems. In some recent papers list heuristic schedul-
ing algorithms keep their scheduling cost low by using a fixed size heap
and a FIFO, where the heap always keeps fixed number of tasks and the
excess tasks are inserted in the FIFO. When the heap has empty spaces,
tasks are inserted in it from the FIFO. The best known list scheduling al-
gorithm based on this strategy requires two heap restoration operations,
one after extraction and another after insertion. Our LCCP algorithm
improves on this by using only one such operation for both the extraction
and insertion, which in theory reduces the scheduling cost without com-
promising the scheduling performance. In our experiment we compare
LCCP with other well known list scheduling algorithms and it shows
that LCCP is the fastest among all.

1 Introduction

Parallel computers are getting faster by using more and more processors and
the processors are becoming very complex day by day. But it is not long before
the transistors would reach their physical boundaries, thus making further im-
provements impossible. So, the distributed memory systems will become most
important in the field of fast parallel processing systems.

The problem of scheduling tasks in a large scale system during the compi-
lation is costly. It has been proven that the optimal solution of the schedul-
ing of the tasks on the bounded number of processors is NP-complete [6,8,11].
There are many types of scheduling algorithms like the list scheduling algo-
rithms [5,7,10,12,13,14,15], clustering algorithms [16], and duplication based al-
gorithms [1,3,9]. But the algorithms other than the list scheduling ones have the
drawback of high time complexity. On the other hand, list scheduling algorithms
have low scheduling cost with acceptable scheduling performance [5].
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This paper presents a list heuristic scheduling algorithm called Low Cost Crit-
ical Path algorithm (LCCP) for the distributed memory systems with improved
time bounds for both homogeneous and heterogeneous processors. Homogeneous
processors means all the processors must operate at the same speed, whereas het-
erogeneous processors do not have such restriction. LCCP uses a fixed size heap
and a FIFO to store the tasks and the heap size is same as the number of pro-
cessors in the system. The LCCP outperforms all the other algorithms that use
fixed size heap by using less number of heap restoration operation. Theoretically
LCCP achieves an O(|V | log |P |) improvement over those algorithms over the set
of |V | tasks and we also show this in practice.

2 Preliminaries and Related Work

A parallel program can be modeled as a directed acyclic graph G = (V, E), called
the task graph, where V is the set of nodes and E is the set of edges Fig. 1 shows
the miniature structure of task graphs representing LU decomposition, laplace
equation solver, stencil, and fast fourier transformation problems. Actual task
graphs has more nodes but same structure. Each task (node) represents a group
of instructions that can be executed sequentially without any interruption and is
associated with a task computation cost. Each edge is associated with a message
communication cost. When a task is scheduled, a processor, a start time and a
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t8

(b) Laplace

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

(c) Stencil

t0

t1 t2

t3 t4 t5 t6

t7 t8 t9 t10

t11 t12 t13 t14
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Fig. 1. Miniature task graphs for (a) LU decomposition, (b) laplace equation solver,
(c) stencil algorithm, (d) fast fourier transform

finish time is assigned to it. A task is said to be ready if all of its parents have
already been scheduled. Note that parents of a task may be scheduled on different
processors. The Processor from which the last message arrives to a ready task
is called the enabling processor. A new task can start to execute on a processor
only after all the previously scheduled tasks on that processor have finished their
execution. The processor that can finish executing the tasks already scheduled
on it earliest, is called the processor become idle the earliest. The time at which
a task can start execution on a processor is called the execution start time of
that task on that processor. The processors are connected in a clique topology,
that is the inter-processor communication is contention free.

An entry task has no incoming edges, hence no parents. An exit task has no
outgoing edges, hence no children. The earliest starting time of a node v is the
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length of the longest path from an entry node to v. The latest starting time of
v is the length of longest path from v to an exit node. Since by definition entry
tasks can be scheduled before other tasks, the earliest and latest starting time
of entry tasks are set to be zero. In contrary, since exit tasks must be scheduled
after the other tasks have been scheduled, for an exit task the earliest starting
time needs to be calculated and the latest starting time is set equal to that. One
or more of the above attributes of a task is used as the task priority.

The scheduling cost of an scheduling algorithm means the algorithm’s own
time complexity. The make-span or the scheduling length of G is the time from
the starting of execution of the very first task(s) and the ending of the last
task(s). The scheduling performance of an algorithm means how much it can
optimize the make-span. The scheduling problem is to schedule V tasks on P
processors in such a way that the make-span of the tasks is optimized.

Related work. We will compare LCCP with fast critical path algorithm (FCP)
[13,14] and some other well known list heuristic scheduling algorithms such as
modified critical path algorithm (MCP) [12], highest level first with estimated
time algorithm (HLFET) [10], earliest time first algorithm (ETF) [7] and dy-
namic level schedule algorithm (DLS) [15]. So far FCP has the lowest scheduling
cost. FCP is based on MCP. It maintains a min heap of fixed size |P | and a
FIFO, where |P | is the number of processors. Among all ready tasks, only |P |
tasks are in the heap and the remaining ready tasks are in FIFO. The priority
task selection criteria in FCP is the latest starting time. At each iteration the
ready task with the highest priority is extracted from the heap for scheduling
and another task is inserted in the heap from the FIFO. Two heap restoration
operations are used here, one after extraction and another after insertion. The
processor selection criteria is the minimum among the earliest execution start
time on the enabling processor and the processor become idle the earliest.

3 The LCCP Algorithm

The LCCP is based on FCP algorithm. Like FCP, LCCP uses a min heap of
fixed size and a FIFO. Processor selection steps are also similar to that of FCP.
But LCCP improves over FCP in the task selection steps. Each time a ready
task is extracted from the heap (to schedule), a new task is inserted in the
heap from the FIFO to keep the heap size fixed. Instead of using two heap
restoration operations, LCCP uses a combined restoration operation, thus saving
an O(log |P |)-time operations, where |P | is the size of the heap as well as the
number of processors. Over all tasks, the saving is |V | ∗ O(log |P |).

The combined operation first extracts the highest priority key of the (binary)
heap from the root in O(1) time (Fig. 2(b)). Then a new task from the FIFO is
inserted in the root of the heap (which is now empty)(Fig. 2(c)), and then heap
property is restored (Fig. 2(d)). Fig. 2(e) shows the final heap. The combination
of those two operations work perfectly here. This reduces time complexity by
using only one O(log |P |)-time operation instead of two, and hence LCCP has
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Fig. 2. A combined heap restoration operation: highest priority key is extracted and a
new key 12 is inserted followed by a heap restore operation. Note that if we insert any
key less than 12, this would take only O(1) time.

the lowest scheduling cost among all the list heuristic scheduling algorithms. In
the heterogeneous system, where the processor speed may vary, the execution
time of a task is proportional to the speed of the processor on which it is being
executed. So, now the priority criterion of the LCCP for selecting the processors
is changed and estimated finish time of a task is used as the priority.

4 Performance Results

The scheduling cost and performance of LCCP is compared with other best
known list scheduling algorithms on the task graphs of Fig. 1. Each graph is
made large enough to hold about 122,000 nodes. A Pentium centrino duo 1.66
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Fig. 3. Comparison of Scheduling cost of LCCP with other list scheduling algorithms
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Fig. 5. Comparison of NSL for heterogenous system: (a) comparison of performance
with respect to problem (b) comparison of performance with respect to heterogeneity

GHz processor PC with 1 GB RAM is used. Following experimental results show
that LCCP has lower scheduling cost and its scheduling performance is better
(in most cases) or equal to other list scheduling algorithms for both homoge-
neous systems and heterogeneous systems. Fig. 3(a) shows that the scheduling
costs of LCCP is better than any other algorithm for any number of processors.
Fig. 3(b) closely compares LCCP with FCP. LCCP has the lower scheduling cost
even when the soft heap [2] is used as priority queue in FCP. So, the scheduling
cost of the LCCP is less than any other scheduling algorithm and 29.5% to 41.8%
better (less) than that of FCP. Normalized Scheduling Length(NSL) is a measure
of scheduling performance, it is the ratio between the scheduling length from an
algorithm and that of a reference algorithm. Fig 4 shows the Scheduling Perfor-
mance of LCCP for homogeneous system, where MCP is used as the reference
algorithm. Fig. 5(a)compares scheduling performance of LCCP with other list
scheduling algorithms for heterogeneous system. Fig. 5(b) compares scheduling
performance of LCCP for three processor speed ranges for heterogeneous sys-
tem. In summary, the scheduling performance of LCCP is comparable to that
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of other list scheduling algorithms and always better than both soft heap and
binary heap implementation of FCP.

The above experimental results show that LCCP has acceptable scheduling
performance and lowest scheduling cost for large size task graphs. So, LCCP can
be a promising choice in addressing the scheduling problems in grid computing.
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Abstract. The NAS Conjugate Gradient (CG) benchmark is an important 
scientific kernel used to evaluate machine performance and compare 
characteristics of different programming models. CG represents a computation 
and communication paradigm for sparse linear algebra, which is common in 
scientific fields. In this paper, we present the porting, performance optimization 
and evaluation of CG on Cell Broadband Engine (CBE). CBE, a heterogeneous 
multi-core processor with SIMD accelerators, is gaining attention and being 
deployed on supercomputers and high-end server architectures. We take 
advantages of CBE’s particular architecture to optimize the performance of CG. 
We also quantify these optimizations and assess their impact. In addition, by 
exploring distributed nature of CBE, we present trade-off between parallelization 
and serialization, and Cell-specific data scheduling in its memory hierarchy. Our 
final result shows that the CG-Cell can achieve more than 4 times speedup over 
the performance of single comparable PowerPC Processor. 

1   Introduction 

The NAS Conjugate Gradient (CG) benchmark is often used to evaluate computer 
machine performance and compare characteristics of different programming models. It 
uses a conjugate gradient method to compute an approximation to the smallest 
eigenvalue of a large, sparse, symmetric positive definite matrix. CG is one of the 
memory intensive benchmark in NAS kernels and is typical of unstructured grid 
computations, which tests irregular long distance communication by employing 
unstructured matrix vector multiplication [1].  

The recent developments in semiconductor technology lead to the debuts of 
multi-core processors in the computing industry, such as IBM’s Cell, Sun 
Microsystems’ Niagara and AMD’s Opteron. The multi-core helps multi-programmed 
workloads which could contain a mix of independent sequential tasks. It presents a 
chance to study new or existing parallel programming models. However many 
questions for programming on multi-core are still open, such as how to efficiently 
handle specific communication and computation patterns. Cell Broadband Engine 
(CBE), developed jointly by Sony, Toshiba and IBM, is a new heterogeneous 
multi-core platform. The Cell is a general-purpose microprocessor which offers a rich 
palette of thread-level and data-level parallelization options to the programmer.  



264 D. Li, S. Huang, and K. Cameron 

The NPB CG presents a communication and computing pattern seen in sparse linear 
algebra [11]. It would be helpful to see how CG can be implemented on Cell, the new 
distributed and parallel scenario. Implementing CG on this special multi-core is a 
challenging topic. Firstly the essences of heterogeneous cores require careful 
consideration of task schedules while improving execution efficiency. Secondly Cell 
architecture shows an explicit and special memory hierarchy to users. On one hand, it 
presents a shared/global view of data to its nine cores through main memory. On the 
other hand, it presents a distributed view of data since eight of its nine cores have local 
memory. To achieve good performance on Cell, people need to carefully handle the 
data distribution and locality of references. Thirdly, due to its unusual architecture, 
unconventional Cell-specific code optimization approaches should be considered.  

In this paper, we present how we solve the above problems in the implement CG on 
a real Cell multi-core. The main contributions of this paper include: 

• We port NAS CG onto CBE. We present an example of how the communication and 
computation pattern of CG could be implemented on Cell and how we take 
advantage of the Cell’s distributed multi-core nature. The result shows that CBE as a 
new architecture has good potential for this programming pattern with limited 
working data sets. 

• We quantify Cell-specific code optimizations and assess their impacts using CG. 
These quantified results are beneficial for application developments on the Cell.  

• We explore the parallelization methods on the Cell. We find that sometimes merely 
exposing task level parallelism is insufficient for high performance computing. We 
also find that parallelization on the Cell does not always mean performance 
speedup. Other factors, like overhead for creating threads and Direct Memory 
Access (DMA) communication, should be considerable when making decisions on 
parallelization. 

The rest of this paper is organized as follows. Section 2 summarizes related works on 
programming support for Cell and studies of implementing CG using different 
programming models. Section 3 introduces kernel CG algorithm and section 4 outlines 
the Cell architecture. Section 5 presents step by step our CG porting and optimization 
process. In Section 6, we present the performance of parallel CG on Cell. In the end, we 
conclude the paper in Section 7. 

2   Related Work 

As a brand-new multi-core architecture, Cell has attracted many attentions in various 
research communities. Some researches focus on how to develop applications and 
speedup their performances. These include exploring new programming models and 
developing compiler supports. Other researches focus on analyzing the performance of 
the processor in terms of chip architecture. 

Pieter et. al. [4] presents a simple and flexible programming model for Cell. It 
requires the input application source code to follow a certain paradigm. Then based on 
the paradigm annotation, a source to source compiler builds a task dependency graph of  
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functions calls and schedules these calls in the SPEs. A locality-aware scheduling 
algorithm was also implemented to reduce the amount of data that is transferred to and 
from the SPEs. Eichenberger et. al [5] present several compiler techniques targeting 
automatic generation of highly optimized Cell code. The techniques include 
compiler-assisted memory alignment, branch prediction, SIMD parallelization, and 
OpenMP task level parallelization. They present the user with a single shared memory 
image through compiler mediated partitioning of code and data and the automatic 
orchestration of data movement implied by the partitioning. However, we didn’t use 
their compilers in this paper, because some optimizations, such as the communication 
optimization and the parallelism decision, may be hard to derive automatically in a 
compiler due to application complexities. Filip et al. [6] [7] designs a multigrain 
parallelism scheduler to automatically exploit the task level and loop level parallel in 
response to workload characteristics. The scheduler oversubscribes the PowerPC 
Processor Element (PPE) to strive for higher utilization of Synergistic Processor 
Elements (SPE). In addition, he explored the conditions under which loop-level 
parallelism within off-loaded code can be used. He ported a bio-informatics code 
(RAxML) with inherent multigrain parallelism as a case study.  

Williams et al. [9] present an analytical framework to predict performance of 
program code written for Cell. They apply it to several key scientific computing 
kernels, including dense matrix multiply, sparse matrix vector multiply, stencil 
computation and 1D/2D FFTs. Driven by their observation, they propose modest 
micro-architectural modification to increase the efficiency of double-precision 
calculations. Kistler et. al [8] analyze the Cell processor's communication network, 
using a series of benchmarks involving DMA traffic patterns and synchronization 
protocols. 

CG benchmark has attracted considerable attentions from high-performance 
computing community, due to its random communication in computation. Zhang et. al 
[12] parallelizes the CG using the global arrays shared memory programming model. 
Mills et. al [13] satisfies the CG memory access by introducing a remote memory 
access capability based on MPI communication of cached memory blocks between 
compute nodes and designated memory servers.  

3   Kernel CG Description 

The Conjugate Gradient Method (CG) is the most prominent iterative method for 
solving sparse systems of linear equations. The NAS CG benchmark uses the inverse 
power method to find an estimation of the largest eigenvalue of a symmetric positive 
definite sparse matrix with a random pattern of non-zeros. The inverse power 
method involves solving a linear system of equation Az x= using the conjugate 
gradient method. The size of the system n, number of outer iteration as “niter” in 
Figure 1, and the shift λ for different problem sizes in the benchmark are clearly 
specified in its official document [2]. Figure 1 illustrates the main iteration in NAS 
CG benchmark.  
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Initialize random number generator 

Use Makea() to generate sparse matrix 

[1,1,...,1]Tx =  

DO it =1, niter   # For CLASS A, niter=15 

Running the function conj_grad to solve the 

system Az x= and return || ||r ,  

1/( )Tx zζ λ= +  

/ || ||x z z=  
ENDDO 

Fig. 1. The main iteration in CG benchmark 

 

Fig. 2. Conjugate Gradient Method 

The solution z to the linear system of equations Az = x is to be approximated using 
the conjugate gradient (CG) method, which is implemented as in Figure2. In this paper, 
we use NPB2.3 OpenMP version as our start point. 

4   Cell Broadband Engine 

CBE is the first incarnation of a new family of microprocessors extending the 64-bit 
PowerPC architecture. It is a single-chip multiprocessor with nine processors operating 
on a shared, coherent memory. These nine processors are specified as one PowerPC 
Processor Element (PPE), and eight Synergistic Processor Elements (SPE). The PPE is 
a 64-bit, dual-thread PowerPC processor, while the SPE is the high-end computing 
engines optimized for running compute-intensive applications. The designation 
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synergistic for the SPE was chosen carefully because there is a mutual dependence 
between the PPE and the SPEs. The SPEs depend on the PPE to run the operating 
system, and, in many cases, the top-level control thread of an application; the PPE 
depends on the SPEs to provide the bulk of the application performance.  

The PPE supports both the PowerPC instruction set and the Vector/SIMD 
multimedia extension instruction set [10]. In our current Play Station 3 (PS3) Cell, the 
PPE doesn’t support the vectorization of double precision float point data (the data type 
of matrix element in CG).  

Each SPE contains a RISC core (SPU), 256-KB, software-controlled Local Store 
(LS) for instructions and data, and a large (128-bit, 128-entry) unified register file. The 
SPEs support a special SIMD instruction set which could lead to computation 
vectorization. SPEs rely on asynchronous DMA transfers to move data and instructions 
between main storage and their LS. Data transferred between local storage and main 
memory must be 128-bit aligned and the size of each DMA transfer can be at most 
16KB. The Memory Flow Controller (MFC), which handles DMA transfer, supports 
only DMA transfer sizes that are 1, 2, 4, 8 or multiples of 16 bytes long. Note that the 
LS in SPE has no memory protection, and memory access wraps from the end of LS 
back to the beginning. An SPU program is free to write anywhere in LS including its 
own instruction space. We need to avoid the corruption of the SPU program text when 
the stack area overflows into the program area. 

The PPE and SPEs communicate coherently with each other and with main memory 
and I/O through the Element Interconnect Bus (EIB). The EIB is a 4-ring structure for 
data, and a tree structure for commands. The EIB’s internal bandwidth is 96 bytes per 
cycle, thus achieving a peak bandwidth of 204.8GB/s. It can support more than 100 
outstanding DMA memory requests between main storage and the SPEs. 

5   Design and Analysis 

In our implementation we ported CG to Cell in four steps: (i) porting the CG on the 
PPE; (ii) offloading the most time-consuming parts on one SPE; (iii) parallelizing the 
SPE code to run on multiple SPEs; (iv) optimizing the SPE code. These steps are 
outlined in the following sections. 

The results reported in this section are obtained from a Cell multi-processor in a PS3. 
It has 256MB XDR RAM. The PPE have a 32KB L1 instruction cache, a 32 KB L1 data 
cache, and a 512KB unified L2 cache. The system runs Fedora Core 5 (Linux kernel 
2.6.16), including Cell-Specific kernel patches. We compile our code using ppuxlc and 
spu-gcc in the Cell SDK 2.1 for ppu and spu respectively.  

5.1   Porting CG on PPE 

As our first step, we port CG onto PPE, which is actually a single Power 970 
architecture compliant core. To port CG on PPE, we collect all functions distributed in 
several source files and move them into one source file. In original OpenMP 
implementation, the header files used to be automatically generated by the NPB script. 
We manually write the header files according to our input CLASS. These works 
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simplify both the program directory hierarchy and its build process. We call the current 
work the version 0.1. 

In this version, we run the CG on one PPE thread with an input of CLASS A. The 
system matrix size for CLASS A is 14,000×14,000. It has 15 iteration, i.e. 15 conj_grad 
function calls as in Figure 1, which has total 1.50×109 FLOPs., The time for the 15 
conj_grad function calls running on PPE is 14.90 seconds. We treat this result as our 
performance baseline for later sections.  

5.2   Function Off-Loading 

Our next step is to offload the computation intensive function conj_grad into SPE. We 
create one SPE thread to be in charge of the total 15 conj_grad function calls. To 
observe the initial speedup, it is better to use a small input matrix, which can be 
completely loaded into SPE 256KB LS. We shrink the input matrix size to 256×256, 
which occupies 30KB memory space. This mini-matrix allows us not to involve into 
the communication complexity of dividing data sets and focus only on the computation 
optimization. We will talk about dividing data sets later in Section 5.3. 

Our initial computation optimization is to vectorize all the matrix data. Vector 
operations eliminate the overhead for scalar formatting and thus reduce the long latency 
caused by scalar load and store. The Vector/SIMD Multimedia Extension intrinsic and 
SPE SIMD operation provide supports to vector operation for PPE and SPE 
respectively. We could depend on auto-vectorizing compiler to do the vectorization by 
merging scalar data into a parallel-packed SIMD data structure. However such 
compiler must handle all the high-level language constructs and do not always produce 
optimal code. Therefore, we choose to do vectorization manually in our program. In 
addition, we only vectorize the function conj_grad running on the SPE, because PPE 
doesn’t support SIMD operation for double precision floating point matrix data in CG. 

Generally speaking, there are two methods for organizing data in SIMD vectors: 
Array-of-Structure (AOS) and Structure-of-Array (SOA) [3]. In this paper, we use 
SOA for vectorizing matrix data, i.e. across the vector both the data types and data 
interpretation are the same. This conforms to most data operations requirements in the 
algorithm and execute more efficiently than AOS organization. Although AOS 
produces small code sizes, it requires significant loop-unrolling to improve its 
efficiency and executes poorly. Note that here we don’t vectorize step1 and step6 
shown in Figure 2. The reason lies that these two steps do sparse matrix-vector 
multiplication. The data for computation in vector p and z are scattered around in the 
memory space (Figure 3). To vectorize the computing, we need to gather vector data 
into address-aligned continuous memory space. This requires extra memory copy 
operations which are proved to have big overhead by our experiences.  

Based on the above work, our result shows that the new CG takes 35 milliseconds 
with mini-array as input, while the version 0.1 with the same input takes 8.1 
milliseconds. This new CG’s performance is even worse. Obviously the optimization 
with only data vectorization is not enough for performance improvement. This is 
because the vectorization can only happen on the SPE in our case and thus has limited 
benefits. Meanwhile for function off-loading we have to pay for the costs of 
transferring data between the main memory and SPE’s LS, which counteracts the gains 
of vectorization. 
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Fig. 3. An example of spare matrix-vector multiplication. One matrix row is doing multiplication 
with the vector. Only non-zero matrix data are considered. The involved vector elements for 
multiplication are not in continuous memory address. 

5.3   Parallel Execution across Multiple SPEs  

To fully take advantage of CBE multi-core architecture, we want to parallelize the 
program on 8 SPEs. An obvious method is to regard each conj_grad function call as a 
task and distribute 15 tasks across 8 SPEs. However due to data dependency on vector 
x, this task-level parallelization doesn’t work. Due to the same reason (the data 
dependency on vector p in Figure 2), distribution of 25 iterations in the conj_grad 
function across 8 SPE doesn’t work either. 

As an alternative, we deliberately divide each loop into 5 steps and parallel them as 
shown in Figure 2. We also parallel two “residual norm” computing steps outside of 
conj_grad loops, as step 6 and step 7 in Figure 2. We create seven SPE modules 
corresponding to these steps and move the conj_grad loop into the PPE. Whenever the 
PPE program flow meets a step, it will load SPE program image corresponding to this 
step into each SPE LS and create threads to execute it. Then each SPE will fetch part of 
total matrix data from the main memory to the LS, do computing and/or update data in 
the main memory.   

CG uses three arrays (“rowstr”, “colidx” and “a”) to record the sparse matrix in a 
compact way. The array a stores non-zero data elements of the matrix and put them in a 
row. The array rowstr records the position of first non-zero element in each matrix row. 
The array colidx records the column number for each non-zero data elements in the 
matrix. For CLASS A, the total size of these three array data is 4.41MB, which cannot 
be fitted into the LS (256KB) of a SPE.  

The way we distribute the data is described in the following. The conj_grad function 
does computation row by row, so we distribute the data among SPEs at the granularity 
of row. In particular, each SPE processes 1/8 of the total rows and needs data for its 1/8 
share of the total rows. For the array rowstr, we just evenly divide it into eight parts and 
copy them from the main memory to SPE LS. For the array colidx and a, even 
distribution doesn’t work, because the number of nonzero elements varies from one 
row to the others. We need to locate the starting and the ending position for each 1/8 
row block. This could be done with the help of rowstr array. The rowstr array data for 
1/8 rows with CLASS A as input is 6.8KB and can be totally put in the LS. 

However even though we distribute the array data in the above way, the array data 
for 1/8 row could still be bigger than the 256KB LS size. Therefore we strip-mine each 
1/8 rows data by fetching a few row elements to local storage, and execute the 
corresponding loop iterations on this batch of elements. This operation continues until 
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all data are processed. We use an 8KB buffer for fetching array data. It should be noted 
that to avoid using up LS memory, the spaces used for buffer is much smaller than the 
size of the LS.  

Both the step 1 (q = Ap) and step 6 (Az) do multiplication of matrix A with a vector. 
To reduce the unnecessary multiplication, the original CG only computes 
multiplications of the nonzero elements of A with the corresponding vector elements. 
To locate the needed vector elements for the multiplications, the CG depends on the 
array colidx. Although this simplification reduces the computing, we may have to copy 
the colidx and the vector from the main memory to the LS, as far as the parallel 
implementation is concerned. Since the colidx is too big to be totally placed in the LS, 
we could process it in the same way as we do to the array a. However for the vector p or 
z, the needed elements for the multiplication are scattered around the memory. It is 
highly inefficient to copy these elements one by one from the main memory to LS.  

There are two ways to solve this problem. One is to ignore the unnecessary vector 
elements and firstly copy the needed vector elements into an address-aligned new array 
in the main memory. We call this array as “compressed vector”. Then only the 
compressed vector is copied to the SPE and the SPE doesn’t care about colidx at all. 
Although this method sounds promising, it has big overhead of copying. Since the 
vector p is updated each time at the step 5, we need to re-produce the compressed vector 
at each loop. According to our experiences this overhead easily beats the gains of 
parallelization. The second way is to completely put the vector p in the SPE LS and 
process the colidx in the same way as we do to the array a. This method needs to reserve 
enough LS space for the vector. In our implementation we manage to limit the data 
(three arrays) in the LS within 30KB (The section 5.4.2 describes how we use the 
double buffer to limit the size of array a and array colidx in the LS. The array rowstr is 
6.8KB and totally placed in the LS. This sums up to 30KB) and the program image is 
less than 8KB, so the rest LS space can hold the whole vector p under the case of input 
CLASS A. For larger CLASS, there is a chance the vector can’t be totally placed in the 
LS. We have to divide it into data blocks. The size of data blocks is determined by the 
available LS space. We leave this case as our future work. 

After the parallelization in this step, we got the current version 0.2. This version 
takes 21.62 seconds with CLASS A as input. This result is even worse than our baseline 
(14.90 seconds). The next section will describe how we reduce the execution time by 
optimization. 

5.4   Performance Optimization 

We consider performance optimization from two aspects. One is to balance the tradeoff 
between parallelization and serialization based on the profiling results. The other is to 
take into consideration Cell architecture characters. 

5.4.1   Parallel or Not 
To figure out the reason why version 0.2(parallel version) does not gain performance 
speedup over version 0.1(serial version), we profile the conj_grad for both versions at 
the granularity of step. To make things simpler, we only run one loop for the conj_grad 
main iteration. The profiling results are shown in Figure 4. It is clear that step1 and step 
6 gain great performance improvements from the parallelization, while other steps do 
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the opposite. Further analysis reveals that step1 and step6 have O (n2) multiplication 
while other steps have O (n), where n is the matrix size. This means that step1 and step 
6 take up a predominant percentage of computation if n is large. Larger computation 
intensiveness means more computing on each data movement (DMA transmission) 
between SPE LS and main memory. Only after the parallelization gains counteract the 
overhead of data movement could we get the performance improved. Thus, the 
overhead of data movement for parallelization should be considered. In addition, 
creating SPE threads is not free. Our experiment shows that the overhead of creating a 
single SPU thread costs 1.81 milliseconds, which is comparable to running 10 times of 
step 2 in one loop. Furthermore, more threads also mean more scheduling tasks and 
more competition in DMA bus. Due to those various factors, parallelization is not 
always beneficial to performance. Therefore, we have to carefully consider the balance 
between parallelization and serialization.  

Based on the analysis above, we don’t parallel steps 2-5 and 7. Results show  
(Figure 4 and Figure 6) that this optimization (we call it the version 0.3 hereafter) 
improves a factor of 6.093 over version 0.2, and a factor of 4.519 over the baseline 
(version 0.1). 

5.4.2   Branch Reducing and Communication Optimization 
The Cell SPE hardware assumes linear structure flow and produces no stall penalties 
from sequential instruction execution. A branch instruction has the potential of 
disrupting the assumed sequential flow. Specifically, a mispredicted branch incurs a 
penalty of approximately 18-19 cycles in the SPE. Branches also create scheduling 
barriers, reducing the opportunity of dual issue and covering up dependency stalls. Our 
next optimization is to reduce branches in SPE as much as possible. In step1 and step6, 
we need to use a function called getNextBlockSize, which deals with address alignment 
for DMA transfer and controls transfer block size within the limits of available SPE LS. 
This function employs several conditional branches. Moreover, considering the 
popularity of this function, these branches would be rather expensive for SPE. 
Therefore we move this function to PPE and use DMA-List to determine each transfer 
size before SPE takes over computation tasks. Each SPE gets its DMA-list after it starts 
new thread and uses the list to determine each transfer size. 
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Fig. 4. conj_grad function profiling. The time 
for each step is for one loop in the function. 

Fig. 5. Performance profiling of 15 times of 
the conj_grad function call 
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Another optimization we employ is to use double buffering in SPE. We allocate two 
buffers for array a and colidx respectively and each buffer holds 1024 array elements. 
When the SPE is working on one buffer, the other buffer is for data transferring. In this 
way, we can pipeline computation time with data transferring time. The total buffer size 
is 24KB, which is much smaller than the size of LS. This double buffering scheme 
maximize the time spent in the compute phase of a program and minimize the time 
spent waiting for DMA transfer to complete.  

With the above two optimizations, our performance improves more than four times 
over the baseline. We call the current CG-Cell after optimization version 0.4, which is 
also our final version. Figure 5 depicts the profiling of the paralleled conj_grad at the 
granularity of step for version 0.3 and version 0.4. 

6   Performance Evaluation 

As a performance comparison, Figure 6 evaluates the total execution time for several 
important versions in CG_Cell. It shows that our version 0.4 has been improved a lot 
over version 0.1. Version 0.2, although fully paralleled, costs the most time. Since we 
eliminate the parallelization in the step 2 to step 5, version 0.3 is improved greatly. In 
version 0.4, since we have used the specific optimization for the Cell, the total 
execution time is less than 1/4.  
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Fig. 6. Total running time of four versions 

7   Conclusion 

This paper presents the porting, optimization and evaluation of CG, an NPB kernel 
benchmark on the Cell Broadband Engine. We explore many Cell-specific 
optimizations and the performance implications of these optimizations. We explore the 
tradeoff between the parallelization and the serialization for the CG implementation. 
By offloading the most time-consuming function onto the SPE, we implement a 
parallel version of CG with less overhead. We also carefully divide and organize the 
data sets to fit into Cell memory hierarchy so that the data transfer is dropped as much 
as possible. We vectorize the computation, reduce the branches instructions on SPE 
program and use double buffer to hide memory access delay. Starting from a less 
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optimized CG implementation on PPE, we were able to boost performance on Cell by 
more than a factor of four. 
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Abstract. The algorithms dealing with the galled tree problem mostly use a 
conflict graph as the major tool and the construction of the conflict graph has 
been the central computation in these algorithms. In this paper, we present a 
parallel algorithm for the construction of a conflict graph. Given a set of n 
binary sequences, each of size m, our algorithm is mapped on an OTIS-
Triangular array and requires 4m + 2n/k –7 electronics moves + 2 OTIS moves, 
where k = m (m –1)/2. The algorithm is shown to be scalable with respect to n.            

Keywords: Conflict graph, phylogenetic network, galled tree. 

1   Introduction 

A phylogenetic network that represents the evolutionary history of living organisms is 
biologically more complete than a phylogenetic tree as it takes care both the 
evolutionary and recombination phenomena. In the recent years, much attention has 
been drawn to construct a special case of phylogenetic network, called a galled tree. 
Many algorithms [1], [2], [3], [4], [5], [6], [7] have been developed for galled tree 
problem in which the conflict graph is used as the major tool and its construction is 
the major computation that dominates the overall time complexity of the algorithms. 
However, it requires O(nm2) time for given a set of n binary sequences, each of size m  
and therefore it is not encouraging in the sequential environment for massive 
biological data. Parallel construction of the conflict graph is, therefore, called for 
research to solve the galled tree problem. 

In this paper, we propose a parallel algorithm for building the conflict graph. Our 
algorithm is mapped on an OTIS-Triangular array in 4m + n/k –7 electronic moves + 
2 OTIS moves, where k is the number of processors within each group of the OTIS-
Triangular array. An OTIS (optical transpose interconnection system) proposed by 
Marsden [8] is an interconnection network that benefits from electronic and optical 
links. In such systems, the processors are partitioned into groups (also called blocks). 
The processors within each group are connected by usual electronic links and the 
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processors of two different groups are connected by optical links following the OTIS 
rule: Pth processor of Gth group is linked to the Gth processor of the Pth group. The 
choice of an interconnection pattern among the processors within each group yields a 
specific model of OTIS parallel computer. Several parallel algorithms have been 
mapped on different OTIS models such as matrix multiplication [9], image processing 
[10], numerical algorithms [11], prefix computation [12], BPC permutation [13]. 

2   Conflict Graph and Computation Model 

Let the set of n binary sequences be represented by a binary matrix M where 
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Given M, two columns are said to conflict each other if and only if they have at 

least three rows with the combinations 01, 10 and 11. A column is called conflicted if 
it has conflict with at least one other column. A conflict graph CG is formed with all 
the columns in M where each node is labelled by a distinct column and there exists an 
undirected edge <α, β > if and only if the columns α and β conflict. As an example 
the conflict graph with four columns is shown in Fig. 1. A connected component in 
CG is the maximal subgraph of CG such that for any pair of nodes in CG there is at 
least one path between those nodes in CG. A trivial connected component has only 
one node and the column associated with that node is unconflicted. Note that the 
conflict graph shown in Fig. 1(b) has a single nontrivial connected component that 
consists of all the columns and there is no trivial connected component. In other 
words, there is no unconflicted column. It is shown in [4] that the construction of the 
conflict graph is central to solve the galled tree problem in which only the non-trivial 
connected components play the major role.  
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Fig. 1. Conflict graph 
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In the construction of the conflict graph, we need to compare each column with all 
its subsequent columns requiring O(nm2) time. Our computational model is an OTIS-
Triangular array in which k2 processors are organized into k groups; each group is 
basically a triangular array of k = m (m –1)/2 processors. As an example, for m = 4 the 
model is shown in Fig. 2 in which smaller rectangles represent the processors and the 
bigger ones represent the groups. The groups are indexed in increasing order from left 
to right and from bottom to top fashion. The processors within a group are also 
indexed in the similar fashion in which the 1st index gives the group number and the 
2nd index, the processor number within that group. The processors within a group are 
connected by electronic links in the form of a triangular mesh and the processors of 
two different groups are connected via optical links following OTIS rule: Pth 
processor of the Gth group is connected to the Gth processor of the Pth group. The 
electronic and optical links can be essentially differentiated as follows:  i) optical 
links have much larger bandwidth than electronic links and ii) transfer times including 
latency is different along optical and electronic links. While analyzing our proposed 
algorithms, we count the data moves along the electronic links (i.e., electronic moves) 
and that on optical links (i.e., optical moves) separately. 
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Fig. 2. Topology of OTIS-Triangular array (All optical connections are not shown) 

3   Proposed Algorithm 

For simplicity and without any loss of generality, we assume here n = kr. The basic 
idea of our algorithm is to divide each column of the binary matrix M into k sub-
columns of length r, which are then suitably fed row wise and column wise into the 
blocks (triangular array). We then check the patterns 01, 10 and 11 on each block with 
the corresponding rows and columns and store the results locally. These results are  
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then combined using suitable OTIS and electronic moves to obtain the final conflict 
result. We illustrate the initial inputs to the individual blocks with an example for n = 
30, r = 5 and m = 4 as shown in Fig. 3 in which a single ‘*’ indicates one unit delay.  
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Fig. 3. Initial input in each group 

The data is fed to the blocks row wise as follows: The sub-columns of column 1 
are inputted to the 1st row of the groups in left to right and bottom to top fashion; the 
sub-columns of the column 2 are fed to 2nd row and so on. The sub-columns are also 
inputted column wise in the similar fashion, i.e, the sub-columns of the 2nd column are 
fed to the 1st column, those of the column 3 to the 2nd column and so on. We assume 
that each processor has three flag registers namely C1, C2 and C3 to indicate the 
patterns 01, 10 and 11 respectively, one temporary register T and one status register S. 
At the end of the algorithm, the final conflict result is stored in the status register S, 
which is basically an adjacency matrix that represents the conflict graph. The 
algorithm is formally given stepwise as follows. 
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Algorithm Con-Graph(M)

Input: set of binary sequences M

Output: conflict graph

Step 1: /* Initialization of the flag registers */

for all PEs do in parallel

Set all flag registers C1, C2 and C3 to 0

end for all

Step 2: /* Checking patterns 01, 10 and 11 on each group / block*/

for all blocks do in parallel

for all PEs do in parallel

while a PE receives two inputs x (from a row) and y (from a column) do

(i) if ( x = ‘0’ and y = ‘1’) then

C1:= C1 OR ‘1’;

else if ( x = ‘1’ and y = ‘0’) then

C2:= C2 OR ‘1’;

else if ( x = ‘1’ and y = ‘1’) then

C3:= C3 OR ‘1’;

(ii) shift up y to the adjacent PE if exists

shift right x to the adjacent PE if exists

end while

end for all

end for all

Step 3: /* This step collects partial results into corresponding groups */

Perform one OTIS move on C1, C2, C3 of each PE

Step 4: /* OR operation on the data of all the processors within each block and

store the result in the first processor of each group */

for all blocks (i.e., groups) Gi, 1 i m(m -1)/2 in parallel

OR the contents of C1 and store it in T1(i, 1)

OR the contents of C2 and store it in T2(i, 1)

OR the contents of C3 and store it in T3(i, 1)

end for all

Step 5: Perform one OTIS move on T1(i, 1), T2(i, 1), T3(i, 1), 1 i m(m -1)/2

Step 6: /* Obtain final conflict result from the Group 1*/

for all PE(1, j), 1 j m(m -1)/2 do in parallel

S(1, j):= T1(1, j)AND T2(2, j) AND T3(3, j)

end for all

Step 7: Stop
 

 
Time Complexity: Step 1 requires constant time. Step 2 is performed in 2m + r – 4 
electronic moves. Each of the steps 3 and 5 require one OTIS move. Step 4 requires 
2m – 3 electronic moves and Step 6 requires constant time. Therefore, the above 
algorithm requires 4m + r – 7 electronics moves + 2 OTIS moves, i.e., 4m + n/k – 7 
electronic moves + 2 OTIS moves, where k = m (m – 1)/2. 

This is important to note that the algorithm can work for any value of n assuming 
that n is multiple of k, i.e., n = kr. 
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4    Conclusions 

We have presented a parallel algorithm for constructing conflict graph towards the 
solution of the galled tree problem. Given a set of n binary sequences, each of size m, 
our algorithm has been mapped on an OTIS-Triangular array. We have shown that  
the algorithm requires 4m + n/k –7 electronics moves + 2 OTIS moves where k = m 
(m–1)/2, i.e., the number of processors within each group of the OTIS-Triangular 
array. The algorithm has been shown to be scalable with respect to n with the 
assumption that n is multiple of k. 
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Abstract. In this paper, we investigate an efficient deadlock-free shortest path 
routing algorithm for WK-recursive mesh networks which has been shown that 
possess several advantages like suitable to be manufactured by VLSI 
technology and easy to be expanded. It will be shown that the proposed 
algorithm requires O(√n) routing steps (where N is the network size) to route 
the entire network by exploiting either the self-routing or second order routing 
scheme. 
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1   Introduction 

In a network-based parallel/distributed system, the underlying interconnection 
network is used by the processing nodes to exchange data and to operate simultan-
eously with each other. Two of main design and fundamental challenges of intercom-
nection networks are their topology and routing algorithm. Among the various 
complex topologies proposed in the literature for the design and implementation of 
interconnection networks, the WK-Recursive mesh topology [1] has received much 
attention in the last decade [2-5]. Previous works relating to WK-Recursive topology 
have shown that this network has the following advantages.  First of all, it is suitable 
to be manufactured by VLSI technology and easy to be expanded as a result of its 
recursive structure. As well, its recursive structure provides high performance 
communication at low cost by exploring the locality that exists in the transfer patterns 
of massively parallel computers. Second, the small diameter and small average inter-
node distance enables WK-recursive meshes to pose short and cost-effective trans-
mission latency when transmitting messages from the source nodes to the destination 
nodes within the network leading to high performance inter-node communications [3]. 
Almost all previous studies [1-5] on WK-recursive meshes focus on topological 
properties and algorithmic issues. In this paper, we investigate an efficient deadlock-
free shortest path routing algorithm that is a basic requirement of all interconnection 
networks. It will be shown that the proposed algorithm requires O(√n) routing steps 
(where N is the network size) to route the entire network by exploiting either the self-
routing or second order routing scheme which will be later defined in section 2. It is 
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noteworthy that the existing routing algorithms proposed for this network does not 
guarantee freedom from deadlock [4]. Our focus is to make a comprehensive 
comparison between different aspects of the proposed routing algorithms and 
introduce a new algorithm to overcome drawbacks of previous ones, i.e. to propose a 
minimal (shortest-path) wormhole routing algorithm which is deadlock-free and 
requires a minimum number of virtual channels to ensure deadlock freedom and 
adaptively. 

2   The WK-Recursive Mesh 

In this section, we formally define the WK-recursive mesh network and investigate its 
important properties.  

Definition 1. An L-level WK-recursive mesh network WK(t,L), with ampli- 
tude t and expansion level L, consists of a set of nodes V(WK(t,L))= 

}1      0 |...{ 11 Lifortaaaa iLL ≤≤<≤− . The node with address schema A= )...( 11 aaa LL −  

is connected to (1) all nodes with address type )...( 21 kaaa LL −  for 

1k, 1}-{0,1,..,k at ≠∈ , as brother nodes and (2) node ))(...( 111
j

jjjLL aaaaa −+−   if 

for one  , 1 1,  j j L≤ ≤ − we have 1 2 1...  j ja a a− −= = = and aj≠aj-1, as cousin node 

(notation (aj)
j denotes j consecutive aj’s). The links of type (1) are called substituting 

links and are labeled 0. The link of type (2) is called j-flipping link and is labeled j. It 
is apparent that the node with address (aL)L  has not any cousin; we call such a node 
an extern node. Consequently, any WK(t,L) has exactly t extern nodes. The degree of 
extern nodes for all WK(t,L) is t-1 and the degree of other nodes is t. As a result, the 
number of nodes in a WK(t,L) is calculated by |V(WK(t,L))|=tL. The number of edges in 

),( LtWK  is |E(WK(t,L))|=tL+1-t [3]. As well, the diameter of WK(t,L), denoted by DL, is 

2L+1-1 [5].  

Definition 2 [2]. Define 
1 1 ,( ... .WK )L L m t ma a a− +  to be the sub-network of WK(t,L) 

induced by all nodes with address schema  { }1 1 1 1 0( ... ) | 0 1L L m m m ja a a a a a a a t− + − ≤ ≤ −L  

for all 0 1j m≤ ≤ − . That is, 
1 1 ,( ... .WK )L L m t ma a a− + is an embedded WK(t,m)with the 

identifier 
1 1...L L ma a a− + . For example, 

4,1( .WK )1 is the sub-network of WK(4,2) induced 

by nodes {10, 11, 12, 13}. 

Definition 3 [2]. Node )...( 11 aaa LL −  is a k-frontier if (ak=ak-1=…=a1) , 1≤k≤t. 

In the reminder of this section, we introduce two routing schemes between two nodes 
belonging to different (aL.WK(t,L)) sub-networks to be able to devise the shortest path 
routing algorithm in a WK-recursive mesh network.  

2.1   Routing in WK-Recursive Meshes 

Self-Routing Algorithm. Suppose that the source and destination nodes in a WK(t,L) 

are identified with S=(sLsL-1…s1) and T=(tLtL-1…t1), respectively. The Self-routing 
schema, proposed in [1], can be recursively realized as follows.  
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(1) If S=( s1) and T=( t1),  route directly the message from S to T. 
(2) Else If sL≠ tL, determine recursively both the routing path from S to the node 

W=(sL(tL)L-1), namely a bridge of level L-1, and the routing path from 
X=(tL(sL)L-1) to T. The self-routing algorithm from S to T is the concatenation 
of the path from S to W, the link (W,X), and the routing path from X to T.  

(3) If sL= tL, determine the routing path from S′=(sLsL-1…s1) to T′=(tLtL-1…t1) 
within the sub-network (sL.WK(t,L-1)), recursively.  

In [5], it has been proved that the length of self-routing path within the WK(t, ) is 
upper bounded by 2L-1.  The following lemmas give the exact length of the path given 
by the above-mentioned routing algorithm between two nodes. 

Lemma 1. [8] The length of self-path routing algorithm between nodes S=(sLsL-1…s1) 

and T=((tL)L) could be obtained by TSSPTS ⊕=);,(l , where operator ⊕  performs 

bitwise exclusive-or on two input digit expressions represented in the numeric base L.  

Lemma 2. The length of self-routing path between nodes S=(sLsL-1…s1) and T=(tLtL-

1…t1), could be obtained as 1);,( +⊕+⊕= TXWSSPTSl  when LL ts ≠ ; if sL=tL, 

the length can be determined recursively. 

Proof. According to the definition of self-routing algorithm and recalling Lemma 1, 
the proof is trivial. 

Note that, despite its simplicity, the self-routing algorithm is unable to deliver a 
message over a minimal length path. For example, in a WK(4,3), the length of self-
routing path between nodes (133) and (033) is equal to 6, while the minimal path 
between them has a length 5. 

Considering the substantial limitation of self-routing algorithm to find the minimal 
path in a WK-recursive network, we introduce a new routing algorithm, namely 
second-routing algorithm, which is able to overcome this shortage.  

Second-Routing Algorithm. Suppose that S=(sLsL-1…s1) and T=(tLtL-1…t1), L>1, 
present the source and destination nodes in a WK(t,L), respectively. The second-routing 
algorithm could be stated as follows. 

(1) if sL=tL, identify the second-routing path between S′=(sL-1…s1) and T′=(tL-1…t1)  
within the (sL.WK(t,L-1)) network as the second-routing path between S and T. 

(2) If sL≠tL, two second-routing paths can be created between these two nodes, as 
follow.  

1. ScndPth )t...tt(),s...ss( LLLL 1111 −−
 = <SelfR(S,V)||(V,V′)|| SelfR(V′,U′)||(U′,U)||SelfR(U,T)> 

2. ScndPth )s...ss(),t...tt( LLLL 1111 −−
 = <SelfR(T,Y)||(Y,Y′)|| SelfR(Y′,Z′)||(Z′,Z)||SelfR(Z,S)>. 

where ))(( 1
1

−
−= L

LL tsV , ))(( 1
1

−
−=′ L

LL stV , ))(( 1
1

−
−=′ L

LL ttU and ))(( 1
1

−
−= L

LL ttU in 

the first case as well as ))(( 1
1

−
−= L

LL stY , ))(( 1
1

−
−=′ L

LL tsY , ))(( 1
1

−
−=′ L

LL ssZ and 

Z=(sL(sL-1)
L-1) in the second case. In fact, the second-path has been constructed to 

decrease one step of the distance between two nodes in each phase of the algorithm, 
based on the second bit of their addresses, i.e. (tL-1) and (sL-1).  

It is worth mentioning that calculation of the length of the second-routing path 
could be done in O(1) time, as it depends on the calculation of two Self-routing paths. 
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It can be easily observed that the second-routing path crosses an intermediate WK-
sub-network of (tL-1.WK(t,L-1)). At the first glance, it seems that this extra path can not 
decrease the length of routing path in comparison with self-routing. But there is some 
scenario where the second-routing path is shorter than that of a self-routing path. In 
the reminder, we complete our discussion by presenting the shortest path routing 
algorithm within a WK(t,L).  

The Shortest-path Routing Algorithm. We can now propose a shortest-path routing 
algorithm simply by finding the minimum length between Self-Routing and Second-
routing algorithms. So, it can be stated as:  

ShrtPth )t...tt(),s...ss( LLLL 1111 −−
= min(SelfR(S,T),ScndPth(S,T), ScndPth(T,S)). 

Theorem 1. [8] The above-mentioned routing algorithm gives the shortest path 
between any arbitrary source and destination nodes in the WK(t,L).           □ 

2.2   Deadlock-Free Routing Algorithm 

A great deal of research has been devoted to creating efficient deadlock-free routing 
algorithms in wormhole-switched interconnection networks. In [6], it has been shown 
that a routing algorithm is deadlock free if and only if there are no cycles in its 
channel buffer dependency graph.  Dally [6] proposed a hardware solution to the 
deadlock problem that divided each physical channel into a number of “virtual 
channels” to remove the cycles of channel dependency graph in a torus network. In 
the same way, for WK-recursive mesh networks, we propose a methodology to split 
each physical link into 3 virtual channels.  That is, for each sub WK-recursive mesh 
like (aL.WK(t,L-1)), the label number of the next virtual channel to be used must be 
increased. Precisely, in the case of sL≠tL, we could exploit a deadlock free routing 
algorithm within intra- WK(t,L-1) routing, since the self-routing algorithm is deadlock 
free. But cyclic buffer dependencies may occur when one or two L-1-flipping links 
are traversed by messages which have been routed according ScndPth routing. 
Therefore, to prevent the occurrence of such cyclic buffer dependencies, messages 
that enter a sub- WK(t,L-1) network, through an L-1-flipping channel, must traverse that 
subgroup through a separate set of virtual channels from those of messages 
originating in that subgroup. As a result, we suggest that the virtual channels of each 
channel be split into three equal sets, i.e. each physical link may be split into three 
virtual groups, v1, v2, and v3. After being injected into the network, a message with 
address schema S=(sLsL-1…s1) traverses the source sub-network (sL.WK(t,L-1)) through 
v1. Once an L-1-flipping link has been taken and the message has entered another sub-
network, the new group is traversed using virtual channels in class v2, and so forth.  

Theorem 2. [8] Let S=(sLsL-1…s1) and T=(tLtL-1…t1) be the source and destination 
nodes, consequently. Moreover, assume that S and T have a largest common 
sub-WK-Recursive group like (sLsL-1…sj+1.WK(t,j)), i.e. sj≠tj and for all k > j; sk=tk. A 
sufficient condition for utingShrtPth-Ro  algorithm to be deadlock-free is that within 

sub-network (sLsL-1…sj+1.WK(t,j)), at least one channel buffer (i.e. virtual channel) of 
each j-1-flipping channels be reserved for messages traversing either their first or 
second j-1-flipping link, along with a different set of channel buffers be allotted to 
messages that are traversing their first (sLsL-1…sj+1 sj.WK(t,j-1)) source group, and a  
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Fig. 1. Average message latency in the mesh and WK-recursive network, for uniform traffic 
a) 4x4, b) 8x8 networks, and 8x8 network with local traffic c) 45%, d) 85% of locality traffic 

separate set to those that are traversing either their second or third, (sLsL-1…sj+1 sj-1  
(tj-1).WK(t,j-1)) or  (sLsL-1…sj+1 tj.WK(t,j-1)) consequently, intermediary or target groups. □ 

3   Empirical Performance Evaluations 

To evaluate the operation of the WK-recursive network under different working 
conditions, a discrete-event simulator has been developed that mimics the behavior of 
the described routing algorithm at the flit level in the WK-recursive network. In what 
follows we assume that messages are generated at each node according to a Poisson 
process with a mean inter-arrival rate of λg messages per cycle. All messages have a 
fixed length of M flits. The destination node of each message has been determined 
using a uniform random number generator to form either uniform or local destination 
distributions. According to the uniform traffic pattern the source node sends messages  
 



 A Deadlock Free Shortest Path Routing Algorithm for WK-Recursive Meshes 285 

to any other node in the network with an equal probability of 1/(N-1), with N being 
the network size. Network traffic locality is a special case of the locality phenomenon 
commonly seen in computer systems. The local traffic pattern enforces a source node 
with address schema S=(sLsL-1…s1) to generate messages for destination nodes in the  
(sLsL-1…sj+1.WK(t,j)) sub-network with probability pj(1-p) where p is the locality 
factor. In the following subsections, we analyze and compare the performance of the 
mesh and WK-recursive networks obtained under both the uniform and the local 
traffic distribution patterns. Numerous simulation experiments have been performed 
for several combinations of network sizes, message lengths, and number of virtual 
channels to predict the network performance. Figure 1 reports on the average message 
latency of mesh and WK-recursive networks with 16, 64 nodes and for the two 
mentioned traffic patterns. For a comprehensive performance evaluation between 
these two networks, see [8]. 

4   Conclusions 

WK-recursive mesh is a recursively-defined hierarchical interconnection network 
with excellent properties such as small diameter, small network cost, and high degree 
of expandability which well idealize it as an attractive alternative for the mesh 
interconnection topology. In this paper, we proposed a shortest-path deadlock free 
routing algorithm for WK-recursive networks by finding the minimum length 
between Self-Routing and Second-routing algorithm and using 3 virtual channels for 
each physical channel. We also examined the performance issues of WK-recursive 
network in comparison to the mesh network under different workload choices 
including traffic pattern, network size, and message length. 
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Abstract. This paper present a framework for describing distributed
algorithms for mobile agents in an anonymous network. We make use of
the high level encoding of these algorithms as transitions rules. The main
advantage of this uniform and formal approach is the proof correctness
of the distributed algorithms. We illustrate this approach by giving ex-
amples of distributed computations of a spanning tree by mobile agents
in anonymous network.

Keywords: mobile agents, spanning tree, distributed algorithms, proofs.

1 Introduction

1.1 Background

Nowadays, distributed systems are solicited in potential life services (such as
banks, railway stations, airports, trade companies , etc). All of them need re-
liable applications to propose secure services to their clients. This aim can be
realized by proposing powerful models which simplify the design and the proof
of distributed algorithms. To formally describe distributed algorithms, several
works have tried to propose a ”standard” model for distributed systems. But,
unlike sequential algorithms, there is no ”universal” model of computations for
the distributed ones. Indeed, designing and proving distributed algorithms is still
a hard task and they depend closely on the considered model. The mathemat-
ical tool-box provided by local computation model proposed an exciting proof
approach for distributed algorithms [1]. Nevertheless, with the success of mobile
agent based applications, regards are switched from classical systems (message
passing, shared memory, remote procedure call, etc) towards this new paradigm.

Mobile agents are programs that can move through a network under their own
control and interact with resources and local environments. This technology,
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a profound revolution in computer software technology, is a brand new com-
puting technique promoted for solving a large scale of problems in computer
science [2]. Among many others, the distributed computing community is pre-
senting an increasing interest into mobile agents due to their considerable re-
duction of network load and their overcoming of the network latency . There are
also new trends to use this technology in faulty distributed systems for which
mobile agents can intuitively give a promoting solution for arising problems.

1.2 Related Works

Stationary process models are the most used computational models for dis-
tributed systems. A distributed system is modeled by a graph where the ver-
tices denote processes and the edges denote the communication links between
processes. In these models, computational activities are done by concurrent
execution of the stationary sequential processes. A panoply of mechanisms ex-
ists for interprocess communication. In the message passing mechanism, pro-
cesses communicate via messages added and removed in a messages-queue. In
the shared memory mechanism, processes communicate via global shared vari-
ables. In stationary process models computations are full synchronous, full asyn-
chronous, quasi asynchronous, etc. A diversity of models are then adopted for
distributed systems depending on the choice of the timing model, the communi-
cation model, the architectural model ,etc.

A well known stationary processes model is the local computation one. This
model was intensively studied after the pioneer work of Angluin [3]. An elemen-
tary computation is made by changing the state of a process. The new state
depends on the state of the process and its neighbors. Several results and tools
are proposed within this model [3,4,5].

Mobile agent paradigm propose a new vision of distributed systems. This
paradigm allows to separate computations from network topology. The vertices
of a graph representing the distributed system denote the execution places (or
places for short). Computations are carried by mobile agents which does on
every visited place some computations. This new vision of the distributed system
requires new models (mobile process models).

1.3 Motivations and Contributions

Our work is motivated by the increasing needs to develop distributed algorithms
executed by mobile agents. Traditional distributed algorithms are based on the
classical model of distributed systems, composed of permanently active processes
communicating through established links. This model of distributed systems is
no longer valid when dealing with mobile agents. Surprisingly, a recent result [6]
proves the equivalence of computations between a mobile agent system and a
message passing distributed system.

To illustrate the expression power of our model [7], we have developed three
distributed algorithms to compute a spanning tree of a graph (see [7]). Such
a problem is among the important problems in distributed computing. Trees
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are essential structures in various communication protocols (routing, informa-
tion broadcasting). We expose, in this paper, an unique algorithm to solve the
spanning tree problem. We describe it as a transition system and we outline its
correctness proof. More precisely, using a high-level encoding of mobile agent dis-
tributed algorithms, as presented in [7], we show that we can benefit from math-
ematical properties of transition systems to obtain rigorous and formal proofs
of our algorithms. We already used rewriting systems to encode distributed al-
gorithms [4,5,8]. In these latter solutions, based on message passing systems, the
complexity is calculated by means of needed messages or required time, we ex-
press the complexity of our solution by means of move made by mobile agents to
compute trees which is an intuitive way to focus on complexity of computations
carried by mobile agents.

Proposed solutions, in addition to benefits obviously inherited from the use of
mobile agent paradigm, and unlike classical models based on stationary process
models, do not require active processes in each host. The resources, on a given
host, are solicited when a mobile agent arrives on it. Another important benefit,
at the implementation phase, comes from the omission of the synchronization
[9] needed to implement several algorithms using the classical models in asyn-
chronous networks. In fact, computations are encapsulated within mobile agents.
Another important and intuitive benefit of mobile agent comes from the sepa-
ration between computations and the network topology. In fact, this separation
make easy to overcome dynamic changes of network topology while computa-
tions are carried by these mobile entities. If we look to a mobile agent move
as a message sent, we can intuitively conclude that proposed solutions are as
efficient as those proposed in classical models. We simulated our solutions in the
VISIDIA platform [10].

Due to lack of space we omit, in this paper, the model presentation. A detailed
explanation of our model can be found in [7]. We present in the next section a
mobile agent based solution to the problem of the spanning tree calculation. We
outline, in the same section, the correctness, complexity and termination proofs.
The last section gives a conclusion and some prospects.

2 Spanning Tree Computation by Mobile Agents

Spanning tree construction is a classical problem in computer science. In a dis-
tributed computing environment, the solution of this problem has many practical
motivations. It also has distinct formulations and requirements [11].

In a mobile agent system (MaS), the construction of a spanning tree of S

means to move the system from an initial system configuration (C0), where
each place is just aware of its local state, to a system configuration where

1. Each place knows its neighbors in the tree (father and sons)
2. All the channels, but those which ports are in the state E (means excluded),

constitute the spanning tree of S
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The mobile agent systems we deal with for the spanning tree problem consider
undistinguishable places. There is no knowledge of the size or the topology of
the navigation subsystem.

We have developed three solutions for the spanning tree problem. Due to lack
of space, we will present in this paper only one solution with a detailed proof.
A complete explanation of all the proposed solutions (together with detailed
proofs) can be found in [7].

In the algorithm below, we present a solution for the spanning tree problem
using the DFS technique (Depth First Search). In this solution, the system con-
tains a unique mobile agent. Its home is in the state V and all others places are
in the state N .

The mobile agent starts the computation in the state Child?, this state per-
mits to the mobile agent to explore unvisited places and to mark them. Reaching
a visited place, the mobile agent changes its state to Back to indicate that it
will return back from a visited place. When a mobile agent notices that it has
finished the exploration of all ports incident to a given place, it changes its state
to Finished and moves from a specific port (in the state Fa) incident to this
place.

The mobile agent system describing the algorithm above is defined as follow:
Let MaS = (A, P, S, π0, λ) be a mobile agent system and C0 =(state0, D0, A0)

its initial configuration such that:

– ∃! p ∈ P, p is the home and state0(p) = (V, Ny, . . . , Ny),
– ∀p ∈ P \ {home}, state0(p) = (N, Ny, . . . , Ny),
– A = {a}, π0(a) = home and state0(a) = (”Child?”, ∅),
– D0 = {∅}.

The transition system Ta describing the mobile agent algorithm is the following :

T 2 :

Child?

MA

→
N

Ny
→

Child?

MAV

F a

T 1 :

Child?

MAV

Ny
→

Child?

MA

→
V

U

T 3 :

Child?

MA

→
V

Ny
→

Back

MA

←
V

E

T 4 :

Back

MA

→
V

U
→

Child?

MAV

E

T 5 :

Child?

MAV

F a
→

F inished

MA

→
V

F a
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T 6 :

F inished

MA

→
V

U
→

Child?

MAV

S

T 7 :

Child?

MAV

→

End

MARoot

With the following priorities: T 1 > T 5 and {T 1, T 5} > {T 7}

In the following, we prove that the defined system solves the spanning tree
problem in an ananymous network:

Lemma 2.1. The system Ta is noetherian.

Lemma 2.2. Let (Ci)i≥0 be an execution sequence, ∀i Ci verifies:

�1 There is a unique mobile agent in MaS1.
�3 A place in the state N has all the incident ports in the state Ny.
�2 All the places which are in the state V , but the home, have a unique port in

the state Fa.
�4 A channel containing a port in the state S, has the other port in the state

Fa.
�5 The sub-graph induced by channels, which contain a port in the state Fa, is

a tree.

Lemma 2.3. The mobile agent leaves a place from the port in the state Fa when
all incident ports are already visited.

Lemma 2.4. In a given direction, a channel is traversed exactly one time.

Lemma 2.5. MaS reaches a final configuration when the mobile agent reaches
the state End.

Lemma 2.6. When the system reaches a final configuration all the places are
already visited.

With all these properties, we have the following results:

Theorem 2.1. In a final configuration, the sub-graph induced by channels,
which ports are in the state S or Fa, is a spanning tree of S.

Let n be the number of channels in MaS.

Theorem 2.2. The mobile agent needs 2 ∗ n moves to compute the spanning
tree.

The solution proposed below is as efficient as those proposed in [1] if we consider
that applying a rule is equivalent to an agent move. Beyond, our solutions do
not need synchronization which is essential for the solutions proposed in [1] in
asynchronous networks.
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3 Conclusion

This paper aim was to highlight our model [7] expression power and proof sim-
plicity by proposing a catalog of solutions to the spanning tree problem in anony-
mous networks. We spotlight also facilities and simplicity, supplied by our model,
to design distributed algorithms carried by mobile agents. The proposed solu-
tions are implemented and tested within the VISIDIA platform.

We plan, in the near future, to attack other problems from the distributed
computing theory (such as election, synchronization, consensus). Later, we plan
to design and implement a framework which offers an easy-to-use graphical in-
terface for programming and running distributed algorithms carried by mobile
agents.
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Abstract. We consider the rendezvous problem which requires k mo-
bile agents that are dispersed in a ring of size n, to gather at a single
node of the network. The problem is difficult to solve when the agents
are identical (i.e. indistinguishable), they execute the same deterministic
algorithm, and the nodes of the ring are unlabelled (i.e. anonymous).
In this case, rendezvous can be achieved by having each agent mark
its starting location in the ring using a token. This paper focusses on
fault tolerant solutions to the problem when tokens left by an agent
may fail unexpectedly. Previous solutions to the problem had several
limitations—they either assumed a completely synchronous setting or
were restricted to few specific instances of the problem where the value
of n is such that gcd(n, k′) = 1 ∀k′ ≤ k. We improve on these results,
solving rendezvous in asynchronous rings for arbitrary values of n and
k, whenever it is solvable.

1 Introduction

Overview: The Rendezvous problem is the most fundamental problem in com-
puting with autonomous mobile agents. The typical setting is when there is a
communication network represented by a graph of n nodes and there are k mobile
entities, called agents, that are dispersed among the nodes of the network. The
objective of the rendezvous problem is to make all the agents gather together
at a node. When the nodes of the network are labelled with unique identities, it
is possible to gather at a predetermined location, for instance, the node having
the smallest label. The problem is however more interesting when such unique
labels are not present, i.e. when the network is anonymous. In this case, the
agents have to reach an agreement among themselves about the node where to
meet.

The problem of rendezvous in an anonymous network has been studied both
for synchronous and asynchronous systems—we focus on the latter case. In such
systems, rendezvous can be achieved under certain conditions, by using a simple
marking device called a token (or sometimes, pebble or marker). Under this
model, each agent has a token that can be released at a node to mark the node.
The tokens of all agents are identical however, so nodes marked by one agent
may not be distinguished from those marked by another agent.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 292–297, 2008.
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In [6] it was shown how to achieve rendezvous in an anonymous ring network,
when every agent puts its token in its starting location. Flocchini et al. [7]
consider the case when some of the tokens are faulty i.e. a token may suddenly
disappear after an agent leaves it on a node. The solutions given in the above
paper are applicable either in completely synchronous networks or when tokens
may fail only at the time of their release (and not at any other time during
the algorithm). Another very strong assumption made in that paper (for the
asynchronous case), was that the values of n and k are such that gcd(n, k′) = 1,
∀k′ ≤ k. The objective of this paper is to show that this assumption is not
necessary for solving rendezvous with faulty tokens. In fact we determine the
conditions for solving the rendezvous problem with faulty tokens in asynchronous
rings for arbitrary values of n and k. We then give an algorithm that solves the
problem for all instances that are solvable.

Our Model: We consider an un-oriented ring network consisting of n nodes
with bi-directional channels connecting each node to its two neighbors. The
nodes of the network are anonymous (i.e. without any identifiers). There are
k mobile agents (or, robots) initially located in distinct nodes of the network.
The node in which an agent initially resides is called its homebase. The initial
configuration can be represented by a bi-colored ring (where black nodes are the
homebases and other nodes are white). The agents are identical and they follow
the same algorithm. Each agent has a token which is a simple marking device
that can be released at a node in order to mark it. Two agents can communicate
(exchange information) with each-other, only when they are at the same node.
However, agents may not communicate or even see each-other, while traversing
an edge. The agents must gather at a single node called the Rendezvous-point
whose location is not predetermined. In our model, some of the tokens may be
faulty. A faulty token is one that disappears after it is released and it never
re-appears again. We assume that at most k − 1 tokens may fail.

Related Work: The Rendezvous problem has been studied under many differ-
ent scenarios, mostly using probabilistic or randomized algorithms (see [1] for a
survey). Deterministic solutions for rendezvous have been proposed by Dessmark
et al.[4] and Yu and Yung [12] both for rings and arbitrary graphs, assuming a
synchronous setting. A solution to rendezvous in the asynchronous graphs was
provided by De Marco et al. in [11]. All the above results are for agents having
distinct labels and but having no ability to mark the nodes of the graph.

The idea of performing rendezvous search (in unlabelled graphs) using marks
on the starting places was explored first by Baston and Gal [2]. Kranakis et
al. [9] and Flocchini et al.[6] gave solutions for the rendezvous of two (resp. mul-
tiple) agents, on a ring networks using (unmovable) tokens to mark the starting
nodes. Gasieniec et al.[8] gave an optimal memory solution for the same setting.
Kranakis et al.[10] studied the problem for a synchronous torus using both fixed
and movable tokens.

Among fault-tolerant solutions to rendezvous, Dobrev et al.[5] and Chalopin
et al. [3] solved the rendezvous problem, in the whiteboard model, in presence
of faulty nodes and faulty edges, respectively. For the token model, the only
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previous study that considers faulty tokens is that of Flocchini et al. [7] as
mentioned before. We improve on those results in the present paper.

2 Conditions for Solvability

It was shown in [6] that there does not exist any terminating algorithm for
solving the Rendezvous problem in an anonymous ring, if neither the value of n
nor k is known to the agents. When solving rendezvous using tokens that may
fail, we have a more stronger condition:

Lemma 1. In presence of token failures, there is no terminating algorithm for
solving the rendezvous problem in an asynchronous anonymous ring, if the value
of k is unknown to the agents.

In the following, we shall assume that the value of k is known to the agents. For
solving the Rendezvous problem using tokens, each agent would put its token at
its starting location before traversing the ring. While traversing the ring (in the
absence of failures), an agent can obtain a sequence S of inter-token distances,
of the form (d1, d2, d3, . . . dk) where for 1 ≤ i < k, di is the distance between ith
and (i + 1)th token and dk is the distance between kth and the first token. For
1 ≤ i ≤ j ≤ |S|, we define S(i, j) as the subsequence (di, di+1, . . . dj).

We define the following two operations on the sequence S =(d1,d2,d3, . . . dk)

(i) The reversal operation gives us the sequence Rev(S) =(dk,dk−1, . . . d1),
(ii) For any 1 ≤ i < k, the rotation operation gives the sequence Roti(S) =

(di+1, di+2, . . . dk, d1, . . . di) which is called the i-th rotation of S.

The sequence S =(d1,d2,d3, . . . dk) is called rotation-reversal free (or RR-free)
if for every 0 < i < |S|, Roti(S) �= S and Rev(Roti(S)) �= S. Notice that if
Roti(S) = S for some 1 ≤ i < |S|, then the sequence is periodic with period i
and thus i divides both k = |S| and n. On the hand if Rev(Roti(S)) = S for
some 1 ≤ i < |S|, then the (bi-colored) ring is symmetrical. For any 1 ≤ i ≤ |S|,
we define Sumi(S) as the sum of the first i elements of S.

Theorem 1. If there are k agents in a ring of n nodes with the initial location
of each agent marked by a token, and S is the sequence of inter-token distances,
then the rendezvous problem is solvable if and only if one of the following holds:

(1) S is RR-free, or,
(2) S is aperiodic and S = Rev(Roti(S)) for some 1 ≤ i < |S| such that

Sumi(S) or n − Sumi(S) is even.

Proof. If S is RR-free then each agent would have computed a distinct sequence
and thus it is easy to break the symmetry between agents; the agents can gather
at the location of the ith token such that Roti(S) is lexicographically smaller
than Rotj(S) ∀j �= i and 1 ≤ j ≤ |S|. On the other hand, if S is periodic then
we already know that rendezvous is not solvable. So, we are left with the case



Mobile Agent Rendezvous in a Ring Using Faulty Tokens 295

when S is aperiodic but the bi-colored ring is symmetrical. In this case, we can
solve rendezvous if and only if the axis of symmetry passes through at least one
node of the ring. This will be satisfied if at least one of Sumi(S) or n−Sumi(S)
is even.

The above conditions are necessary and sufficient for solving rendezvous in a ring
when the tokens do not fail. However, we shall show that even when f tokens
fail for 0 ≤ f < k, the above conditions are still sufficient for solving rendezvous.
In the next section we present an effective algorithm (i.e. one which solves ren-
dezvous whenever the conditions of Theorem 1 are satisfied) for rendezvous in a
ring when tokens fail only at the beginning.

If we allow for the presence of multiple tokens at a node, then we can get a
weighted sequences of inter-token distances of the form SW =((c1,d1), (c2,d2),
. . . (cr,dr)) where the ci’s are counts of the number of tokens at the respective
locations, such that c1 + c2 + · · · + cr = k. We can show that the above result
holds also for the weighted sequence of inter-token distances. Since, some of the
tokens may disappear, we shall use the following strategy. When an agent loses
its token (we shall call such an agent ‘LOSER’), it shall itself stand stationary at
a node, functioning as a ‘virtual’ token. We define the agent-count of a node v,
as the number of tokens plus the number of LOSER agents present at the node
v. Thus, in the weighted inter-token sequence SW , the weights (i.e. ci’s) would
represent the agent-counts of the respective nodes. The agent-count of the whole
sequence SW would be the sum of these weights, denoted by Agent-Count(SW ).
Similarly, Edge-Count(SW ) would denote the sum of the inter-token distances
(i.e. di’s) in SW . Notice that Edge-Count(SW )= n.

Definition 1. Given a sequence S of inter-token distances in a ring, we de-
fine the rendezvous-point or, RV-point(S) as follows. If S is RR-free, then RV-
point(S) is the Min-Point—the location of the ith token such that Roti(S) is
lexicographically smaller than Rotj(S) ∀j �= i and 1 ≤ j ≤ |S|. Otherwise, if S
satisfies the conditions of Theorem 1 clause-(2), then RV-point(S) is the middle
node in the largest1 even segment among the two segments defined by S(1, i) and
S(i + 1, k). In all other cases, RV-point(S) is undefined.

The following result immediately follows from the above definition.

Lemma 2. If the sequence S satisfies the conditions of Theorem 1, then RV-
point(S) returns the same location as RV-point(Roti(S)) for all i ∈ [1, k].

3 Algorithm for Rendezvous When Tokens Fail

As mentioned before we consider the case where failures occur only at the begin-
ning, when a token is released at a node (i.e. a token either disappears immedi-
ately on release or never fails at all). This assumption simplifies the design of an
algorithm for rendezvous. For the algorithm given below, each agent knows the
1 Largest in terms of edge-count and then agent-count.
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value of both n and k at the beginning. The algorithm can be easily modified to
work also for the case when only k is known, using a similar technique as in [7].

Algorithm RVring

1. Put Token at the homebase, travel for n steps in any choosen direction to
compute the sequence of inter-token distances S and return to homebase.

2. If Token at homebase has disappeared, then become LOSER and go to the
next node having a token. A LOSER agent remains at this node until it
receives instructions from another agent. A LOSER agent also remembers
the distance to its original homebase.

3. Else if |S| = k, then go to RV-point(S) and stop;
4. Else re-traverse the ring to compute the weighted sequence of inter-token

distances SW , returning to homebase and then execute the following steps.
5. While (Agent-Count(SW ) < k),

Wait at homebase until another LOSER agent arrives at this node, then
recompute SW by traversing the ring again.

6. When Agent-Count(SW ) = k, compute the sequence S of original inter-token
distances, by going round the ring and gathering information from LOSER
agents about their original locations.

7. If your homebase is guarded by a LOSER agent, then become an ACTIVE
agent. Otherwise wait at the homebase.

8. If ACTIVE, go to RV-point(S) (say, node v) and wait for all other ACTIVE
agents to arrive at v. (Note that there are exactly k1 = |{ci ∈ SW : ci > 1}|
ACTIVE agents.) Once all ACTIVE agents have arrived at v, one of them
(or, maybe two of them), is(are) chosen as LEADER, depending on the
distance to the agent’s homebase. (If there are two LEADER agents, they
stick together for the rest of the algorithm acting as single unit.)

9. If LEADER, then go round the ring to collect all waiting agents (agents
that are not LOSER or ACTIVE). At each node u that contains a token but
no LOSER agent, the LEADER waits for the token-owner to return, and
collects it before moving to the next node.

10. When (k − f = |SW |) agents have gathered at the rendezvous-point, the
LEADER goes round the ring again to collect all LOSER agents.

4 Proof of Correctness

Assuming that the conditions in Theorem 1 are true, the following results hold.
(The proofs have been omitted due to the space constraint.)

Lemma 3. If no tokens fail, then algorithm RVring terminates correctly after
Step 3, achieving rendezvous of all the k agents.

Lemma 4. When 1 ≤ f < k tokens fail, the algorithm RVring correctly solves
rendezvous, after no more than (f + 5) · n moves by any agent.

Theorem 2. For algorithm RVring, the total number of moves made by the
agents is O(k · n) and the memory requirement for each agent is O(k log n).
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5 Conclusions

We presented solutions to the Rendezvous problem for k mobile agents in asyn-
chronous ring networks of size n, using identical tokens which are prone to fail-
ure. We first determined the conditions necessary for achieving rendezvous in an
anonymous ring and then we showed that even if 0 ≤ f ≤ k − 1 tokens fail, it is
still possible to solve rendezvous under the same conditions (that are necessary
for rendezvous in fault-free situations). These solutions work only if the tokens
fails only at the beginning. In the general case (i.e. when tokens may fail anytime
during the algorithm), the solution to rendezvous is much more complicated and
requires additional assumptions. These solutions would appear in the full paper.
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Abstract. In this paper, we propose a new deterministic key predistri-
bution scheme for secure communication in wireless sensor networks. Our
scheme provides better trade-off among scalability, computation over-
head, connectivity and resilience against node captures than existing
key predistribution schemes, particularly in situations where the nodes
in the network are highly mobile.

1 Introduction

Secure communication in a network of resource-constrained sensor nodes has
been an important area of research in the recent past. In a network where the
nodes are static (or have only very limited mobility), deployed nodes establish
secure links with neighboring nodes using predistributed keys by a process called
shared key discovery. In this paper, we address the situation where the nodes in
the sensor network are highly mobile. The nodes may reestablish secure links by
carrying out the shared key discovery phase periodically. The resulting overhead
becomes unacceptably high under most of the existing schemes. In view of this,
we look for a key predistribution scheme with modified requirements. We assume
that the nodes are aware of their movements. If not, a node may periodically
probe its neighborhood and invokes a key reestablishment procedure if it finds
a significant change in its neighborhood. Suppose that a node u attempts to
reestablish keys in a new neighborhood, and v is an arbitrary neighbor of u. The
reestablishment process should meet the following desirable properties.

– The reestablishment process is initiated by u and requires the cooperation
of each neighboring node v.

– The node u is allowed to perform some reasonable amount of computation.
If m is the number of nodes in the neighborhood of u, then a computation
of amount O(m) is the absolute minimum.

– Each neighboring node v must not be subject to too much computation
and/or communication overhead. A good algorithm corresponds to this over-
head to be of an amount O(1) per neighbor.
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The basic scheme [5] and its variants [3], the polynomial-pool scheme [7] and
the matrix-based scheme [4] incur sufficiently more overhead than this desirable
minimum. Several deterministic and hybrid schemes [1,2,6,10] are available in
the literature. These schemes do not make it clear how u can quickly compute the
key ring of v, often without invoking the entire key predistribution procedure.
The scheme of [8] addresses the issue of the essential asymmetry in the key
reestablishment phase as mentioned above. However, the computation overhead
of u in this scheme is very high. Ruj and Roy propose a scheme [9] which seems to
be the most appropriate for mobile networks, but has small maximum supported
network sizes and poor resilience against node captures.

In this paper, we improve Ruj and Roy’s scheme and obtain a trade-off among
scalability, security and connectivity, which appears acceptable in most practical
applications. Our scheme achieves the lower bounds on computation overhead for
both u and v. A matrix-layout based scheme (henceforth referred to as the ML
scheme) is at the heart of our modification (Section 2). The ML scheme achieves
high connectivity, but suffers from somewhat poor resilience, particularly against
selective node captures (Sections 3 and 4).

2 Our Matrix-Layout Based (ML) Scheme

2.1 Construction of the Layout Matrix

Let t denote the maximum number of symmetric keys that each sensor node can
store in its memory. We assume that t is even. We take d = t+2 and construct a
d× d matrix as follows. We first fill the main diagonal of the matrix by a special
symbol which does not stand for the id of any key or node. We then fill out
the triangular region below (and excluding) the main diagonal and above (and
including) the reverse main diagonal in the column-major order by the integers
1, 2, 3, . . . ,

(
t+2
2

)2. Subsequently, we fill out the triangular region above (and ex-
cluding) the main diagonal and above (and including) the reverse main diagonal
in the row-major order by the integers

(
t+2
2

)2 + 1,
(

t+2
2

)2 + 2, . . . , 2
(

t+2
2

)2. Fi-
nally, we reflect about the reverse main diagonal the entries above this diagonal
in order to fill the region below this diagonal, and make the matrix symmetric
with respect to the reverse main diagonal. For example, for t = 4, the layout
matrix is constructed as follows.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗
1 ∗
2 6 ∗
3 7 9 ∗
4 8 ∗
5 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗ 10 11 12 13 14
1 ∗ 15 16 17
2 6 ∗ 18
3 7 9 ∗
4 8 ∗
5 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗ 10 11 12 13 14
1 ∗ 15 16 17 13
2 6 ∗ 18 16 12
3 7 9 ∗ 15 11
4 8 7 6 ∗ 10
5 4 3 2 1 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

For easy future references, we call the triangular region in the layout matrix
storing 1, 2, . . . ,

(
t+2
2

)2 as the left triangle (LT), and the triangular region storing
(

t+2
2

)2 + 1,
(

t+2
2

)2 + 2, . . . , 2
(

t+2
2

)2 as the top triangle (TT). Their reflections
about the reverse main diagonal are respectively called the bottom triangle (BT)
and the right triangle (RT).
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We assume that matrix indexing is zero-based. Thus, the top-left element
of the layout matrix has index (0, 0), and the bottom-right element has index
(t + 1, t + 1). The following formula converts an index (i, j) to the entry of the
layout matrix at the (i, j)-th location.

f(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

∗ if i = j,
−j2 + (t + 1)j + i if i > j and i ≤ t + 1 − j,
f(t + 1 − j, t + 1 − i) if i > j and i > t + 1 − j,
(

t+2
2

)2 + f(j, i) if i < j.

Given (i, j), one can compute f(i, j) in O(1) time (using a few single-precision
operations only).

2.2 Key Predistribution

Before deployment of the sensor nodes, the key-ring of each node is loaded
with t symmetric keys (like AES keys). These keys are selected from a pool
of T = 2

(
t+2
2

)2 randomly chosen keys having the ids 1, 2, 3, . . . , T . The maxi-
mum number of nodes supported by our scheme is also N = 2

(
t+2
2

)2. The nodes
in the network are also given ids in the range 1, 2, 3, . . . , N .

For each position (i, j) in the triangle LT in the layout matrix, one first com-
putes u = f(i, j). All the entries in the j-th column in the matrix are then
considered, except u itself and the special symbol *. The t keys with ids equal
to these t elements are loaded in the key-ring of u along with the respective key
ids. In addition, the location (i, j) is also stored in the memory of u.

Subsequently, for each position (i, j) in the triangle TT, one computes u =
f(i, j) =

(
t+2
2

)2 + f(j, i). The key-ring of u is loaded with the keys whose ids
are the elements of the i-th row of the matrix (except u and *).

2.3 Shared Key Discovery

Suppose that a node u wants to establish a key with a node v. Let (ui, uj) and
(vi, vj) denote the locations of the nodes u and v in the layout matrix.

Assume that u is located in the triangle LT in the layout matrix. Figures 1
and 2 explain this situation. First consider the case that (vi, vj) too is in the
triangle LT. If uj = vj , then u and v share the t − 1 keys with ids f(i, uj) for
i �= ui, vi, uj (Figure 1(c)).

If u and v are both in the triangle LT and uj �= vj , we have a situation
described in Figure 1(a). By construction, the vj-th column of the layout matrix
is identical to its (t + 1 − vj)-th row. The uj-th column and the (t + 1 − vj)-th
row intersect at the unique location (t + 1 − vj , uj). If this location is distinct
from (ui, uj), then u and v share the unique key with id f(t + 1 − vj , uj). If, on
the other hand, ui = t + 1 − vj , then u and v do not share a key (Figure 2(a)).

Finally, suppose that (vi, vj) is in the triangle TT of the layout matrix. In
this case, u and v share the unique key with id f(vi, uj) (Figure 1(b)), unless
vi = ui (Figure 2(b)) or vi = uj (Figure 2(c)).



A New Key-Predistribution Scheme for Highly Mobile Sensor Networks 301

Kv

Kv KuKu

Kv

Ku

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

v

v Kv

v

(a) (c)(b)

u

u
u

v

Fig. 1. Two nodes u, v sharing keys
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Fig. 2. Two nodes u, v not sharing keys

To sum up, the node u identifies in O(1) time a key shared with v (provided
that such a key exists). If m denotes the number of neighbors of u in its new
neighborhood, then using only O(m) computation and communication overhead
u can reestablish its key connectivity records, whereas each new neighbor of u
incurs only O(1) computation and communication overhead. No key predistri-
bution schemes proposed earlier achieve such a high efficiency.

3 Analysis of the ML Scheme

3.1 Connectivity

Figure 2 shows the three situations in which two nodes u and v do not share a key.
The number of such ordered pairs (u, v) is (t + 1)(t + 2)(2t + 3)/3 = Θ(t3). The
total number of ordered pairs (u, v) is N(N − 1) = Θ(t4), where N = 2

(
t+2
2

)2.

Proposition. The connectivity of the ML scheme is p = 1 − Θ
( 1

t

)
. More pre-

cisely, p ≈ 1 − 8
3t except for very small values of t. In particular, p is very close

to 1 for all practical values of t. Moreover, the number of ordered pairs of nodes
sharing t − 1 common keys is t(t + 2)(2t + 5)/6 = Θ(t3), i.e., most pairs of
connected nodes share unique keys.
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Table 1. Comparison of parameters for several schemes (t = 100)

Key-pool Max net- Connec- Simulated values of C(s) for s =
Scheme size work size tivity 10 20 50 100 150 200 250

Basic 5202 – 0.859 0.176 0.322 0.621 0.856 0.946 0.979 0.992
2922 – 0.971 0.294 0.502 0.825 0.969 0.995 0.999 1.000
2832 – 0.974 0.302 0.513 0.834 0.973 0.995 0.999 1.000

Ruj & Roy I 1326 1326 1.0 0.166 0.470 0.918 0.998 1.000 1.000 1.000
Ruj & Roy II 1326 2652 1.0 0.113 0.393 0.898 0.998 1.000 1.000 1.000

ML I 5202 5202 0.974 0.236 0.414 0.702 0.898 0.964 0.989 0.993
ML II 5202 10404 0.971 0.176 0.324 0.612 0.863 0.945 0.979 0.991

3.2 Security Analysis

The computational efficiency and high connectivity of the ML scheme come at
a cost. The resilience of the network against node captures is somewhat poor.
Capturing only t + 2 nodes (one node from each column of the triangle LT and
one node from each row of the triangle TT) reveals all the keys to an adver-
sary. However, if we adopt a model of random node capture, we get a resilience
similar to the basic scheme [5] under the assumption that the deterministically
distributed keys behave as randomly distributed keys. This assumption is, how-
ever, not very accurate, and we obtain a resilience slightly smaller than that of
the basic scheme with the same pool size.

3.3 Doubling the Maximum Supported Network Size

The key-rings of the nodes in the triangle LT (resp. TT) are based on the columns
(resp. rows) of the matrix. We now distribute the same keys to a new set of
N = 2

(
t+2
2

)2 nodes. In this case the key rings of the nodes in the triangle LT
(resp. TT) are based on the rows (resp. columns) of the layout matrix. The
connectivity among the new nodes remains identical with that among the old
nodes. The cross connectivity among the old nodes and the new nodes contin-
ues to remain 1 − Θ(1/t). The maximum supported network size now becomes
4

(
t+2
2

)2 ≈ t2. This extended scheme is called the ML Scheme II.

4 Comparison with Other Schemes

In Table 1, we compare our schemes with the basic scheme [5] and Ruj and
Roy’s schemes [9]. We take the capacity of the key-ring in each sensor node to
be t = 100 keys. By C(s), we denote the fraction of compromised links among
uncaptured nodes, when s randomly chosen nodes are captured.

Let us first compare our scheme with Ruj and Roy’s scheme. By reducing
the amount of overlap between key rings, we have increased both the key-pool
size and the maximum supported network size by a factor of nearly 4. This gain
comes at the cost of some marginal loss of connectivity. For t = 100, the loss of
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connectivity is less than 3%. When the number of captured nodes is quite small,
Ruj and Roy’s schemes provide better resilience than our schemes because of
larger overlaps of key rings of the nodes. However, as the number of captured
nodes increases, a smaller key-pool size in Ruj and Roy’s schemes makes their
resilience noticeably poorer than that of ML schemes.

The basic scheme supports networks of any size. When we use the same key-
pool size as the ML schemes, the basic scheme yields poorer connectivity but
higher resilience against node captures. On the other hand, if we reduce the
key-pool size for the basic scheme so as to achieve the same connectivity as the
ML schemes, its resilience becomes poorer than that for the ML schemes.

5 Conclusion

In this paper, we propose the matrix-layout (ML) scheme for deterministic key
predistribution in a sensor network. Our scheme is very suitable for mobile net-
works, since it optimizes the computation and communication overhead of key
reestablishment. However, poor resilience of our scheme against node captures
(particularly selective captures) is expected to attract further research atten-
tion. Several ad hoc techniques (like using multiple copies of the ML scheme)
can increase resilience at the cost of decreased connectivity.
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Abstract. Protocols for Generalized Oblivious Transfer(GOT) were in-
troduced by Ishai and Kushilevitz [10]. They built it by reducing GOT
protocols to standard 1-out-of-2 oblivious transfer protocols based on
private protocols. In our protocols, we provide alternative reduction by
using secret sharing schemes instead of private protocols. We therefore
show that there exist a natural correspondence between GOT and gen-
eral secret sharing schemes and thus the techniques and tools developed
for the latter can be applied equally well to the former.

1 Introduction

The notion of Oblivious transfer (OT) was introduced by Rabin [13] which has
proved to be useful tool in the construction of various cryptographic protocols
like bit commitment, zero-knowledge proofs, multi-party computations etc [12].
In Rabin’s OT protocol, Alice has a list of n strings x1, x2 . . . xn and Bob wishes
to learn about the string xi. But, Bob does not want to reveal the value of index
i and at the same time Alice does not want to reveal any of the xj for which
j �= i. Later, several variations of OT were proposed in the literature [4,8,5,6,9]
and some of them were proved to be equivalent by Brassard et. al. [3]. 1-out-of-2
OT introduced by Even et. al. [9] is one among them where Bob is allowed to
securely choose a single secret out of a pair of secrets held by Alice. Crepeau [7]
showed that Rabin’s OT is equivalent to 1-out-of-2 OT.

Direct extensions that followed 1-out-of-2 OT are 1-out-of-n OT [1,16] and
m-out-of-n OT [14]. To state informally, in an m-out-of-n OT, Bob can receive
only m messages out of n messages (n > m) sent by Alice; and Alice has no idea
about which ones have been received. Thus, for Alice all messages are equally
likely possible for Bob to receive. 1-out-of-n OT is a special case of m-out-of-n
OT where m = 1. All the above mentioned variations of OT are analogous to
the threshold secret sharing schemes where the number of secrets to be trans-
mitted obliviously is defined by a threshold function. Thus, all the limitations

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 304–309, 2008.
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of a threshold schemes used in secret sharing schemes hold here, i.e. there exist
access structures that cannot be realized by the above mentioned variations of
OT. GOT protocol introduced by Ishai and Kushilevitz[10] is thus a natural
generalization of all these variations of OT.

In GOT protocol, Alice has n secrets, and wishes to obliviously transfer to
Bob a qualified subset A ⊆ [n] of the secrets as per Bob’s choice, where n is
a positive integer denoting the number of 1-bit secrets held by Alice. Ishai and
Kushilevitz[10] implement GOT by means of parallel invocation of simple 1-out-
of-2 OT primitive while making use of private protocols. Their model of private
protocols consists of n players P1, P2, . . . , Pn where each player holds a secret
input xi. All the players have access to a common random string. Messages are
sent by all the n players to a special player Carol depending upon its input
and the common random string. Carol computes a predetermined function using
messages received from all the players without learning any additional informa-
tion about the secret values x1, x2, . . . , xn. We too implement our GOT protocol
by parallel invocations of 1-out-of-2 OT, but we greatly reduce the overhead of
private protocols by using secret sharing schemes instead of private protocols.

Papers that have close resemblance to our work are Kawamoto and Ya-
mamoto’s [11] work on secret function sharing schemes(SFSS) and Tzeng’s [17]
work on 1-out-of-n OT. Kawamoto and Yamamoto [11] have shown that an un-
conditionally secure distributed oblivious transfer protocol can be constructed
by combining the SFSS with multi-groups secret sharing scheme [15]. On the
other hand, Tzeng [17] work showed how to construct OT protocols using any
secret sharing scheme. His schemes are based on computational guarantee (based
on decisional Diffie-Hellman problem), whereas our scheme’s guarantee is depen-
dent on the security guarantee of the underlying secret sharing scheme. Thus by
using secret sharing schemes with different security guarantees, our schemes can
provide different security guarantees.

Rest of the paper is organized as follows: section 2 covers the required back-
ground. In section 3 we give our protocol and its proof of correctness and we
conclude the paper in section 4.

2 Preliminaries

Definition 1. Access structure [2]
Let P = {P0, P1, . . . , Pn−1} be a set of parties. A collection A ⊆ 2{P1,P2,...,Pn}

is monotone if B ∈ A and B ⊆ C imply C ∈ A. An access structure is a
monotone collection A of non-empty subsets of {P1, P2, . . . , Pn} (that is, A ⊆
2{P1,P2,...,Pn}). The sets in A are called the authorized sets. A set B is called
a minimal set of A if B ∈ A, and for every C � B it holds that C �∈ A. The
minimal sets of an access structure uniquely define it. Finally, we freely identify
an access structure with its monotone characteristic function fA : {0, 1}n −→
{0, 1}, whose variables are denoted x0, . . . , xn.
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Definition 2. Complement of an access structure
Let P = {P0, P1, . . . , Pn−1} be a set of parties. A collection B ⊆ 2P is called as
a complement of a collection A if {∃B ∈ B|B = P − A, ∀A ∈ A}.

Note: Complement of an access structure is uniquely defined by its maximal ba-
sis1 B instead of minimal basis. Also, there can exist common subsets between
both access structure A and its complement access structure B. For example, con-
sider P = {1, 2, 3, 4}, A = {{1, 2}, {2, 3}, {3, 4}}. Its complement access struc-
ture uniquely defined by its maximal basis B = {{1, 2}, {1, 4}, {3, 4}}. Observe
that the subsets {1, 2} and {3, 4} are common to both the structures.

Definition 3. Secret Sharing [2]
Let S be a finite set of secrets, where |S| ≥ 2. An n-party secret-sharing scheme
Π with secret-domain S is a randomized mapping from S to a set of n-tuples
S0×S1×. . .×Sn−1,where Si is called the share-domain of Pi. A dealer distributes
a secret s ∈ S according to Π by first sampling a vector of shares (s0, . . . , sn−1)
from Π(s), and then privately communicating each share si to the party Pi. We
say that Π realizes an access structure A ⊆ 2{P1,P2,...,Pn} (or the corresponding
monotone function fA : {0, 1}n −→ {0, 1}) if the following two requirements
hold:

1. Correctness. The secret s can be reconstructed by any authorized subset of
parties. That is, for any subset B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there
exists a reconstruction function RecB : Si1 × . . . × Si|B| −→ S such that for
every s ∈ S,

Pr[RecB(Π(s)B) = s] = 1,

where Π(s)B denotes the restriction of Π(s) to its B-entries.
2. Privacy. Every unauthorized subset cannot learn anything about the secret

(in the information theoretic sense) from their shares. Formally, for any
subset C �∈ A, for every two secrets a, b ∈ S, and for every possible shares
〈si〉Pi∈C:

Pr[Π(a)C = 〈si〉Pi∈C ] = Pr[Π(b)C = 〈si〉Pi∈C ].

Definition 4. Generalized Oblivious protocol
A Generalized oblivious protocol P between two players Alice and Bob is said to
realize an access structure B if:

1. Bob is able to recover all the secrets chosen from any one of the qualified
subsets specified by an access structure.

2. Bob doesn’t recover any set of secrets which is not qualified according to the
given access structure.

3 Protocol

Let σ1, σ2, . . . σn be the n messages of the (generalized) OT protocol. The quali-
fied set of messages that receiver can receive is specified by an access structure A.
1 The maximal basis of B is defined as the collection {B|B ∈ calB, �X ∈ B, X ⊃ A}.
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Let B be a complement access structure to A. SHARE and RECOVER are the
sharing and reconstruction algorithms of a secret sharing scheme respectively for
an access structure B. We give an information theoretic reduction from oblivious
transfer on an access structure A to 1-out-of-2 oblivious transfer using a secret
sharing scheme on access structure B. Our protocol is as follows:

1. Alice selects n random values x1, x2, . . . xn uniformly chosen from a finite
field and computes yi = σi ⊕ xi.

2. Alice chooses a random secret s uniformly chosen from a finite field and
applies the SHARE algorithm to get n shares s1, s2, . . . sn.

3. Alice and Bob execute 1-out-of-2 OT protocol n times, with the messages
(s1, y1), (s2, y2), . . . (sn, yn) respectively.

4. Let A ∈ A be the set of messages that Bob wishes to receive. For each i, if
i ∈ A then Bob picks yi, else he picks the share si.

5. Bob executes RECOVER algorithm to obtain secret s and sends it back to
Alice.

6. Alice verifies whether Bob has correctly computed the secret s. If it is correct,
she sends x1, x2, . . . xn to Bob else she aborts the protocol.

7. Bob computes σi = xi ⊕ yi for each i in A.

Theorem 1. Bob can recover any of the qualified subsets defined by the access
structure A.

Proof. We prove by contradiction. For the rest of the proof, we assume i to be
some positive value less than or equal to n. Suppose Bob is unable to recover a
valid secret σi defined accordingly by a qualified set A ∈ A. It is either due to
xi or yi missing or both. Consider each of the cases individually:

1. xi is missing: This implies that Bob has send an invalid secret s to Alice for
Alice to refuse to send the values x1, x2, . . . , xn. By the correctness of the
RECOVER algorithm, it implies that Bob recovers unqualified set of shares
to construct the secret s. But from the security of the underlying 1-out-of-2
OT, we know that Bob recovers a valid set of shares A ∈ A, if and only if
he recovers a valid set of shares B ∈ B2. Therefore, Bob cannot posses share
yi. Hence a contradiction.

2. yi is missing: This contradicts the basic assumption of 1-out-of-2 OT that
Bob would be able to recover either of the secret si or yi as per his choice.
Hence a contradiction.

3. Both xi and yi are missing: By the similar argument as before, one can
vacuously prove that it can occur only when the underlying 1-out-of-2 OT
is incorrect. Hence a contradiction.

Theorem 2. Bob cannot recover any subset of secrets that is not qualified ac-
cording to the access structure A.

2 In third step of the protocol, Bob would be able to recover either yi or si for ∀i, 1 ≤
i ≤ n but not both.
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Proof. We prove by contradiction. Suppose that Bob’s algorithm is a proba-
bilistic polynomial time that outputs {σi}i∈A for any A ∈ A with non-negligible
probability. To correctly reconstruct the secret s of Alice, Bob requires all {si}i∈B

for any B ∈ B. Otherwise it is infeasible to know the value of secret s, whose
security follows from the security of underlying secret sharing scheme. The only
way in which Bob can get {σi}i∈B for any B /∈ B is to get both the input of
Alice in the third step of the above protocol, which is infeasible since it depends
on the underlying 1-out-of-2 OT protocol.

Theorem 3. Alice has no information of which qualified set of secrets defined
by A is recovered by Bob.

Proof. In the third step of the protocol, Alice and Bob execute 1-out-of-2 OT
for n rounds. From the security of the underlying 1-out-of-2 OT protocol, for
each round i Alice has no information whether si or yi is been recovered by Bob.
Thus, even at the end of the n invocations, Alice has no idea about the set of
shares si and yi recovered by Bob. Thus, the privacy of Bob follows from the
secrecy of which set of shares he recovers.

4 Conclusion

Oblivious Transfer proved to be very useful tool in the construction of the crypto-
graphic protocol. Similarly, generalized oblivious transfer (GOT) is also expected
to be very useful in the construction of cryptographic protocols. For instance,
GOT has important applications in E-Commerce. Suppose that Alice wants to
buy some goods from a shopkeeper, but does not want to reveal to the shopkeeper
what set of goods he intends to buy. Whereas the shopkeeper wants to make sure
that total cost of the goods that Alice buys is no more than what Alice claims.
This can be easily implemented using GOT, where the GOT’s access structure
contains all possible combinations of goods whose total price does not exceed a
specified value. GOT has many other such useful applications. Characterizing
the exact lower bounds for GOT in terms of communication and computation is
an interesting open problem.
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Abstract. Wireless sensor networks (WSN) are attractive for informa-
tion gathering in large-scale data rich environments. In order to fully ex-
ploit the data gathering and dissemination capabilities of these networks,
energy-efficient and scalable solutions for data storage and information
discovery are essential. In this paper, we formulate the information dis-
covery problem as a load-balancing problem, with the combined aim be-
ing to maximize network lifetime and minimize query processing delay
resulting in QoS improvements. We propose a novel information storage
and distribution mechanism that takes into account the residual energy
levels in individual sensors. Further, we propose a hybrid push-pull strat-
egy that enables fast response to information discovery queries.

Simulations results prove the proposed method(s) of information dis-
covery offer significant QoS benefits for global as well as individual
queries in comparison to previous approaches.

1 Introduction

In order to fully exploit the data gathering and dissemination capabilities of
wireless sensor networks (WSNs), energy-efficient and scalable solutions for data
storage and information discovery are essential. Traditionally, the communica-
tion pattern in WSNs has been assumed to be many-to-one; i.e., numerous sen-
sors gather information which is routed to a central point commonly referred to
as the sink. However, many emerging applications for WSNs require dissemina-
tion of information to interested clients within the network requiring support for
differing traffic patterns. Military applications where the soldiers in a battlefield
“query” for enemy presence or fire-fighters in a building querying for areas of
high temperature are some examples. Further, the time and/or life critical nature
of these applications place more stringent quality of service (QoS) requirements
on the discovery process. This need is the main motivation for our work.

Strategies for information discovery can be proactive or reactive. Sensors that
gather information or detect an event can “push” this information out to every
sensor in the network or wait for a sensor to “pull” this information through
querying. While pure push or pull based methods are possible, the efficiency of
the two methods varies and depends on the demand for information [1].

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 310–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this paper, we formulate the information discovery problem as a load-
balancing problem, with the combined aim being to maximize network lifetime
and minimize query processing delay. We have developed a novel information
storage and distribution mechanism that takes into account the residual energy
levels in individual sensors. Further, we propose a hybrid push-pull strategy that
enables fast response to information discovery queries. The proposed informa-
tion storage and dissemination model uses a distributed algorithm to construct
multiple energy-rich trees rooted at the information producing node. Our work
differs from other recent developments within this space [2],[3],[4] in that we do
not employ greedy mechanisms for information dissemination, depend on topo-
logical constraints or require knowledge of information location.

2 Related Work

Early research into optimal structures for information discovery in large-scale
sensor networks can be traced back to directed diffusion [5] and rumor routing
[6]. More recently Liu et al. [1] proposed a hybrid push-pull approach to simulate
a comb-needle for data dissemination and retrieval. In a sensor grid as in Fig. 1, a
node that generates data pushes its data vertically above and below its location
to build a vertical needle of length l. When a sensor has a query, the query is
then pushed out horizontally every s vertical hops with the resulting routing
structure representing a comb. The main drawback of the approach is the lack
of any attempt to balance the load in the network. A node generating a large
number of events will always replicate its data along the same path using the
same nodes. Apart from the storage limitations of sensor nodes, such a static
approach will impact negatively on the network lifetime.

Ratnasamy et al. [2] proposed the use of a geographic hash table (GHT) for
data-centric storage. When a node generates data or an event this information

 
Q 

P 

 

Fig. 1. A simple scheme on a n × n grid network where a information producer P
replicates its data along the horizontal and the query from a node Q traverses the
vertical to discover the information. The information discovery cost is therefore O(n).
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is stored by name at a location within the sensor network. This location is
identified based on the value of a key that hashes to geographic coordinates
within the network. Sarkar et al. [3] proposed the Double Rulings (DR) scheme
for information brokerage as an extension to the basic GHTs hashing. The DR
scheme improves on the GHT method in that it allows for distance sensitive
query resolution. However, the choice of nodes in the replication and retrieval
curves are not energy-sensitive and hence it suffers from the same drawbacks as
the previous methods. Fang et al.[4], proposed an interesting landmark-based
strategy that combines the GHT with a DR scheme without the requirement
for sensor nodes to be location-aware. In a pre-processing stage the landmark
Voronoi complex (LVC) and its dual the combinatorial Delaunay graph (CDG)
are computed in order to capture the global topology of the sensor field. The
global topology is abstracted using a subset of well-chosen sensor nodes that are
referred to as “landmarks”. Nodes are then partitioned into regions (or tiles)
in such a manner that within each tile greedy routing mechanisms can succeed.
Data generated by a node is hashed to a tile based on the data type and routed
using a shortest path tree that rooted on the originating tile. Data is replicated
at each tile enroute to the hashed tile. When a node issues a query the query is
routed towards the hashed tile, until it rendezvous on a tile along the replication
path. At the lower-level, DR is employed for information retrieval within each
tile. The main drawback of the scheme is the heavy dependency on the global
topology abstraction.

3 Our Approach

We note that current approaches for information dissemination in WSNs adopt a
data-centric approach that is not responsive to the current state of individual sen-
sors. As stated earlier, the data replication strategies employed are based on dis-
tance based greedy methods. These routing strategies are energy-inefficient [7].

We propose the use of an energy-efficient hybrid push-pull information dis-
covery mechanism that is responsive to the current state of the individual sensor
nodes. The aim of such an approach is to balance the data load across the net-
work with a resulting increase in the network lifetime and decrease in the cost
of query resolution. Prior to detailing the data dissemination and information
retrieval mechanisms we define a node selection metric.

3.1 Node Selection Metric

The purpose of the metric is to enable the energy-efficient choosing of a data
replication node. We seek to optimize three criteria: residual node energy, occu-
pied buffer and distance gain. The motivation for including these three criteria
are: by maximizing residual node energy εx, we can increase network lifetime; by
minimizing the occupied buffer space bx, we can increase the persistence of data
which can decrease the query resolution cost and by maximizing the distance
gain dx, we can achieve a larger network coverage in terms of data dissemination.
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We therefore define the metric Mx[t] as

Mx[t] = C.
εx.dx

bx
, (1)

where C is a constant. The data replication node X is then added to the tree
based on the following condition,

X = arg maxMx[t] (2)

3.2 Node Selection Algorithm

The node selection algorithm is built on the underlying MAC protocol that is
assumed to be CSMA with RTS/CTS. A node that has data to send initiates
an RTS broadcast that contains the ID of the data packet. All neighbours of the
node that receive this RTS packet are potential replication nodes. We initiate
a distributed algorithm (similar to [7]) where these nodes contend with each
other to serve as a data replication node. On receiving the RTS packet each
node calculates a metric and starts a timer that is inversely proportional to the
value of the metric. On the expiry of this timer, the node will send out a CTS
packet provided it has not overheard another CTS packet with the same packet
ID. This simple and elegant process ensures that the node with the best metric
will send the CTS first.

We recognize that RTS/CTS mechanisms suffer from hidden terminal prob-
lems. While this is considered to be a negative effect we exploit it to achieve data
dissemination in the network. In a dense network that is interference-limited,
multiple hidden nodes are bound to exist. These nodes can be exploited to con-
struct multiple energy-rich trees along which data replication can be completed.
Since these hidden nodes are spatially separated the data replication along the
branches of the tree will increase network coverage. The information producing
node then sends out the DATA packet after it has received at least one CTS re-
sponse. However, this DATA packet is not unicast to a particular node. Instead,
all nodes that have responded with a CTS packet will receive this DATA packet
and store it. Data is then propagated towards the edge of the network either
using a TTL value or until a boundary node is reached. However, in order to
increase the speed of data dissemination we place a positive distance constraint
on the selection of all non-first hop data replication nodes. Nodes contend us-
ing a similar process as the first hop nodes but are required to offer a positive
geographic advance.

4 The Crossroads Approach to Information Discovery

The crossroads approach is based on perimeter aggregation of events and the
construction of energy-efficient query paths for information discovery. We present
the details below.
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4.1 Perimeter Aggregation

We propose a method of data dissemination where the data in the network is
pushed towards the edges of the network. As will be shown later, this serves
to significantly reduce the delay involved in resolving global type queries. The
branches of the data replication tree that is being constructed terminate when
the branches reach the edge of the network. In a grid type network, once the
first-hop replication nodes are chosen, they route the data towards their closest
edge. This decision is easily computed based on their relative position to the
information producing node P . If we assume a node P (i, j) as the information
producer and the first-hop replication nodes to be at locations, (i − 1, j),(i +
1, j),(i, j + 1) and (i, j − 1) then the termination points of the four branches
will be at (0, j),(n, j),(i, n) and (0, n) respectively. This ensures that all data
that is produced in the network can be replicated and aggregated along the
perimeter of the network. Periodically, the nodes along each edge execute a data
aggregation process where the aggregation point is chosen dynamically based on
energy-levels. Once aggregation has been performed along each edge, a global
type query has to be simply routed towards the nearest edge and towards the
aggregation point. This can reduce the query resolution cost quite significantly.

4.2 Static Crossroads

In the static crossroads approach the replication tree is constructed using a
static rule base similar to other approaches [2],[3],[4]. The closest approach to
our method is the comb-needle approach. As shown in Fig. 2(a), a node that has
information constructs a replication tree that resembles a crossroad centered
on itself. The four branches of the crossroad terminate at the four edges of
the network as described in the previous section. The use of multiple branches
enables a greater data spread across the network.

4.3 Adaptive Crossroads

In the adaptive crossroads approach we construct the replication tree based
on the metric presented in Section 2. The result of this construction of the
replication tree is a non-regular crossroad that is centered on the information
producing node. At each point along the replication tree the nodes contend to
act as a replication point resulting in the construction of an energy-rich tree that
is dynamic and adapts to the current state of the network. To the best of our
knowledge this is the first attempt at energy-efficient information dissemination
in a wireless sensor network. A snapshot of an adaptive crossroad is presented
in Fig. 2(b).

4.4 Information Discovery

An efficient information discovery mechanism needs to efficiently support differ-
ent query types. The QoS requirements of many real world applications require
the latency of query resolution to be as small as possible. The flooding of all data
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P 

(a) the static approach: the nodes in
grey represent the replication points
along the tree

 

P 

(b) the dynamic approach: The nodes
in grey represent the replication points
along the tree chosen based on the met-
ric. They represent the best next-hop
neighbour of each branch node.

Fig. 2. Replication crossroads in a n × n grid network

that is produced in the network to every node within the network can minimize
the query resolution cost but it is an inefficient solution. The query resolution
cost in comb-needle can be as high as O(n2) for global type queries. We show
that using the proposed data dissemination mechanisms the query resolution
cost of queries can be reduced.

In sensor network different types of queries can be identified. We refer to a query
type as global if a node is requiring all instances of the occurrence of an event. An
example in a battlefield application is, “Where are all the tanks in the network?” or
in the fire-fighting example, “Which locations in the building have a temperature
that is > 60 degrees?” To resolve such a query the query needs to collect infor-
mation form all nodes in the network that have detected the presence of a tank.
Global type queries are also referred to as ALL-type queries in literature. ANY-
type queries are those where interest is restricted to a/any occurrence of the event.
In battlefield situations an ANY-type query can be “Are there any tanks in the
network?”. The resolving of such a query can be terminated as soon as the pres-
ence of a tank has been detected. We propose two methods for query resolution
depending on the type of the query. For ALL-type queries we propose the nearest
perimeter approach that exploits perimeter aggregation. For resolving ANY-type
queries we propose the probabilistic right-hand sweep.

Nearest Perimeter Approach. When a node issues an ALL-type query we
direct the query towards the nearest perimeter. Since the nodes along the perime-
ter replicate all events in the network and perform aggregation along each edge
the cost of query resolution is equivalent to the cost of reaching the edge and the
cost of reach of the aggregation point. Since all nodes are location aware it is triv-
ial to determine the nearest edge. In Fig. 3(a), node Q issues an ALL-type query,
that requires information to be collected from all nodes that have detected this
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(a) Query resolution using the nearest
perimeter approach for an ALL-type
query. The query from node Q is routed
first to the nearest perimeter and then
along the edge to the aggregation point
(AP ).
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X 

(b) Query resolution using the proba-
bilistic right-hand sweep approach for
an ANY-type query. The query from
node Q is probabilistically forwarded to
node U and to node Y and resolved by
node X. The dotted curves represents
the sweep areas for node Q, node W and
node Y .

Fig. 3. Query resolution for ALL-type query and for ANY-type query in a n × n grid
network. The grey nodes represent the replication points along the tree, the red nodes
represent the perimeter aggregation points.

specific event. Nodes L and M have detected this event and constructed in this
case, a static replication tree. The query from node Q is sent towards the nearest
edge which in this case is the right-hand side edge. On reaching the edge, the
query is forwarded to the aggregation point (AP ) which can resolve the query.
The required data can then be sent to the requesting node using reverse path
forwarding or any other location-based mechanism.

Probabilistic Right-hand Sweep. To resolve ANY-type queries we use a
probabilistic method. Since ANY-type queries do not require aggregated infor-
mation, we seek to resolve them in-network rather than directing the query
towards the nearest edge. However, if a query cannot be resolved in-network
then it is sent towards the AP . This is done in a decentralized manner when the
query arrives at a network edge.

A node that generates an ANY-type query sends it to one of its neighbours
chosen probabilistically. The choice of neighbour is determined by the node facing
the major part of the network (i.e., away from the nearest edge), and choosing
a node. Node Q with the query faces away from its nearest edge and chooses
a next-hop node. As shown in Fig. 3(b), the candidate nodes are U, V and W .
The query is forwarded following a similar process at each hop until it reaches
a branch of the replication tree or an edge node. If the query reaches an edge
node then it is sent towards the AP and is either resolved along the path to the
AP or as a last resort at the AP .
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Fig. 4. Information dissemination through opportunistic overhearing in a n × n grid
network. The R nodes (darker circle) represent the replication points adjacent to the
replication tree that “overhear” transmissions. The event from node P is disseminated
as always along the main replication tree (grey nodes).

4.5 Optimization through Opportunistic Information Dissemination

A further optimization can be achieved by exploiting the broadcast nature of
the wireless medium. Information can be opportunistically stored at multiple
locations for the same dissemination cost. This can provide a further improve-
ment in the QoS offered to discovery messages. As shown in Fig. 4, when a
cross-road is constructed from the producer node, the nodes that are adjacent
to the crossroad overhear the transmissions. By opportunistically storing these
transmissions the number of locations at which information relating to a partic-
ular event is available can be increased (in a regular n × n grid this can be upto
a three-fold increase). In Fig. 4, we show the replicated crossroad for the static
crossroads approach. The same principle can be applied to adaptive crossroads
as well. Such an approach can significantly decrease the query resolution time
for ANY-type queries as the number of locations at which an ANY-type query
can be resolved is increased. The benefit is two-fold: by decreasing the query
resolution cost in terms of the required number of transmissions the network
lifetime is also increased.

5 Performance Evaluation

Performance evaluation of the proposed approach was carried out using network
simulations with OPNET Modeler 12.0. The focus of the evaluations at the first
instance was to study the QoS improvements offered by the proposed approach in
comparison to earlier work. We compare our work with the comb-needle approach
that was detailed in section 2. All results are averaged over 30 simulation runs
(with random seeds) with each run of duration 180 secs.

The network topology used in the simulations was a regular n×n grid with a
normalized grid spacing of 1 similar to the figures in the previous sections. For
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our simulations of the crossroads approach during each simulation run an infor-
mation producer was chosen at random from within the core nodes (i.e., nodes
that were not edges). This producer node generated events following a Poisson
distribution with a mean inter-arrival rate of λ. λ was set to be 2 secs. The
events that were generated were forwarded towards the edge using the metric
introduced in section 3. Further, along each edge a node was randomly chosen
to act as the aggregation point for each simulation run. Events generated by the
producer node were collected at this aggregation point. During each simulation
run multiple consumer nodes were chosen from within the core nodes to generate
information discovery queries. Each consumer node was capable of generating
two types of queries: ALL-type queries which were resolved at one of the ag-
gregation points along the nearest edge using the nearest perimeter approach
and ANY-type queries which were resolved where possible in-network using the
right-hand sweep approach. Discovery queries were generated following an Expo-
nential or Poisson distribution with a mean inter-arrival rate of λ. λ was varied
from 1 to 10 secs. In our simulations of the comb-needle approach the size of the
needle l was set to be 3 with an inter-comb spacing s of 1. The opportunistic
crossroads approach was also studied. The communication range of each sensor
node was set to a normalized range of

√
2. The MAC protocol in use was CSMA

with RTS/CTS, a random back-off and delayed sends.
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Fig. 5. Query resolution delay for ANY-type queries observed and ALL-type queries
in a 8 × 8 grid network with the comb-needle (CN) scheme and the crossroads (CR)
approach to information discovery. Queries arrive according to an Exponential distri-
bution with a mean inter-arrival rate of λ. λ is varied from 1 to 10.

We identified two main performance metrics that were studied for both ALL-
type queries and ANY-type queries using the crossroads approach and the comb
needle approach. The metrics of interest were:

– Query resolution delay: The average time taken to resolve a particular query;
and

– Query discovery ratio: The ratio between the number information discovery
queries generated and the number of queries that were successfully resolved.
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Fig. 6. Query resolution delay for ANY-type queries observed and ALL-type queries
in a 8 × 8 grid network with the comb-needle (CN) scheme and the crossroads (CR)
approach to information discovery. Queries arrive according to a Poisson distribution
with a mean inter-arrival rate of λ. λ is varied from 1 to 10.

These two metrics taken together provide information on the effectiveness and
completeness of the proposed approach in improving QoS (specifically latency).

The simulation results are presented in Fig. 5(a) - Fig. 8(b). Fig. 5(a) presents
the query resolution delay for the comb-needle and the crossroads approach for
ALL-type queries when the information discovery queries arrive according to an
Exponential distribution. It can be observed that the Crossroads scheme out-
performs the comb-needle scheme quite significantly. The mean query resolution
time is reduced by almost 75% at both high and low query inter-arrival rates.
Fig. 5(b) presents the results for query inter-arrival following a Poisson distri-
bution and similar performance gains can be observed. The performance results
for ANY-type query resolution is presented for the comb-needle, crossroads and
optimised crossroads methods of information discovery is presented in Fig. 6(b)
for queries arriving according to an exponential distribution. Significant perfor-
mance gains can be observed. We observe that at a high query frequency (i.e.
with λ = 1) the query resolution delay for an ANY-type query is reduced by
more than 80% using the crossroads approach. At lower inter-arrival rates, for
instance λ = 10 the delay is reduced by almost 65%. We can also note that the
optimized crossroads approach offers comparable if not even better performance.
We note that at lower inter-arrival rates such as λ = 10 the optimized crossroads
approach outperforms the standard crossroads approach by 35% and the comb-
needle approach by almost 80%. Similar trends are observed for inter-arrival
rates following a Poisson distribution and is presented in Fig. 6(a).

The performance gains offered by the crossroads approach in reducing the
query resolution delay is only significant if the crossroads approach can resolve
more or an equivalent number of queries in comparison to the comb-needle ap-
proach. Performance results for query discovery ratio (QDR) are presented in
Fig. 7(a) - Fig. 8(b). Fig. 7(a) presents the QDR results for ALL-type queries
following an Exponential distribution. We observe that at very high inter-arrival
rates say λ = 1 the QDR is quite low for both schemes. However, the crossroads
approach outperforms the combneedle approach quite significantly at lower inter-
arrival rates. For instance it can be observed that at λ = 5 comb-needle has a
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Fig. 7. Query discovery ratio observed for ANY-type queries and ALL-type queries in a
8×8 grid network with the comb-needle (CN) scheme and the crossroads (CR) approach
to information discovery. Queries arrive according to an Exponential distribution with
a mean inter-arrival rate of λ. λ is varied from 1 to 10.
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Fig. 8. Query discovery ratio observed for ANY-type queries and ALL-type queries
in a 8 × 8 grid network with the comb-needle (CN) scheme and the crossroads (CR)
approach to information discovery. Queries arrive according to a Poisson distribution
with a mean inter-arrival rate of λ. λ is varied from 1 to 10.

QDR of 40% while the QDR using the crossroads approach is more than 70%.
Similar trends are easily observable when queries arrive according to a Poisson
distribution as in Fig. 8(a). However, it can be observed that the performance
of all schemes are better for a Poisson distribution of query arrivals as com-
pared to an Exponential arrival rate. This impact of the type of query arrival
distribution is along expected lines. In Fig. 7(b) and Fig. 8(b) we present the
QDR results for ANY-type queries using the three schemes for Exponential and
Poisson inter-arrival rates respectively. We observe that all three schemes exhibit
very high QDR values (QDR=1) for lower inter-arrival rates. However, at high
inter-arrival rates the crossroad schemes outperform the comb-needle approach
quite significantly with the optimized approach giving us the best performance.
It is to be noted that the query resolution cost for an ALL-type query using the
crossroads approach is significantly less than the cost of an ANY-type query us-
ing the comb-needle approach. This augurs very well for the crossroads approach
to information discovery.
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6 Conclusion and Future Work

In this paper, we have formulated the information discovery problem as a load-
balancing problem, with the combined aim being to maximize network lifetime
and minimize query processing delay. We have proposed a novel information
storage and distribution mechanism that takes into account the residual energy
levels in individual sensors. Further, we have also proposed a hybrid push-pull
strategy that enables fast response to information discovery queries. Simulations
results prove the the proposed method(s) of information discovery offer signif-
icant QoS benefits for both ALL-Type and ANY-type queries in comparison
to previous approaches. We are currently working on extending the proposed
approach to random sensor network deployments in mobile/vehicular platforms.
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Abstract. This paper presents a tree-based anycast (TBA) protocol de-
signed for wireless sensor/actuator networks. Contrary to existing work,
TBA allows forming an anycast address from multiple attributes which
describe the destination node. TBA uses spanning trees for query prop-
agation. The usefulness of such a solution is validated by simulations,
which show that under certain conditions significant energy gain com-
pared to flooding can be expected.

1 Introduction

Anycast is a service which allows communications with any single node out of the
set of nodes satisfying a certain criterion. In this paper these criteria (which can
be called anycast addresses) are formed as follows. We assume that each node is
characterized by a number of binary attributes. Let A be a set of all possible node
attributes. Let V denote the set of all nodes in the network, and let Va be the set
of all nodes that have the attribute a ∈ A (Va = {v ∈ V : v has the attribute a}).
An anycast address is given by any subset of attributes B ⊂ A. Specifically, for
B ⊂ A, let VB be the set of all the nodes that have all the attributes in B, i.e.,

VB =
⋂

a∈B

Va (1)

The anycast service as explored in this paper can be described by the prim-
itive ConnectAny(AnycastAddress), where AnycastAddress is the set B. Its
semantics is that communications should be established between the node in-
voking the primitive and exactly one node v ∈ VB . The choice of the node is up
to the implementation of the anycast service. An important assumption is that
the primitive should be available to each node in the network.

The anycast service as described above can be useful, for example, in hetero-
geneous sensor/actuator networks (such as the one described in [1]), to deliver
software agents to nodes offering a required combination of resources. In such
networks every node can become a service provider by sharing some of its re-
sources with other nodes, and can be located by means of the anycast service.

This paper contains a description of a protocol implementing the anycast
service. The protocol, called tree-based anycast (TBA), is targeted for energy
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constrained environments such as wireless sensor/actuator networks. Contrary to
existing anycast solutions, TBA does not limit the expressiveness of the anycast
address, allowing the usage of multiple attributes in descriptions of a destination
node.

The paper is organized as follows. In section 2 we present a number of existing
anycast solutions, while in section 3 we present the TBA protocol. Section 4
contains experimental results. Conclusions are presented in section 5.

2 Related Work

The concept of anycast was researched in multiple contexts, including network
type, communications model, and purpose of usage. For example, anycast can
be found deep in the roots of TCP/IP networks, as it is used for directing DNS
queries to the closest root nameserver [2]. It is also used for server selection in
distributed systems [3]. Anycast will gain further importance, as it will be used
to access gateways which interconnect IPv6 with IPv4 networks.

An anycast mechanism has been used to solve the issue of providing dis-
tributed services in the MANET environment. A minor change in some existing
routing protocols (such as OSPF, RIP, or TORA) suffices for multiple hosts to
be reached with a single address in an anycast fashion [4]. The idea is to assign
an anycast address to a virtual node, to which all nodes providing a certain
service are virtually connected.

Lifetime of heterogeneous wireless sensor networks can be increased in net-
works with more than one data sink, when access to the sinks is provided by
an anycast protocol [5]. Such a network could consist of two types of devices -
resource rich (information sinks) and resource-constrained (sensors generating
new data) [6]. A similar concept of improving the energy efficiency of WSNs has
been proposed in the HAR [7] protocol.

All the above anycast solutions differ from TBA. In each of them, B (the set
of attributes used as the anycast address) is a singleton, i.e., it consists of only
one element, B = {a} for some a ∈ A (even though A, the set of all existing
attributes, need not be a singleton). This happens, for example, when A is a set
of available services and an anycast address is used to access only one of them at
a time. In some solutions (e.g., when data sources transmit information to sinks)
A is itself a singleton (a node is either a sink or not).The main innovation of the
TBA protocol, is that it allows establishing communications with a node match-
ing a set of multiple attributes. Thus in TBA, contrary to the above solutions,
the number of possible anycast addresses is not |A|, but 2|A|. The potentially
huge number of anycast addresses makes it impossible to set up dedicated routes
to each individual address.

Another type of anycast, which can be found in the WSN environment, is
anycasting to a region. Solutions such as SPEED[8] and HLR [9] assume a sit-
uation where it is sufficient to deliver a packet to any node in a specified area.
Algorithms for region-targeted anycast rely on the strong spatial correlation of
the attributes used for addressing, which is not the case in TBA.
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Note that the anycast primitive proposed in this paper is designed for ad-
dresses composed of a set of multiple attributes, and it may be applicable to
various attribute-based (or context-based) addressing schemes such as [10] [11].

3 TBA Architecture

3.1 Assumptions

TBA assumes that a wireless sensor/actuator network consists of stationary
nodes positioned randomly and connected in an ad-hoc mode. As the nodes are
battery powered, they can disappear from the network at random. At the same
time, new nodes can appear when they are added to the network. Therefore,
despite the assumption of nodes being stationary, the TBA protocol can not
assume that the network topology is fixed.

TBA further assumes the existence of an efficient data link layer protocol
which assures bidirectional packet delivery between two nodes within radio
range. We take it for granted that each packet sent to a neighbor node is (even-
tually) successfully received.

3.2 Protocol Overview

The main requirement for TBA is that it needs to find exactly one node in
response to an anycast query. With this in mind we focus on making it possible
to stop a query from propagating to the whole network. This is achieved by
propagating queries along a spanning tree structure.

TBA starts by creating a number of spanning trees. This is achieved by flood-
ing the network with the first few queries. Each spanning tree is rooted at the
node which issued a corresponding query. Then, the protocol stops creating new
spanning trees (hence stops flooding the network) and starts using these trees
for query propagation. An anycast query is transported along the most fitting
spanning tree. That makes it possible to prevent the query from reaching certain
parts of the network once a node matching the address is found.

A response to the query is propagated along a route created during query
propagation. Since it is still possible that multiple nodes matching the address
receive the query, only the first received response is forwarded by each node
along the way. The same happens at the query source, which treats the first
incoming response as the only valid one.

3.3 Using a Spanning Tree as a Search Basis

The TBA protocol consists of three major mechanisms. The first two mechanisms
are used to handle an anycast query, while the third one controls the choice of
which of the first two to use for a specific query.

Mechanism 1: Forming a spanning tree. A wireless network can be repre-
sented as an undirected graph G(V, E), where the set of vertices V corresponds
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Fig. 1. Sample spanning tree with node positions

to network nodes, and the set of edges E represents bi-directional radio links.
Each created spanning tree is a structure G′(V ′ = V , E′ ⊂ E) located on top of
graph G.

Using the Breadth First Search algorithm, a shortest path spanning tree
(Fig. 1) for the whole network is created. The root of this tree is the node
which invoked the anycast primitive, while its leaves can be determined relying
on confirmations sent during the tree creation process (each node receives a con-
firmation from all of its children; if no confirmations are received, it is a leaf).
All remaining nodes are said to be in the middle of the tree, as presented in
Fig. 1. Each node preserves information regarding its position in the tree.

Note that during the process of creating a tree, TBA places an anycast query
in packets exchanged by network nodes. This means that the anycast query is
propagated in the network, at the same time as a spanning tree is created.

Mechanism 2: Using an existing spanning tree for query propagation.
An anycast query propagated according to Mechanism 1 created a spanning tree.
The following anycast queries may use this tree for their propagation, even if
they do not originate from the original root of the tree. The propagation of a
query issued at node Q is shown in Fig. 2. Note that the query moves both up
and down the tree.

The actions performed to forward the query depend on the direction of its
propagation in the tree structure. If the query is received from a child node, the
recipient node sends it to its parent and to all its other children. If the query
was received from a parent node, it is sent to all of the children.

While the anycast query is propagated along the chosen spanning tree struc-
ture, routes leading to the query’s source are created. When a destination node
(v ∈ VB) is found, it sends a response along those routes, and the query does not
have to be sent further. As the query propagates along a predefined tree struc-
ture, stopping it from propagation in a single node actually results in preventing
the query from reaching a number of nodes placed further along the tree (see
Fig. 2). This is not the case when flooding the network. On the other hand the
created routes are sub-optimal (the number of hops need not be minimal).

As indicated, each node is aware of its position in the tree and benefits from
the knowledge when propagating queries. Nodes that are leaves in a spanning
tree do not have to forward a received query to their children as they have none
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Fig. 2. Propagating a query using an existing spanning tree

(Fig. 2). Depending on the structure of the spanning tree (i.e. the number of its
leaves) the obtained energy gain can be very significant or almost none at all.

The algorithm of forwarding a query according to a spanning tree structure
is presented in Fig. 3.

QUERY-RECEIVED(receivedFrom,usedTree )

1. if (thisNode∈ VB)
2. then SEND-RESPONSE(receivedFrom )
3. else
4. if receivedFrom ∈ CHILDREN
5. then FORWARD-QUERY(CHILDREN \{receivedFrom })
6. if treePosition �= root
7. then FORWARD-QUERY(parent )
8. else
9. if receivedFrom = parent && treePosition �= leaf
10. then FORWARD-QUERY(CHILDREN )

Fig. 3. The algorithm for query propagation along an existing tree. The treePosition,
parent and CHILDREN variables are acquired from the usedTree input parameter.

Mechanism 3: Determining whether to form a new spanning tree.
Mechanism 1 propagates the query by creating a new spanning tree, Mechanism
2 by using an existing tree. TBA alternates between these two mechanisms, as
shown in Fig. 4.

The USABLE-TREE-EXISTS() procedure evaluates if an existing spanning tree
should be used or a new one needs to be created. A number of rules can be
applied to make the decision. A simple solution is to keep adding new spanning
trees until some predefined number of them is reached (Mechanism 3a). Another
solution is to evaluate the distance from the node issuing the query to the root
for each existing tree and to create a new one only when all of the existing
trees are too distant (Mechanism 3b). Both of these solutions are used in the
performed experiments.
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If a new tree has to be created, the CREATE-TREE() procedure is invoked,
which sends out a query according to Mechanism 1. Otherwise, a tree which
minimizes the distance from its root to the node issuing the query is selected by
the GET-BEST-SPANNING-TREE() procedure (the distance to the root is a part
of the tree structure). Then, the query is propagated according to Mechanism 2,
along the structure of the selected tree.

SEND-ANYCAST-QUERY()

1. if USABLE-TREE-EXISTS() //mechanism 3
2. then t ← GET-BEST-SPANNING-TREE() //mechanism 3
3. FORWARD-QUERY-ALONG-TREE(t ) //mechanism 2
4. else CREATE-TREE() //mechanism 1

Fig. 4. The algorithm for invoking the anycast primitive

3.4 Protocol Optimization

TBA includes some enhancements, beyond the major mechanisms described
above. The enhancements are denoted by OPTx for easier reference.

OPT1: Delaying query packets. When the query propagates through the
network, each node deliberately delays its forwarding for a short period of time.
If a destination node (v ∈ VB) is discovered, it sends out a ’Clear Buffer’ message
to the node from which the query was received. That node in turn sends ’Clear
Buffer’ to nodes which are its neighbours in the spanning tree. If the ’Clear
Buffer’ message is received, the buffered query is not forwarded. For example,
if a node p sends the query to its children, and one of them happens to be a
destination node, then none of the siblings forwards the query (the destination
node sends ’Clear Buffer’ to p, which in turn sends it to the siblings).

OPT2: Short range flood. Before Mechanism 2, TBA performs an initial
short range (two hop) flood with the new query. If a node matching the anycast
address is found, the anycast query does not have to be propagated along the
tree structure.

OPT3: Route optimization. Propagation along a tree does not guarantee a
shortest path if the node that issued the query is not at the root of that tree.
During the initial short range flood (OPT2), temporary shortest path routes to
the issuing node are established. These are used during response propagation to
direct it straight to the query source, once the response reaches a node which
was subject to the initial short range flood.

4 Evaluation

As data transmission is the key factor responsible for energy usage, we count
the number of bytes sent due to TBA’s operation. As every transmitted byte is
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received by other nodes, we also count the number of received bytes, which we
assume to cost approximately 1/3 of the cost of transmitted ones [12]1. (We do
not include media access and synchronization overhead.)

The byte count BCx for a tested solution x can be evaluated using (2), where
BTx is the total number of bytes transmitted during the simulation, and BRx

is the number of bytes received.

BCx = BTx +
BRx

3
(2)

We apply this measure to test the efficiency of each algorithm used in the test
scenarios. For comparison we use the simplest bottom line solutions, namely
flooding and expanding ring search. The byte count value for each algorithm is
compared against the lower bound value which corresponds to flooding, f . We
use the ratio in (3) to describe the relative byte count for algorithm x.

RBCx =
BCx

BCf
(3)

The test scenario assumes a network of nodes positioned randomly in a pre-
defined area. During the tests, eight anycast queries are sent from random nodes
in the network. This number is chosen based on an assumption that on average
after 8 queries have been sent, links forming spanning trees break, and all the
tree structures have to be rebuilt. This means that if a real network happens to
be more stable than this, or the node activity is more intense, the gain achieved
by TBA will be higher than what follows from our simulation. On the other
hand we can imagine a network with lower stability, and in such case it is very
probable that the energy gain will significantly decrease.

We tested two versions of TBA, which we define by the mechanisms used:
’Basic TBA’=< Mechanism1, Mechanism2, Mechanism3a > and ’Optimized
TBA’=< Mechanism1, Mechanism2, Mechanism3b, OPT 1, OPT 2, OPT 3 >.
We compare these two algorithms with flooding and with expanding ring search
(which floods the network in a limited range, gradually increasing that range un-
til a matching node is found). All the overhead resulting from the optimizations
is included in the simulation results.

Variable parameters for the simulations are: network size N (N=40,90,160),
the size of the VB set (|VB |=1,3,5), and the size of transmitted data DT (a
specified amount of data is sent on a route established between the query source
and the destination node, following the node discovery by the anycast service),
(DT=200,...,20000). For each possible combination of these parameters, a test
on 50 randomly created network topologies was carried out. The results are
shown in Fig. 5. The presented values are averages of the results obtained for all
possible settings of the other two parameters.

In the first test we analyzed protocol performance as a function of N (Fig. 5a).
For small values of N the performance of basic TBA is close to that of flooding,
1 For radio chips newer than TR1000 (the one assumed in our simulations), the ratio

of power consumption for transmission and reception is around 1.0.
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while ’Optimized TBA’ shows a nearly 25% reduction of RBC. As N increases,
both versions of TBA achieve a similar reduction in RBC (approximately 20%).

The good performance of ’Optimized TBA’ in small networks is caused by the
usage of Mechanism 3b (in small networks a spanning tree rooted close to the
query source is likely to exist). As the network size grows, Mechanism 3a and
Mechanism 3b start performing in a similar way. Note that ’Optimized TBA’ is
always better than ’Basic TBA’.

In the second test we analyzed protocol performance as a function of |VB |
(Fig. 5b). For small values of |VB |, the both versions of TBA achieve a similar
reduction in RBC (approximately 10%). As |VB | increases ’Optimized TBA’
outperforms ’Basic TBA’ and shows a nearly 35% reduction of RBC.

For small values of |VB |, it is in general hard to find the destination node,
especially in big networks. As the query propagates along a spanning tree struc-
ture, both versions of TBA manage to perform better than flooding. As |VB |
grows, the expanding ring search algorithm achieves results much better than
flooding, and even better than ’Basic TBA’. However, due to the optimization
mechanism OPT2, ’Optimized TBA’ manages to outperform all the other three
solutions.

In the third test we analyzed protocol performance as a function of DT
(Fig. 5c). For small values of DT both versions of TBA achieve a similar reduc-
tion in RBC (approximately 30%). As DT increases ’Optimized TBA’ performs
better than ’Basic TBA’ and keeps its RBC at a similar level as flooding.

Fig. 5. Simulation results: (a) RBC as a function of the network size, N , (b) RBC as
a function of the size of VB set (the number of matching destination nodes), (c) RBC
as a function of the size of transmitted data, DT
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For small values of DT , sub-optimality of routes created by TBA is not critical.
As DT increases, the number of hops over which the data is transmitted becomes
very important. By applying the OPT3 mechanism, routes created by ’Optimized
TBA’ are usually not much longer than the ones created by flooding. Thus it is
possible to keep RBC value close to 1.0.

5 Conclusions

The results show that significant energy gain can be expected when TBA is used
for finding anycast destinations in small networks, especially when the resources
we are searching for are highly available (large size of the VB set). For small
volumes of transmitted data, or in cases of high availability of resources, the
byte count factor is reduced even by 30% as compared to flooding.

A limitation that severely constrains this protocol is that data is transmitted
over possibly sub-optimal routes. The more data is transmitted, the more impact
can be expected from route sub-optimality. This means that TBA is a good
solution for resource discovery. Once a matching node is found, an optimal route
could be established with a unicast routing protocol.
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Abstract. For multi-hop wireless sensor networks, this paper presents a simple, 
loop-free, distributed algorithm to select path for data gathering from each 
sensor node to the sink node that attempts to balance the load in terms of power 
dissipation in communication at individual nodes with 100% data aggregation 
to enhance the lifetime of the network as a whole. It requires just a one-time 
computation during the initialization of the network, and the paths remain static 
unless the routing tree gets partitioned due to faults etc. The performance of the 
proposed scheme has been compared with some conventional centralized 
routing techniques, namely the minimum hop routing, the shortest power path 
routing and the minimum spanning tree routing by simulation. In all the cases, 
the proposed algorithm results improved lifetime. 

1   Introduction 

A typical multi-hop Wireless Sensor Network (WSN) consists of a large number of 
sensor nodes, densely deployed over a field to gather information about the 
surroundings. The basic operation of such a network is the periodic sensing, gathering 
and transmission of data by individual sensor nodes to a final sink, which acts as the 
final data aggregation point, via some intermediate nodes. The lifetime of such a 
sensor network is the time during which all the sensor nodes remain alive and send 
data to the sink. Besides sensing and data gathering, the sensor nodes mainly deplete 
energy in the process of data communication. According to the conventional com-
munication model widely used for WSN’s [1], for fixed-size packets, the transmission 
energy depends on the distance between the two communicating nodes, whereas the 
energy dissipated in receiving a packet is constant. Hence, if it is assumed that the 
sensor nodes are capable of adjusting transmission power depending on the distance 
of the receiving node, it is a challenging issue to determine the data gathering paths 
for the WSN, so as to maximize the lifetime of the network.  

Extensive research has been done so far on this issue [1-4] that primarily attempts 
to conserve power at each node by selecting the nearest neighbor as its data-
forwarding node. But, since the sensor nodes deplete energy not only in transmission 
but also for reception, this may create some congested nodes receiving too many 
packets, and draining out its energy at a faster rate, causing poor lifetime. However, 
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routing with load balancing in terms of power demand at each individual node may be 
another efficient approach to enhance lifetime of the network.  

Various load-balancing schemes for sensor networks have already been proposed 
in the literature [5-10]. In all these works, either the algorithm is centralized, or it 
needs much information about the neighbors, such as location, load, remaining power 
etc., and the most severe limitation is that often before each packet transmission the 
recent information is required for path computation. Obviously, this increases the 
message overhead and power usage in nodes, and hence reduces the network lifetime.   

In this paper, for a multi-hop sensor network, a distributed energy-balanced routing 
algorithm is proposed by which each individual node selects its next node in an 
attempt to distribute the load in terms of energy dissipation in its neighborhood 
evenly. No knowledge about the physical position of the nodes is required. It requires 
just a one-time computation during the initialization of the network, and the paths 
remain static unless the routing tree gets partitioned by faults etc.  Simulation studies 
have been done to compare the performance of the proposed algorithm with the 
centralized algorithms for shortest-power path routing, minimum hop routing, and the 
minimum spanning tree routing. In spite of being a distributed one, the proposed 
algorithm shows improvement in lifetime over all the three.  

The rest of the paper is organized as follows: section 2 describes the system model, 
section 3 presents the routing algorithm, section 4 shows the simulation results and 
section 5 concludes the paper. 

2   System Model   

This paper assumes that a WSN consists of a set of n homogeneous static sensor 
nodes, V = {1, 2,…, n} and a sink node (n+1) distributed over a region. The positions 
of the sensor nodes and also the sink node are fixed, but not known globally. Each 
sensor generates one data packet of fixed length per time unit, referred as round, to be 
sent to the sink node. Each sensor starts with an initial energy E that is depleted at 
each time the node transmits or receives. The sink has unlimited amount of energy. 

The energy model for the sensor nodes assumed here is based on the first order 
radio model as mentioned in [1]. Here, the energy consumed by a sensor i in receiving 
a k-bit message is Rx = εelec. k. The energy consumed by sensor i to transmit a k-bit 
message to node j is Tx i, j = Rx + εamp. k .di,j 

2, where εelec is the energy required by the 
transmitter or receiver circuit and εamp is that for the transmitter amplifier to transmit 
single bit, and di,j the Euclidean distance between nodes i and j.  

It is assumed that the radio channel is symmetric. Each sensor can transmit with a 
maximum power Pmax, and can reach a subset of nodes in single hop. However, each 
sensor node is capable of controlling its transmission power. 

 
Definition 1. Given a WSN with a set of n homogeneous static sensor nodes, V = {1, 
2,…, n} and a sink node (n+1), where the sensor node i transmits with a power Pi ≤ 
Pmax, the network topology is represented by a graph G (V, E), where E = {(i, j)| i, j 
∈V} and Tx i,j ≤ Pi. G (V, E) is defined as the topology graph of the given sensor 
network. 
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Definition 2. The set of nodes Ni ⊂ V is called the 1-hop neighbor set of node i, if i 
can reach any node j ∈ V directly. 

Definition 3. The number of hops along the shortest path from any node i to the sink 
node (n+1) is termed as the hop-count of node i.  

In this paper, a data aggregation technique same as that followed in [1] is assumed. 
By this model, the size of a data packet is fixed, say k bits. A node may receive a 
number of packets from its 1-hop neighbors, but it fuses all incoming data along with 
its own sensed data, and forwards a single data packet of k bits towards the sink. This 
is termed as 100% data aggregation. 

With the system model described above, the objective of this paper is to determine 
data gathering paths to aggregate sensed data from all nodes into the sink in such a 
way that the power requirements of the nodes are balanced.  

3   Distributed Load-Balanced Routing Algorithm  

The proposed scheme presents an algorithm for load-balanced data gathering. The 
algorithm is distributed by nature. For the execution, each node only requires the 
information about its 1-hop neighbors. During the initialization of the network, it is 
assumed that each sensor node individually discovers its 1-hop neighbors by 
broadcasting some control packets at its maximum transmission power Pmax. Also, in 
this phase, by measuring the received signal strength, each node estimates the 
required transmission energy for each link. It is assumed that the communication 
protocol ensures collision-free and reliable message communication.  

Therefore, at the end of this phase, each node i knows Ni, the set of its 1-hop 
neighbors, and also the required transmission energy Tx i,j for any neighbor j ∈ Ni, and 
starts the next phase described below. 

3.1   Hop-Count Discovery Phase 

In this phase, each node finds its hop-count from the sink via the shortest path, and 
broadcasts this information to all of its 1-hop neighbors. This phase continues for a 
pre-defined time Th.  

 
Hop-Count-Discovery Algorithm 
For each node-i, 1< i < n  

Input: Ni the set of 1-hop neighbors; Th duration of the phase 
Output: hi hop-count of node- i; and hj hop count of each j ∈ Ni 
Each node-i, initializes h i = maxnum  // maxnum is an arbitrarily large number  
While time < Th Do 

{ if (n+1) ∈ Ni then  // sink node (n+1) is a neighbor 
    hi← 1; broadcast hop-count message M with hop-count c = 1;  

                 else if received M from node j then  
hj ← c; c = c +1, if c < hi then hi← c and broadcast M with hi} 
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At the end of time Th, each node-i, starts to execute the last phase of the proposed 
algorithm, described in the next subsection.  

3.2   Next Node Selection Phase 

On completion of the hop-count-discovery phase, each node-i selects one of its 
neighbors j ∈ Ni, with hj < hi as its next node to forward its aggregated data packet, 
such that the estimated load remains balanced as far as possible in its 1-hop 
neighborhood. Each node-i will start the next node selection procedure, only when all 
its neighbors with hop-count (hi +1), have completed their next node selection 
process. Based on the information from its 1-hop neighbors who have already 
selected the next node, node-i computes the maximum load Lmax in its neighborhood, 
and attempts to select its next node-j with hj < hi so that load on each node i and j 
either remains below Lmax, or exceeds Lmax by the minimum amount.  

 
Next-Node-Selection Algorithm  
For each node-i with: 

Input :  Ni the set of 1-hop neighbors ; hi ; hj and Tx i,j for each  j ∈ Ni  
Output : next node (i) ∈ Ni 

 

Each node-i with hop-count hi 
Initializes next-node(i) =0;  S( hi +1) :{ j| j ∈ Ni  and hj = ( hi +1)}; S( hi)  ← φ; 

  P(i) ← median of { Tx i,j , ∀   j with hj <  hi  }; Qi←0; 
1. If receives ‘SELECTED’ message from j ∈ Ni then  

if next-node(j) = i, then Qi ← Qi+1;  
if   hj = ( hi +1)  delete j from S( hi +1); if S( hi +1)= φ  broadcast a ‘REQ’ 
message 
else if hj = hi  then add j in S( hi); 

2. If receives a ‘REQ’ massage from j ∈ Ni and if hj =(hi +1), or  
{hj = hi and next-node(i) ≠ 0} then send ‘REPLY’ message to j with Qi, and P(i);  

3. If receives a ‘REPLY’ message from j ∈ Ni ,   
L i = (Qi* Rx + Tx i,j), L j = ((Qj+1)* Rx + P(j));  
Lmax (j) = max {(Li, Lj ), for ∀ j ∈ S( hi) ∪{ j| j ∈ Ni  and hj = ( hi -1)}};  
Lmax = max {Lj} for ∀ j ∈ S(hi) ∪{ j| j ∈ Ni  and hj = ( hi +1)} 
if Lmax (j)< Lmax   find Lmax (k) = min{ Lj, ∀ j ∈ S( hi) ∪{ j| j ∈ Ni  and hj =  
( hi -1)} } 
else find Lmax (k) = min{ Lmax (j)} 

 next-node(i) = k;  
broadcast ‘SELECTED’ message with next-node(i) and P(i)= Tx i,k 

 

This process terminates when all the nodes-j with hj = 1 completes the Next-Node-
Selection Procedure. On receiving all the ‘SELECTED’ messages from its 1-hop 
neighbors, the sink broadcasts a ‘TERMINATE’ message. All sensor nodes then start 
their normal functions. 

Theorem 1. The next-node-selection algorithm results a rooted tree with root at sink. 

Proof: For details see [11]. 
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4   Performance Evaluation 

For performance evaluation, simulation studies have been done on random connected 
topology graphs. A 100m×100m deployment region is considered. Number of nodes 
(n) has been varied from 100 to 500. The maximum range Rmax = 15m. The sink node 
is located at the mean position of the deployment region. Each sensor node starts with 
the same initial energy of 0.25 Joules. Energy is dissipated according to the energy 
model described in section 2. Packets are of length k = 2000 bits; εelec = 50 nJ/bit, 
εamp  = 100 pJ/bit/m2. Fig. 1 shows the load distribution for a typical sensor network 
with 500 nodes, achieved by the proposed algorithm. It shows about 85% nodes are 
load-balanced.   
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Fig. 1. Load distribution of individual nodes by proposed algorithm 

For a typical graph with n = 100, Fig. 2 shows the variation of maximum, 
minimum and average loads on the network as resulted by the four routing algorithms. 
Fig. 3 shows the variation of network lifetime following the four routing algorithms 
under consideration. It shows that the proposed algorithm results about 200% 
improvement over the least-hop and least-power routing, and about 15% improvement 
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Fig. 4. Comparison of hop count for different routing algorithms 

over MST algorithm. Finally, Fig. 4 shows the variation of number of hops in the 
routing paths from each individual node, for a typical network with n = 100. It shows 
that the proposed algorithm outperforms the MST algorithm, but the other two 
algorithms perform marginally better than the proposed one. 

5   Conclusion and Future Work 

For multihop sensor networks, this paper presents a simple distributed static data 
routing algorithm with load balancing assuming 100% data aggregation. No 
information about the location of the sensor nodes is required. It is assumed that 
nodes are capable of estimating the transmission power required for a link from the 
received signal strength in the initialization phase. We have compared the 
performance by simulation, in terms of load (energy dissipation per round), lifetime 
and delay, to three conventional centralized routing techniques, namely the shortest 
power path routing, least hop routing and routing on minimum spanning tree (MST). 
Simulation results show that the proposed algorithm outperforms all three in terms of 
network lifetime and load balancing. Also, in terms of number of hops it is better than 
MST routing, and is comparable with the other two. Its performance is to be studied 
on different traffic conditions, and under different data aggregation schemes.  
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Abstract. As sensor network applications often involve remote, dis-
tributed monitoring of inaccessible and hostile locations, they are vul-
nerable to both physical and electronic security breaches. The sensor
nodes, once compromised, can send erroneous data to the base station,
thereby possibly compromising network effectiveness. We consider sen-
sor nodes organized in a hierarchy where the non-leaf nodes serve as
the aggregators of the data values sensed at the leaf level and the Base
Station corresponds to the root node of the hierarchy. To detect com-
promised nodes, we use neural network based learning techniques where
the nets are used to predict the sensed data at any node given the data
reported by its neighbors in the hierarchy. The differences between the
predicted and the reported values is used to update the reputation of
any given node. We compare a Q-learning schemes with the Beta rep-
utation management approach for their responsiveness to compromised
nodes. We evaluate the robustness of our detection schemes by varying
the members of compromised nodes, patterns in sensed data, etc.

1 Introduction

Sensors in wireless sensor networks are used to cooperatively monitor physical
and environmental conditions specially in regions where human access is limited.
Current research on sensor networks propose data aggregation protocol where the
sensor nodes reside at the leaf level and the non-leaf nodes act as the aggregator
nodes. If a large number of nodes become damaged or compromised, the entire
data gathering process may be jeopardized. Hence, the detection of faulty nodes
and protecting the security and integrity of the data is a key research challenge.

In our work, the sensor nodes are assumed to be deployed in a terrain where
the data being sensed follows a time varying pattern over the entire sensed
area. In such scenarios standard outlier detection mechanisms will fail as the
data values sensed may vary widely over the sensor field. We propose a neural
net learning based technique where regional patterns in the sensor field can
be learned offline from sufficient number of observations and thereafter used
online to predict and monitor data reported by a node from data reported by
neighboring nodes.

We assume that the nodes and the network will function without error for
an initial period of time after deployment (provides data for offline training of

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 339–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the net). Next the trained neural nets are used online to predict the output
of the nodes given the reported values of the neighboring sensors. The differ-
ence between the predicted and reported values is used to measure error. Such
errors are used by a couple of incremental reputation update mechanisms, Q-
learning and Beta reputation scheme,which take sequence of errors to decide if
a node is compromised or not. If the updated reputation falls below a specified
threshold, the node is reported to be faulty. We have successfully used these
reputation schemes to quickly detect erroneous nodes for different network sizes
and data patterns over the sensor field without any false positives and false
negatives.

2 Experimental Framework

We assume a sensor network with n nodes, where the nodes are distributed over
a region with (xi, yi) representing the physical location of the sensing node i1.
The n nodes are arranged in a tree hierarchy with the base station as the root
node. Each non-leaf node in the L-level2 hierarchy aggregates data reported to
it by its k children and forwards it to its own parent in turn.

We model fluctuations of the sensed data in the environment by adding noise
to the function value f(xi, yi, t) for the i−th node at time interval t. So, the
sensed value at position (x, y) at time t is given by f(x, y, t) = g(x, y) + h(t) +
N(0, σ), where h maps a time to the range [l, h] and N(0, σ) represents a 0 mean,
σ standard deviation Gaussian noise. We have used two different g functions,
e−(x2+y2) and (x+y)

2 and refer to these two environments as E1 and E2 respec-
tively. In our experiments, we assume that each sensor node adds a randomly
generated offset in the range [0, ε] to the data value it senses and vary the number
of compromised nodes only at the leaf level,though our mechanism, is capable
of detecting faulty nodes at any position in the hierarchy except the root node,
assumed as base station. The initial error-free data reporting interval is assumed
to be D and the threshold for malicious node detection is taken as a fraction
p = 0.03 of the maximum reputation a sibling possesses at a particular iteration.
E stands for the entire data set including offline and online data.

2.1 Learning Technique

To form the predictor for a given node i in the sensor network, we use a three-level
feed-forward neural network with k − 1 nodes in the input layer which receives
data reported by the siblings of this node. Each such neural network has one
hidden layer with H nodes and the output layer has one node that corresponds to
the predicted value for this sensor node. A back-propagation training algorithm,
of learning rate η and momentum term γ is used with sigmoid activation function
1 The index of node i is calculated as indexi = c ∗ k + i, c is the index of the parent

node and k is the number of its children. c 0 ≤ c ≤ �n
k
�.

2 There are kl−1 nodes in level l and n =
∑L

l=1 kl−1 where kL−1 leaf-level nodes are
sensing nodes.
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f(y) = 1
1+e−y for the neural network units. The outputs are restricted to the

[0, 1] range.
We experiment with two representative sensor networks, each organized in an

m-ary tree:

Network 1 (N1): The smaller network with m = 3 has a total of n = 40
nodes, of which 27 leaf level nodes sense data from the environment. The neu-
ral networks used for learning node predictors have the following parameters:
η = 1.0, γ = 0.7, H = 6, D = 4500, and E = 5000. The output of each node is
predicted by taking inputs from two of its siblings. The prediction efficiencies of
the net for the functions e−(x2+y2) and (x+y)

2 are 94.45% and 92.6% respectively.
We ran experiments with 3, 5 and 7 malicious nodes for this network.

Network 2 (N2): The larger network with m = 4 has a total of n = 85 nodes,
of which 64 leaf level nodes sense data from the environment. The neural net-
works used for learning node predictors have the following parameters: η = 0.8,
γ = 0.7, H = 8, D = 4500, and E = 5000. The output of each node is predicted
by taking inputs from three of its siblings. In this case the prediction efficiencies
of the net for the functions e−(x2+y2) and (x+y)

2 are 93.30% and 90.6% respec-
tively. We ran experiments with 5, 10, and 15 malicious nodes for this network.
Algorithm 1 is used online to update the reputation for each node i at each
data reporting time interval based on relative error εt

i =
∣
∣
∣1 − reportedt

i

predictedt
i

∣
∣
∣, where

predictedt
i and reportedt

i are the values predicted for and the actual output by
the node i at time t respectively. From this relative error, an error statistic ℵt

i

= e−K∗εt
i 3 is computed for updating node reputation. Reputation updates are

performed by the Q-learning and Beta-reputation schemes. As performance met-
ric, we use the iterations taken by these mechanisms to detect the first and last
erroneous nodes. The latter value corresponds to the time taken to detect all
faulty nodes.

Q-Learning Framework: The reputation of every node i is updated as fol-
lows: Reputationt

QLi
← (1−α)∗Reputationt−1

QLi
+α∗ℵt

i. We use a learning rate,
α, of 0.2 and an initial reputation, Reputation0

QLi
= 1, ∀i.

RFSN Framework: In Reputation Based Framework for Sensor Networks
(RFSN) [1] framework the corresponding reputation update equation is given
by Reputationβt

i
= γt

i+1
γt

i+βt
i+2 , where γt

i and βt
i are the cumulative cooperative

and non-cooperative responses received from node i until time t. We assume
γ0

i = β0
i = 0 and these values are subsequently updated as γt

i ← γt−1
i + ℵt

i and
βt

i ← βt−1
i + (1 − ℵt

i).

3 We have used K = 10. The results are robust to K values of this order but too high
or too low K value would respectively be inflexible or will not sufficiently penalize
errors.
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Algorithm 1: DetectMalicious(n, N )
Data: The trained neural net N with set of given parameters, number of nodes n
Result: Detection of malicious nodes
initialization: Reputation Threshold = 0.03, ∀i, Reputation0

QLi
= 1,

Reputation0
βi

= 0;
for t=0;;t++ do

for each sensor node nodei do
Compute relative error: ε;
Compute error statistic: f(ε);
Update Reputationt

QLi
;

Update Reputationt
βi

;
if Reputationt

QLi
≤

Reputation Threshold ∗ maxk∈Neighi Reptutationt
QLk

then
nodei is malicious according to Q-learning based reputation
mechanism;

end
if Reputationβi ≤ Reputation Threshold ∗ maxk∈Neighi Reptutationt

βk

then
nodei is malicious according Beta-Reputation mechanism;

end
end

end
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Fig. 1. Maximum and minimum number of cycles required to detect compromised
nodes by the Q-learning (QL) and RFSN (BR) approaches in environment E1 (n = 85)

for distribution e−(x2+y2)

2.2 Observations

We ran experiments with 10 random orderings of data reporting sequences and
average our results over these runs. Figures 1, 2 show the average time taken
to detect the first and last malicious node taken by these reputation schemes
for the two problem sizes. We omit the figures for distribution x+y

2 for both
the networks due to space constraints. The result for x+y

2 corroborates the view
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Fig. 2. Maximum and minimum number of cycles required to detect compromised
nodes by the Q-learning (QL) and RFSN (BR) approaches in environment E2 (n = 40)

for distribution e−(x2+y2)

observed for e−(x2+y2). The standard deviations of these metrics, centered around
the mean, are also shown. We highlight the following observations:

Observation 1: For both environments and problem sizes, the time taken to
detect the first malicious node is less for the Q Learning based approach than
that of the RFSN based approach. This value remains between 12 to 15 iterations
irrespective of the environment and number of erroneous nodes in the network.
We have experimented with at most 15 and 7 faulty nodes respectively for the
85 and 40 node networks.

Observation 2: The plots show that the mean values of the time taken to detect
the last erroneous node is again significantly less for the Q Learning based rep-
utation scheme compared to the RFSN based approach irrespective of network
size and the number of malicious nodes (see Figures 1(a),and 2(a)).

Observation 3: We did not observe any false positives (normal nodes identified
as malicious) or false negatives (undetected malicious nodes) in our experiments.

We conclude that for the class of environments that we have considered, the
Q-Learning scheme detects malicious nodes in the network more expediently
compared to the Beta-reputation approach. The significance of the past reputa-
tion values are exponentially discounted in the Q-Learning scheme whereas the
Beta-reputation scheme gives equal weight to early and recent experiences.

3 Related Work

Recent work on securing sensor networks use techniques like key establishment,
authentication, secure routing, etc. Symmetric key cryptography is preferred for
protecting confidentiality, integrity and availability [2,3]. Intrusion Tolerant se-
cure routing protocols in wireless Sensor Networks (INSENS) [4] tries to bypass
malicious nodes and nullifies the effect of compromised nodes in the vicinity of
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malicious nodes. Existing literature on intrusion detection mechanisms in sensor
networks use statistical approaches like outlier detection schemes, where data is
assumed to be sampled from the same distribution [5]. Such mechanisms, how-
ever, cannot be used when sensor fields span a wide area and can have significant
variation in the sensed data.Our proposed neural net based approach learns such
patterns from reported data and can be combined with reputation management
schemes to detect malicious nodes online.

4 Conclusion

For the environments, where standard outlier detection mechanisms are inef-
fective, we propose a combination of a neural network based offline learning
approach and online repuation update schemes to identify nodes reporting in-
consistent data. We experimentally evaluate our scheme for two different network
sizes and two different data patterns over the sensor field. Results show that our
approach is successful in identifying multiple colluding malicious nodes without
any false positives and false negatives. The approach scales well and is robust
against attacks even when as much as 25% of the sensor nodes are corrupted.
The Q-learning based approach is found to detect malicious nodes faster than
the Beta-repuation based scheme. In the future we plan to extend our work to
incorporate the analysis of more sophisticated collusion, and prevent malicious
nodes from using false identities to report spurious, multiple false data.
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Abstract. In this paper, we propose an efficient authenticated key es-
tablishment scheme for self-organizing sensor networks. The proposed
scheme has low communication cost and eliminates expensive operations
required by most ID-based schemes, such as sensor nodes calculating bi-
linear maps. Additionally, the proposed scheme provides perfect forward
secrecy.

Keywords: security, sensor network, elliptic curve cryptography.

1 Introduction

There has been a common perception that traditional public key infrastructure
(PKI) is too complex, slow and power hungry to be used in sensor networks. For
this reason, the most research is primarily based on symmetric key cryptography
[4,5]. While symmetric mechanisms can achieve low computation overhead, they
typically require significant communication overhead or a large amount of mem-
ory for each node. For these reasons, many researchers [6,9] have recently begun
to challenge those old beliefs about PKI by showing that it is indeed viable in
sensor networks.

Huang et al. [7] proposed two efficient key establishment schemes where a Full-
Functional Device (FFD) and a Reduced-Functional Device (RFD) can achieve
key exchange and mutual authentication. An FFD takes the role of a coordi-
nator, a router or a security manager, while an RFD takes on the role of an
end device, such as a low-power sensor. These schemes are based on elliptic
curve cryptography where each device can authenticate other devices through
its certificate [8].

In this paper, we propose an efficient ID-based scheme for key establishment
in self-organizing sensor networks. The proposed scheme was devised after com-
paring the advantages and disadvantages of certificate-based and ID-based sys-
tems. The main contributions of our approach can be summarized as follows.

� “This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)”
(IITA-2007-(C1090-0701-0025)).
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First, when compared with Huang et al.’s schemes [7], the proposed scheme
eliminates the communication overhead required to transmit public-key certifi-
cates. In wireless sensor networks, the advantage is significant because wireless
transmission of a single bit consumes several orders of magnitude more power
than a single 32-bit computation [1]. Furthermore, a sensor need not perform
the Weil/Tate pairing and Map-To-Point operations required in most ID-based
schemes [10,11]. Additionally, the proposed scheme provides perfect forward se-
crecy [3] where the the exposure of each device’s long-lived secret key does not
compromise the security of previous session keys.

2 Bilinear Map

In this subsection, we review bilinear maps and some assumptions related to the
proposed scheme. Let G1 be a cyclic additive group of prime order q and G2
be a cyclic multiplicative group of same order q. We assume that the discrete
logarithm problems (DLP) in both G1 and G2 are intractable. We call e : G1 ×
G1 −→ G2 an admissible bilinear map if it satisfies the following properties:

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Z
∗
q .

2. Non-degenerancy: There exists P ∈ G1 such that e(P, P ) �= 1.
3. Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

3 Proposed Scheme

We denote the proposed scheme by SN-AKE. Before network deployment, a
trusted authority (TA) performs the following operations.

1. TA constructs two groups G1, G2, and a map e as described above.
2. TA chooses two cryptographic hash functions H : {0, 1}� −→ Z

∗
q and H1 :

{0, 1}∗ −→ Z
∗
q , where � is the bit length of a node ID.

3. TA computes g = e(P, P ), where P is a random generator of G1.
4. TA picks a random integer κ ∈ Z

∗
q as the network master secret and sets

Ppub = κP .
5. For each device A with identification information IDA, TA calculates QA =

H(IDA)P + Ppub and DA = (H(IDA) + κ)−1P .

Next, each device A is preloaded with the public system parameters (p, q,
G1, G2, e, h, P , Ppub, g), its identification information IDA, and its key pair
(QA, DA).

When a sensor node U and a security manager V first communicate to each
other, they perform an efficient authenticated key establishment as shown in
Figure 1.

1. After V obtains IDU , V chooses a random number r′ in Z∗q and sends
(IDV , X ′) to U where X ′ = r′QV .
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Sensor Node U Security Manager V

P, Ppub, [IDU , QU , DU ] P, Ppub, [IDV , QV , DV ]

g = e(P, P )

IDU−−−−−−−−−→

r′ R← Z∗
q

IDV ,X′
←−−−−−−−−−− X′ = r′QV

r
R← Z∗

q

sk = h(gr||rX′||IDU ||IDV )

X = rh(IDV )P + rPpub

Y = (r + sk)DU
X,Y−−−−−−−−−→

eu = e(X, DV )

sk′ = h(eu||r′X||IDU ||IDV )

e(Y, h(IDU )P + Ppub)
?= eugsk′

MacKey||LinkKey =

KDF (sk′||IDU ||IDV )
z←−−−−−−−−− z = MACMacKey(IDU ||IDV )

MacKey||LinkKey =

KDF (sk||IDU ||IDV )

z
?= MACMacKey(IDU ||IDV )

Fig. 1. SN-AKE

2. After U obtains (IDV , X ′), U chooses a random number r in Z∗q and com-
putes sk = h(gr||rX ′||IDU ||IDV ). Next, U sends (X, Y ) to V where X =
rh(IDV )P + rPpub and Y = (r + sk)DU .

3. V calculates eu = e(X, DV ) and sk′ = h(eu||r′X ||IDU ||IDV ). Once deriving
eu and sk′, it verifies that the following equation holds:

e(Y, h(IDU )P + Ppub) = eugsk′
.

If the equality holds, the security manager V believes that the sensor node U
has the knowledge of its private key, DU = (h(IDU ) + κ)−1P . Also, it com-
putes MacKey||LinkKey = KDF (sk||IDU ||IDV ) and sends z = MACMacKey
(IDU ||IDV ) to U , where KDF is the specified key derivation function.

4. After U computes MacKey||LinkKey = KDF (sk||IDU ||IDV ), it verifies
z = MACMacKey(IDU ||IDV ), where MAC is a message authentication code
function. If the equality holds, the sensor node U believes that the security
manager V has the knowledge of its private key, DV = (h(IDV ) + κ)−1P .

SN-AKE suitable for wireless sensor networks is a simplified adaptation of the
ID-based AKE [2]. The previous scheme provides implicit key authentication if a
participant is assured that no other participants except its intended partner can
possibly learn the value of a particular secret key. However, SN-AKE provides
explicit key authentication. Also, it has the property of perfect forward secrecy
while the previous schemes [2,7] provide half forward secrecy.



348 Y.H. Kim et al.

Table 1. Comparison of the proposed scheme and Huang et al.’s schemes

EC-RP EC-FP EXP CC FS

Hybrid [7] 1 2 0 1437 bits Half

MSR-Hybrid[7] 0 3 1 3682 bits Half

SN-AKE 2 2 1 736 bits Perfect

Hybrid : Huang et al.’s hybrid authenticated key establishment
MSR-Hybrid : Huang et al.’s MSR-combined Hybrid
EC-RP : elliptic curve scalar multiplication of a random point
EC-FP : elliptic curve scalar multiplication of a fixed point
EXP : small modular exponentiation
CC : communication complexity
FS : forward secrecy

4 Analysis

Efficiency. Unlike ID-based schemes [10,11] for sensor networks, a sensor need
not perform Map-To-Point operation and Weil/Tate pairing which is several
times more costly than a scalar multiplication. For each sensor, we summarize
the efficiency of SN-AKE and Huang et al.’s schemes in Table 1. When compared
to Huang et al.’s schemes [7], SN-AKE features remarkable communication effi-
ciency since it does not require the transmission of public-key certificates.

Key Confidentiality. After performing the key establishment, an adversary
can obtain h(IDV ), P , Ppub = κP , and r(h(IDV ) + κ)P . However, she can-
not compute eu = gr = e(P, P )

1
κ+h(IDV ) r(h(IDV )+κ) and sk = sk′ since there

is no polynomial time algorithm solving mBIDH problem [2] with non-negligible.

Authentication and Key Confirmation. In SN-AKE, if e(Y, h(IDU )P +
Ppub) = eugsk′

holds, the security manager V has verified that the sensor node
U has the knowledge of sk′ and its private key DV . Also, if z = MACMacKey
(IDU ||IDV ) holds, the sensor node U has verified that the security manager V
has the knowledge of sk and its private key DU .

Forward Secrecy. In SN-AKE and Huang et al.’s schemes[7], compromise of the
sensor node’s private key does not appear to allow an adversary to recover any
past session keys. However, in Huang et al.’s schemes, compromise of the secu-
rity manager’s private key induces that all previous session key can be recovered
from the transcripts. Thereby, the schemes have the property of half forward
secrecy. On the other hand, in SN-AKE, even if the security manager’s private
key is compromised, data protected with a previous session key is still secure
because derivation of the key requires the knowledge of previous random inte-
ger r′. Therefore, SN-AKE provides perfect forward secrecy while the previous
schemes [2,7] provide half forward secrecy.
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5 Conclusion

In SN-AKE, a sensor need not transmit public-key certificates and perform ex-
pensive computation such as Weil/Tate pairing and Map-To-Point operation.
Particulary, SN-AKE guarantees perfect forward secrecy and thereby is suitable
for some weaker security manager applications.
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Abstract. In this paper, we describe SuperTrust, a novel framework designed to
handle trust relationships in Super peer networks. What distinguishes SuperTrust
from other contributions is that trust reports remain encrypted and are never
opened during the submission or aggregation processes, thus guaranteeing pri-
vacy and anonymity of transactions. As reputations of peers influence their fu-
ture interactions, we argue that such systems must have properties like fairness
and soundness, persistence, eligibility and unreusability of reports, similar to the
properties of current electronic voting systems.

SuperTrust is a decentralized protocol, based on K-redundant Super peer net-
works, that guarantees the aforementioned properties and is in some sense com-
plementary to the models proposed for building trust among peers. Additionally
the framework is very efficient and minimizes the effects of collusion of mali-
cious Super peers/aggregators. We have tested the framework on a large subset of
peers and demonstrated via simulations its superior performance when compared
to the other proposed protocols.

1 Introduction

Peer-to-peer (P2P) systems have recently become a popular medium that facilitates
sharing huge amounts of data (e.g: KaZaA[1], Gnutella[2]). These incentives behind
peer-to-peer architectures derive from their ability to function and scale in the presence
of high dynamism and in spite of failures without the need of a central authority.

The wide success of KaZaA has driven the attention towards a promising P2P archi-
tecture: Super Peer systems. The latter combines the advantages of pure and hybrid P2P
systems as a mean of addressing the problems induced in both architectures by offering
increased scalability and promises for enhanced security.

Although P2P architectures provide for anonymity when searching for content (e.g.
pseudonymes), sharing files with anonymous and unknown users challenges the very
notion of systems security. Genuine looking files may contain viruses or self-replicating
software which can destroy data and cause massive damage. This lack of accountability
opens the door to malicious users abusing the network and hinders the promotion of
P2P systems in more useful settings. Due to the absence of methods to convince a peer
that another node is malicious, the need for trust in P2P systems emerges as one of few
available mechanisms to keep malicious nodes from damaging the network.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 350–362, 2008.
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These facts lead to a widespread use of reputation management systems, e.g. eBay[3].
In fact, many researchers ([4,5,6,7,8]) have proposed the use of reputation mechanisms
as a tool to evaluate the trustworthiness of peers.

In this work, we are not concerned with developing a new reputation system or model
for building trust among peers. Instead, we focus on developing an efficient and secure
framework for distributing and accessing the trust ratings in a way that preserves the
peers’ privacy and anonymity of transactions by taking advantage of Super Peer archi-
tectures. This suggests that peers who rate other peers must remain anonymous and the
actual ratings must remain secure. Furthermore, we argue that nothing must affect the
submission process: Peers must not be able to affect the system if they submit wrong
values, colluding peers must not be able to alter the resulting ratings and the contents
of the ballots must not be visible even by trust handling peers.

Our contribution in this work is threefold: First, we introduce SuperTrust, a novel
framework that ensures the security of trust handling issues in Super Peer networks as
opposed to any previous work in this area. SuperTrust takes advantage of the peers’ het-
erogeneity and the increased scalability and fault tolerance featured by such networks
in order to manage and distribute trust values across peers. In addition, we make sure
that properties like anonymity, privacy and integrity of reports, fairness and soundness,
etc., are preserved. Second, we analyze SuperTrust against a multitude of attacks that
seem important in designing new protocols for submitting trust reports and we iden-
tify anonymity and protection against collusion as one of the key challenges in the
area. Finally, we evaluate the efficiency of our approach derived from a Java-based
implementation of SuperTrust. This assessment relates to the system’s responsiveness,
performance, resilience to malicious behavior and network stress and demonstrates Su-
perTrust’s superior performance.

2 Design Goals

In this work,we present the first precise definition of design properties that any protocol
for handling trust values must satisfy. We also present a protocol that can be shown to
fulfill this list of desired properties.

Anonymity: The system should support the peers’ right to secrecy of their reporting
ratings. Hence peers should not lose their identities because their expressed opinions
have been revealed, accidentally or not. When this happens, a malicious node may try
to eliminate these peers by mounting denial of service attacks against them.

Privacy and Integrity of reports: An opinion expressed by some peer in the form of
a report should be protected from disclosure and modification. A malicious node or a
collusion of such nodes should not be able to eavesdrop or modify these ratings.

Persistence: All trust reports should be accounted in building the reputation of a peer
even when these reporting peers are no longer in the network. Any other option could be
potentially exploited by a set of malicious peers who are always in the system, sending
the same bad votes or masking legitimate peers from expressing authentic opinions.

Fairness and Soundness: No one should be able to change, add, or delete trust reports
without being discovered.
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Eligibility: Only peers legitimate to express an opinion about some other peer should
be able to do so. This protects from malicious nodes giving poor ratings for peers that
have never interacted with. So, we require that when a peer u interacts with a peer v,
there should be some proof of this interaction. It is only then that u can submit a report
for the service offered by v.

Unreusability and Verifiability: The system should prevent report stuffing. A peer eligi-
ble to express an opinion should be able to do this only once for a particular interaction
it had with v. Further submissions should be detected and not be used to update the
trust value of another peer. In addition, we require verifiability to be a system property
so that trust values reflect the actual reputation of any peer and that reports are never
left out of consideration, accidentally or not.

Efficiency: The entire process should be as efficient as possible. This includes the over-
head in computation and submission of the a trust report.

3 Related Work

While there are many papers that deal with models and architectures for building repu-
tation and trust among peers (see for example [4,5,6,7,8]), there have been only a few
works that attempt to secure the process of submitting or retrieving trust reports. An
even smaller subset of these contributions were proposed for Super peer networks. Fur-
thermore, it is worth emphasizing that while these works use voting terminology, they
fail to provide all the requirements mentioned in the previous section.

Kamvar et al.[6] attempt to secure the computed reputation values by having the
trust value of a peer v be computed by a set of mother peers which are selected by a
deterministic process based on the identity of v. A peer u, requesting the trust value of
peer v, first queries all of v’s mother peers and then takes a majority vote. Unfortunately,
this system lacks anonymity, it can fall prey to peers presenting multiple identities, and
its transactions between a querying peer and the mother peers are not secured.

TrustMe, presented by Singh and Liu [10], follows a similar approach in the sense
that trust values for v are stored in trust-holding agent (THA) peers that are randomly
distributed in the network and not known to v. When peer u submits a trust rating to
one of the THA peers of v, its rating of the interaction with v is revealed, which is a
serious weakness of the protocol since trust reports are protected from disclosure and
modification attacks only by outside attackers and not by malicious THAs.

PeerTrust[11] is a framework that includes an adaptive trust model for quantify-
ing and comparing the trustworthiness of peers based on a transaction-based feedback
system over a structured P2P overlay network. This framework focuses on providing
confidentiality and integrity but lacks many of the other required properties mentioned
in the previous section.

Cornelli et al.[12] propose to base reputation sharing on distributed polling whereby
a requestor u can assess the reliability of perspective providers by polling its peers. The
votes issued by the various peers are then forwarded to u, giving it the opportunity to
choose the most reputable peer. In [13], this work has been extended to cover Super peer
networks. In both works u must individually contact each voter and ask for confirmation
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Fig. 1.

in order to rule out faked votes (loss in efficiency). It is also exactly at this point where
peers lose their anonymity since a malicious peer can query for its own trust value in
order to identify the voters who give poor trust ratings.

4 The SuperTrust Framework

We start by presenting an outline of our framework: SuperTrust is designed for
K-redundant Super peer networks. In traditional Super peer networks, each peer can
be either a super node (SN) or an ordinary node (ON). The SN tracks the content of its
designated ONs. In this way, Super Peer networks are well suited to scalable designs
and present fault tolerant aspects due to the presence of many Super nodes. Because
of these various qualities, many applications have migrated towards the Super Peer
paradigm (KaZaA [1], Gnutella 0.6). Additionally, K-redundant Super peer networks
take benefit of having K-super peers working in a round robin fashion for each cluster
(a cluster is the grouping of the leaf nodes of each super peer) in order to ameliorate
the performance of Super peer networks. Figure 1(a) depicts a 2-redundant super peer
network. Dark nodes represent Super peers, white nodes represent ordinary peers and
the three clusters are marked by dashed lines. Super peer redundancy decreases the load
on super peers and tolerates more failures[14]. Our framework will make use of such
benefits for the purpose of enhancing security in the voting process.

Associated with each peer v is a chosen set of n Super peers (aggregators) that are
responsible for “collecting” the votes/reports of other peers that have interacted with
v and aggregate the results. The aggregators for each peer are chosen amongst the K
super peers responsible for the various clusters. Furthermore, in each cluster, a storage1

node is chosen amongst the K super peers as a storage facility for the reputations of the
peers/resources located in the corresponding cluster.

Such a semi-centralized, semi-distributed approach reduces the stress in the network,
thus improving the overall performance and reducing the probability of failures in the

1 For the sake of a cleaner presentation, we present the protocol in terms of this storage peer,
notice however, that its role can be maintained by the aggregators as well, thus improving
robustness to failures.
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system. The fact that super peers are the aggregators/storage peers guarantees that each
aggregator/storage peer is within a fixed number of hops from each peer. This should
reduce the overall latency incurred in the network. The various actions of a peer v in
SuperTrust are broken down into the following steps:

1. Send a file request: Peer v issues a request for some resource r. One of the super
peers responsible for v’s cluster broadcasts this request to their neighbors.

2. Receive a list of peers that have the requested file, along with their global rating:
Upon reception of v’s request, each super node checks whether the resource requested
is within its cluster. Assuming that the resource is in possession of peer u, the latter
issues a reply confirming his possession of the requested resource. In addition, the n
aggregators of u respond to v with their decrypted shares allowing v to compute the
final trust value, as shown in Figure 1(b) and explained further in Section 4.6.

3. Select a peer or a set of peers, based on a reputation metric in order to download
the resource: Upon reception of the replies and the decrypted shares from a sufficient
number t of aggregators, peer v calculates the global trust value of the replying peers
(Section 4.5) and chooses to download the resource from the most reputable peer.

4. Send Vote: Then, peer v rates the interaction it had with peer u. It first encrypts
the report encapsulating its rating for both peer u and its resource and then submits it
to the designated Super peer. The latter forwards the encrypted vote to its neighbors.
This process is explained further in Section 4.4. Upon reception of the encrypted vote,
and using appropriate cryptographic schemes, the global trust value of v is updated by
v’ aggregators without decrypting the intermediate reports, thus ensuring privacy and
integrity of votes. At this point, the global trust value remains encrypted in the system.

The feature that most distinguishes SuperTrust from other contributions is that trust
reports remain encrypted and are never opened during the submission or aggregation
processes. In the rest of the section, we present the details of our scheme.

4.1 Threat Model and Assumptions

We start by discussing the threat and trust models we expect to encounter in trust han-
dling applications.

In an outsider attack, the attacker is not an authorized participant of the network. As
peers exchange messages, a passive attacker can easily eavesdrop in an attempt to steal
private or sensitive information. The adversary can also alter, spoof or replay messages,
trying to create erroneous trust values. The use of proper cryptographic primitives helps
defend against these types of attackers.

The existence of inside attackers is more important from a security point of view.
These are malicious peers who are authorized participants in the network and come
equipped with the right cryptographic material so that they can participate in the various
phases of the protocol. Despite this fact, we make sure that privacy and anonymity
of benign peers is guaranteed. However, there always exists the possibility that such
malicious peers can rate other peers with poor ratings in spite of good performance.
We don’t deal with this type of behavior as this should be tackled by the underlying
trust model or architecture.
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Our protocol relies on the existence of some authority or mechanism that can gener-
ate or certify special purpose keys, assign groups of aggregators, etc. when a peer joins
the network. Since we will be relying on the use of public key cryptography, this entity
can be viewed as a certifying authority (CA) and its public key can be trusted as au-
thentic. We also assume that the underlying Super peer system provides for anonymity
of information providers as long as these providers do not reveal themselves any iden-
tifying information. Thus we rely on the message forwarding mechanism of the Super
peer system to provide for anonymity of broadcasted messages (see [10] for a similar
assumption). Finally, we use trust functions that rely on simple aggregations. While
such trust functions does not capture the full generality of trust in reputation systems,
we assume that these values take into consideration more general transactions contexts,
histories, credibility of issuers, etc.[16]

4.2 Definitions and Cryptographic Tools

We are assuming basic familiarity with the concept of public key cryptography.

Definition 1. We say that an encryption function E() is (additive) homomorphic if it
allows computations with encrypted values. More precisely, if E(Mi) are the encryp-
tions of messages Mi, i = 1, 2, . . . , k, then the product of the encryption messages Mi

is equal to the encryption of their sum.

This property is necessary to achieve anonymity since the aggregated trust value can be
computed without the decryption of individual reports submitted by interested parties.
The decryption is performed only on the final sum, guaranteeing privacy of voters. In
[17], Paillier proposed an RSA-type public key cryptosystem based on computations in
the group Z∗N2 (the set of numbers relatively prime to N2), where N is the product of
two large primes p and q. This scheme is additive homomorphic and allows for efficient
decryption (details omitted). However, in order to prevent authorities from learning the
contents of the submitted reports and to ensure the privacy of the voters a threshold
version of the Paillier cryptosystem is needed.

Definition 2. [18] A (t, n) threshold secret sharing scheme distributes a secret among
n participants so that any t of them can recreate the secret, but any t − 1 or fewer gain
no information about it. The piece held by each participant is called the secret share.

In our case, instead of having a single authority decrypt the encrypted tally, n author-
ities share the decryption key, so that at least t are needed to perform the decryption
operation. Such versions of the Paillier cryptosystem have been presented in [19]. Be-
low we give a general description of the threshold decryption model. The participants
is a set of n players (our aggregators) that share the decryption key and users (peers that
submit confidential reports).

Initialization: The players run a a key generation protocol to create the public key PK
and the secret shares SKi of the private key SK . This is done securely[20] so that no
player can find anything about shares other than its own.

Encryption and Decryption: The user uses PK to encrypt a message. To decrypt a
ciphertext c, each player uses its share SKi to produce a partial decryption ci together



356 T. Dimitriou, G. Karame, and I. Christou

with a proof of validity for the partial decryption. These proofs allow interested parties
to verify that the partial decryption is valid even without knowing the underlying secret
SKi. Thus malicious players cannot submit erroneous results. The final decryption of
c can be produced, if t or more valid decryptions are collected.

4.3 Initial Setup

When a peer v joins the network, the CA assigns a random set of the Super peers
pertaining to its cluster to be the n aggregators for v. These will be responsible for
decrypting the aggregated trust value of v that remains encrypted in the system. This
group’s public key PKv

A is used by other peers u to rate their interactions with v and
submit their encrypted reports into the system. The authenticity of the public key can
be verified as it is equipped with a certificate carrying the signature of the CA and an
indication that this is the key used to submit reports only for v. The decryption key is
shared among the aggregators using the threshold cryptosystem.

Additionally, the CA assigns a storage Super peer for each cluster chosen from the
most reputable and trusted Super peers. The storage Super peer serves as a storage
repository for the encrypted ratings of the peers lying within its cluster. We stress at
this point that the storage peer is not able to decrypt any rating it possesses; its sole
function is to store the rating advertised and accumulated by the various aggregators
(this is why its role may also be assumed by the aggregators).

In case of some supernode failure, a secure supernode selection process ensuring that
the substitute super peers are chosen amongst the highly trusted and the least vulnerable
nodes is needed (details omitted due to space constraints).

4.4 Submitting a Trust Report

When a peer u has interacted with peer v, it can file a report indicating the rating of this
interaction. We assume here that u has acquired the public key PKv

A through a previous
reply received from v. Given the public key, u constructs the following message m:

m =< “Report for v” | Ev
A
(V alue) | < Ti, u, v, Sigv(Ti, u, v) > | T > .

Then it transmits:
m | Sigu(m) | PKu | Certu| PKv | Certv,

where the various parts are described below:

– Ev
A
(V alue): The encrypted rating of the interaction using the public key PKv

A.
– A proof of the interaction with v, < Ti, u, v, Sigv(Ti, u, v) >: This proof is needed

in order to prevent the replay of trust reports. When two peers u and v interact,
they exchange such proofs with each other. This makes them eligible to vote and
protects them from malicious peers submitting bad reports. Any report containing
this proof outside some reasonable time frame Δt, is discarded. In addition, all
duplicate reports but one in the interval Δt carrying the same proof of interaction
are discarded by the system.

– A timestamp T : The use of the timestamp ensures that the report cannot be replayed
and resubmitted at a later time by a malicious peer.
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– A signature Sigu(m) of the whole message by u: The signature binds all the parts
together so that nobody can alter or replace parts of the message.

– The public keys PKu of u and PKv of v: the latter key can be obtained after inter-
acting with v and is included in the message so that during the aggregation process
the proof of interaction < Ti, u, v, Sigv(Ti, u, v) > can be verified as authentic.

4.5 Aggregating Trust Reports

Trust reports for peer v get aggregated by its designated aggregators that subsequently
submit the updated value to the cluster’s storage Super peer, replacing previous reports
for v. The invariant that is maintained at any moment is that the current aggregate value
resides encrypted in the system. When a new report for v is issued, the format and the
validity of the report is checked in reverse order from the generation process described
in Section 4.4. Then using the homomorphic property of the encryption scheme the new
aggregated value is computed simply by multiplying the encrypted value in the report
with the current aggregate for v.

This approach aims at enforcing the consistency of the aggregation process and pro-
tecting from malicious aggregators. In fact, and upon receiving the trust report for v,
the aggregators fetch from the storage Super peer v’s previous ratings, update it using
the homomorphic property, and submit the aggregation result back to the storage Super
peer in order to guarantee the durability of the ratings in the system. In turn, the storage
Super peer receives the various aggregation results, and only stores the encrypted value
that was advertised by the majority of the aggregators. Such a scheme protects against
up to n/2 suspicious aggregators (where n is the total number of aggregators in some
cluster) that are trying to cheat the system by submitting erroneous aggregation results.
Furthermore, in such a case, an alarm can be triggered notifying about the malicious
behavior of these super-peers.

4.6 Reporting Back Trust Values

When a peer u issues a request for a resource r, it should wait to receive a reply indi-
cating the availability of the resource in addition to the decrypted aggregators’ shares
that will allow it to construct the global rating for r and its possessor v.

Peer u first transmits a request message about r into the system. Such a query is
broadcasted anonymously by the various Super peers in the network using the message
forwarding mechanism so that the identity of u is protected.

Upon receiving the request for resource r, the various Super peers identify its avail-
ability within their cluster, and transmit a reply message containing the ID v of r’s
holder . Then after sniffing the reply message, v’s aggregators automatically access the
encrypted aggregated value stored in the storage Super peer (Section 4.5) and produce
their partial decryptions. Then they respond back with a message of the form:

“Partial decryption for v” | Di | ProofV alid(Di) | PKv
A |Certv

A
| T,

where Di is a partial decryption value of v’s reputation and ProofV alid(Di) is a proof
of validity ensuring that the decryption is correct.
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Once peer u collects at least t shares, it can compute the final decrypted result. Then
upon satisfaction of the reputation of v, it can decide whether or not to interact with
v. The use of a (t, n) threshold cryptosystem protects against malicious aggregators
submitting erroneous decryptions. Additionally, our approach offers protection against
replay attacks since the timestamp ensures that the partial decryption is up to date.

5 Security Analysis of SuperTrust

Privacy and Anonymity: The privacy of the peers’ reports is guaranteed even if up to
t − 1 aggregators (where t represents the threshold cryptography) collude with each
other. The use of a threshold cryptosystem guarantees that no faulty or malicious ag-
gregator can decrypt the report submitted by a peer. Additionally, SuperTrust uses the
homomorphic property of the cryptosystem in order to compute the final tally without
decrypting individual reports. This strengthens peer’s privacy and anonymity since at no
point in the submission process will a report be decrypted2. Finally, an external attacker
or eavesdropper can infer no information about the contents of a report since these are
are sent encrypted using public key cryptography.

Fairness and Soundness: A malicious node cannot affect the submission process by
submitting invalid reports or by not following the protocol. If a peer tries to submit an
invalid report or if there is no associated proof of interaction, the report will be discarded
by the system. This prevents malicious peers from rating other peers when they have
no such right. Notice, however, that two malicious cooperating peers may interact with
each other (thus having valid proofs of interaction) in order to elevate their own ratings.
We don’t deal with this type of behavior in this work as this should handled by the
underlying trust model.

Persistence: Persistence of submitted reports is guaranteed by the character of the ag-
gregation process. When a peer submits a trust report, its contents are securely stored
in the designated Storage super peer. If this peer ever leaves the system, its role will be
assigned to a new super peer, thus guaranteeing maintenance of votes.

Eligibility and Unreusability: SuperTrust ensures that only eligible peers are allowed to
cast a report. This is achieved by the incorporation of proofs of interaction in the reports.
The inclusion of timestamps in the reports and the proofs of interaction guarantee that
reports can be submitted only once, thus preventing report duplication.

Verifiability: In SuperTrust, the nature of the aggregation process and the use of ma-
jority by the storage Super peer guarantees that all reports are taken into consideration
when computing a peer’s global trust value. Additionally, the aggregators may check
the Storage peer for consistency since after performing the homomorphic multiplica-
tion they can test whether the storage peer has updated the global trust value with the
values they submitted.

2 However, peer v may query for its trust value, before and after, an interaction with peer u,
thus recovering the vote of u. This attack applies to all systems and can be reduced if the
aggregators “batch” or “mix” the votes.
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Fig. 2. Performance Evaluation of SuperTrust

6 Experimental Results

We have implemented SuperTrust in Java. Our implementation is mutlithreaded and
relies on Jade agents [21] as the main infrastructure for exchanging messages between
the various peers. Our framework was evaluated on a moderately connected network
consisting of various networked computers connected to a 100 Mbit LAN where up
to two different processes reside on each machine. We have simulated a total of 1200
peers, 2400 different resources and at least 18 superpeers/aggregators pertaining to six
different clusters of 200 peers each. At the beginning of the simulations, each peer has
a number of random resources (with replication index of 1.43).

To evaluate the effectiveness of our framework, we conducted our experiments aim-
ing at analyzing three main performance metrics: response time, messaging costs and
the effect of malicious aggregators. These scenarios were run in two modes: SuperTrust
mode and no reputation mode, the latter representing a non-reputation based Super peer
network. In what follows, we present an analysis of our simulations results.

6.1 Messaging Costs

In order to assess the messaging costs induced in our framework, we have evaluated
three models: SuperTrust with threshold cryptography of 3 and 5 aggregators, and no
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reputation super-peer model. Figure 2(a) illustrates the obtained results. Each data point
in this figure is averaged over 6 times the total number of requests. These results are
due to the fact that each issued request triggers at least 5 to 7 additional messages, per
reply, in the threshold cryptography cases of 3 and 5 respectively.

Such messaging overhead can be tolerated even in highly congested networks, when
compared to the overhead induced in other proposed protocols. Figure 2(b) shows a
comparison between SuperTrust, TrustME[10] and SupRep[13], with respect to
messaging costs. As it can be seen, SuperTrust achieves much lower overhead when
compared to these aforementioned protocols. In fact, SuperTrust guarantees that each
aggregator/storage peer is within a fixed number of hops from each peer by taking ad-
vantage of the Super-Peer architecture and by aggregating the votes on the fly without
relying on distributed polling protocols.

6.2 Response Time

We have measured the average response time in SuperTrust in relation to the total num-
ber of requests. Our measurements were done for various number of requests sent at the
fixed rate of 15 per second per cluster (90 requests per second in the network), for the
threshold cryptography cases of 3 and 5. Figure 2(c)depicts our findings (averaged over
10000 runs). Our findings incorporate the time to encrypt/decrypt a vote plus the time
to verify the proofs of validity submitted by the various aggregators according to the
findings in [19]. As a matter of fact, the time for encryption (or decryption) is almost
0.3ms (0.18ms) per bit of plaintext message on a Pentium 2.4GHz. In our case, and as-
suming that the submitted rating ranges between 1 and 1000, one can see that the time
for encryption/decryption is negligible.

Our results (Figure 2(c)) show an advantage of 500ms, per request for the no reputa-
tion scheme over SuperTrust. This is mainly due to the overhead induced by the use of
threshold cryptography: one modular exponentiation consumes almost 70 ms for a 1024
bit exponent. Nevertheless, our studies have demonstrated that SuperTrust is the most
efficient system to date since almost all contributions in this area neglect to provide re-
sponse time. For example, although SupRep[13] is expected to have less cryptographic
overhead, since it does not make use of threshold cryptography, it induces more stress
in the network because of its requirement to poll for all available opinions. Similar
performance can be observed in the other polling protocols (Figure 2(b)).

6.3 Effect of Malicious Aggregators

In SuperTrust, the requestor peer must have a sufficient number of valid partial decryp-
tions from some aggregators, in order to correctly retrieve the global rating of another
peer. Although malicious aggregators cannot cheat the system by inserting invalid votes,
they might not allow a correct decryption of a global rating if they send invalid decryp-
tion shares. Fortunately, the use of threshold cryptography helps to minimize such a
malicious behavior. Our simulation results show that even if we assume the presence of
30% malicious aggregators in the network, almost 60% of the requests will have suf-
ficient partial decryption from the aggregators in order for the requestor peer to fully
decrypt the advertised rating (Figure 2(d)).
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7 Conclusions

In this paper, we have presented SuperTrust, a framework that manages trust ratings of
peers in a way that preserves the privacy and anonymity of transactions, in the context of
Super peer networks. SuperTrust achieves these properties by ensuring that trust reports
remain encrypted and are never opened during the submission or aggregation process.
The use of threshold cryptography allows the aggregators to have access to such ratings
and compute a global trust value without the need to see the individual reports. Each
aggregator produces a partial value, and when enough of these shares are collected, the
final trust value can be computed in a simple and mechanical way. Thus, SuperTrust
is resistant to attacks by colluding Super peers. Furthermore, SuperTrust exploits the
benefits of Super peer networks to reduce messaging overhead in the network, while
providing robust and efficient security. We hope that SuperTrust, along with this first
precise definition of properties that any protocol for handling trust values must satisfy,
will stimulate further research in this area.
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Abstract. Peer to Peer (P2P) communities (or “interest groups”) are
referred to as nodes that share a common interest. Each peer in the
system claims to have some interests and, accordingly, would like to
become a member of these groups. The available interest groups are
arranged according to a hierarchical semantics ontology, and managed
with a semantic overlay network. P2P community structure is highly
dynamic: a peer may be added to or deleted from a community; commu-
nities may be added or deleted; communities may be merged or split; and
sub-communities may become parent-level communities and vice versa.
In this paper, we propose a highly flexible multi-level data structure to
capture the visibility aspect of P2P communities. The data structure is
simple, facilitates dynamic changes easily and efficiently in a decentral-
ized fashion, and is highly scalable.

1 Introduction

Over the past few years, Peer to Peer (P2P) systems have gained widespread
acceptance as a result of their decentralized control, high scalability and avail-
ability. However, their commercial use has been mostly restricted to informa-
tion/file sharing systems. As a result, work has already been initiated towards
the use of P2P systems for collaborative work [1,2]. A related application area
where we also need to consider “groups” of peers is that of Interest Groups, e.g.,
Yahoo Groups [3]. Basically, the peers in an interest group share some common
interests. The notion of P2P Communities [4] has been proposed to model such
interest groups. We generalize P2P communities as an abstraction for a group
of peers, which work collaboratively to perform a specific task or share some
common interests.

By default, each peer has knowledge of (visibility over) the rest of the peers in
its own community. Now, for a community to grow, it needs visibility over other
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communities and their peers. Similarly, a peer would like to have information
about communities catering to “related” interests. Current P2P systems either
function as independent entities (peers/communities) or assume that each peer is
aware of all the other peers and communities ([8]). Allowing each peer to have full
information, about all the other communities and their peers, is not a practical
solution. For dynamic and heterogeneous environments such as P2P systems,
trust and anonymity issues may force a peer (or community) to be restrictive in
the visibility it allows to others. Thus, a fundamental issue to address in P2P
communities is how to capture the visibility a peer (or community) has over the
other peers and communities.

Towards this end, we introduce a visibility graph formalism for P2P commu-
nities. The communities are often organized hierarchically corresponding to a
hierarchical semantics ontology, for example, as shown in Fig. 1. Our formalism
is a multi-level graph to facilitate community visibility at different levels of the
hierarchy. Note that the P2P community structure is highly dynamic: a peer
may be added to or deleted from a community; communities may be added or
deleted; communities may be merged into bigger ones or split into smaller ones;
and sub-communities may become parent-level communities and vice versa. The
multi-level visibility graphs facilitate performing query evaluation and structural
updates in a decentralized and scalable fashion to accommodate the inherent
dynamism.

Fig. 1. A sample hierarchical ontology

The rest of the paper is organized as follows: The visibility graph formalism
is introduced in section 2. Sections 3 and 4 outline algorithms for query evalua-
tion and for performing structural updates on visibility graphs, respectively. In
section 5, we discuss some implementation details of visibility graphs. Section 6
presents some related work. Section 7 concludes the paper and provides some
directions for future work.
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2 Visibility Graph

2.1 Multi-level Visibility

We present a graph model to represent the visibilities of the peers and communi-
ties in a P2P system. Let P be the set of peers and C be the set of communities
in a P2P system S. Peers are represented by nodes. We use the same notation to
refer to the nodes as well as the peers they represent. An edge between peers P1
and P2 indicates that P1 is visible to P2, and vice versa. The visibility is assumed
to be symmetric in this paper. Peers are grouped into communities, which may
further be grouped into higher level communities, and so on. The communities
are usually arranged according to one or more hierarchical semantics ontologies.
Fig. 1 shows a sample hierarchy of music related interests (as given in [5]). Fig. 2
illustrates a hierarchical organization. At the bottom level, there are several com-
munities. We call them level-1 communities. We use single (solid, and different
dotted and broken) lines for the intra-community edges. The communities are
grouped into three higher level communities. In each group, connections between
communities are shown in double line edges. These are level-2 communities. All
these groups of communities belong to an even higher level (level-3) community
shown in triple line edges. For example, Fig. 2 may correspond partly to Fig. 1,
with level-1 communities of Soft, Dance, Pop, etc., level-2 communities of Rock,
Jazz, etc., and level-3 community of Music.

In our model, we represent a parent-level community through certain peers
of its children communities called seers. The seers are connected by edges iden-
tifying the community. In Fig. 2, the double line edges connect seers of level-1
communities, and similarly, triple line edges connect seers of level-2 communi-
ties. Thus, the actual connections will be as shown in Fig. 3. We note that each
node will be incident to single line edges (as long as its community has at least
two peers). Then, some nodes may be incident to other (double line, triple line,
etc.) edges too. In Fig. 3, there are nodes incident to (i) single line and double
line edges, (ii) single, double, and triple line edges, and also (iii) single and triple
line edges. That is, a peer may be a seer for a higher level (e.g., level-3) commu-
nity, and not for a lower level (e.g., level-2) community. Thus, the edges of the
visibility graph are of different level communities in the hierarchy.

2.2 Data Structure

Let H be a set of hierarchies that may exist in a P2P system S. We confine our
initial discussion and the graph formalism to one hierarchy H ∈ H. Fig. 4 shows
the hierarchy used in our previous example. We use Fig. 4 to illustrate some
notations and concepts. Each node in the figure represents a community at some
level of the hierarchy. We assume that each peer forms its own unit community.
We call this level-0 community. The nodes, and the corresponding communities,
are named locally (within that level) and globally with the sequence of local
labels of nodes in the path from the root to that node. For example, e is the
local name and a/b/e is the global name of a node in the figure. We use the
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Fig. 2. Hierarchical visibility

Fig. 3. Actual connections of the hierarchy in Fig. 2

global name to indicate the corresponding path also. We define a prefix αp of
a global name α as the sequence of labels of the nodes in a prefix of the path
corresponding to α. On the same lines, we define an extension αs of a global
name α as the sequence of labels of the nodes of a global name β which contains
α as one of its prefixes, that is, ∃β, βp = α. For example, for α equal to a/b/e,
a/b and a are the prefixes, and a/b/e/P1 and a/b/e/P2 are extensions. We also
denote the immediate prefix by αI and an immediate extension by αE . For a/b/e,
the immediate prefix is a/b, and both the extensions in Fig. 4 are immediate
extensions. Finally, for a global name α, we use ∗α and α∗ to denote the set of
its prefixes and extensions, respectively.

We note that only the leaf nodes in H (Fig. 4) correspond to peers in S.
They have labels as in the figure. (Labels of only some nodes are shown for easy
readability.) All non-leaf nodes are virtual. Essentially, H describes all (lower
and higher level) communities in S. Each peer belongs to several, hierarchically
related, communities. To be precise, a peer with label α is a member of all the
communities with labels in ∗α.

For each node (with local or global name) α in the hierarchy, we define
two communities. The first one is the α-full-community, denoted with α in
square brackets as [α]-community. This consists of all the peers in the subtree
rooted at α. For example, [b]-community membership is {P1, P2, P3, P4, P5}. The
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Fig. 4. Complete hierarchy with peers

second is α-seer-community, denoted with α in parentheses as (α)-community.
For non-leaf nodes α, this will contain one or more peers from each of its chil-
dren communities, that is from those of each immediate extension of α; these
peers will be seers of the respective communities for [α]-community. For exam-
ple, (b)-community membership could be {P1, P3, P5}. For leaf nodes α, the local
name will be that of the respective peer, say Pi, and both the full and the seer
communities will consist of just that peer. Note that each level-1 community is a
full as well as a seer community. Now, a peer can be a seer for several ancestral
communities. For a community C, we define a C-graph as the graph with node
set consisting of members of C and edges, called C-edges, depicting the visibil-
ity among the members. When C is a seer community, we refer to the graph as
C-seer-graph also. In our model, we require that each seer graph is connected.

Definition. For a P2P system S, with peers P , hierarchy H , and related set of
(full) communities C, a global visibility graph is the union of C-seer-graphs of all
communities C in C such that each seer graph is connected.

Example: A visibility graph for the P2P system in Fig. 4 is shown in Fig. 5.
Here:

– P is {P1, P2, ..., P11};
– C is {[a], [b], ..., [k], [P1], [P2], ..., [P11]};
– [P2] is the unit community containing peer P2, and the corresponding seer

community (P2) also contains P2;
– Both [e]- and (e)-communities have peers P1 and P2; Similarly, for each of

{f, g, ..., k}, their full and seer communities have all their children shown in
the figure;
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– Each of {[a]-,[b]-,[c]-,[d]-} communities have all the peers in the leaf level
of the corresponding sub-trees in the hierarchy; For example, [b]-community
membership is {P1, ..., P5}.

– The seer communitymembership is as follows: (b)-community has{P1, P3, P5},
(c)-communityhas{P6, P7, P8}, (d)-communityhas{P11}, and(a)-community
has {P3, P9, P11}.

In this example, the connected graph of each seer community is a tree, in
fact, a path. Note that P8 is a seer for (c)-community but P9 is the seer for
(a)-community. That is, different peers of a sub-tree may be seers for different
ancestral communities.

We point out that the visibility graph does not show the member peers of
higher level full communities explicitly. However, the property that for every full
community at every level its corresponding seer community must have at least
one peer from each of its children communities guarantees that all the members
of that community can be accessed if needed.

P8P3P2P1 P7P6P5P4 P11P10P9

Fig. 5. Complete visibility graph of Fig. 4

3 Searching the Visibility Graph

Any search involves searching one or more communities. Search within a commu-
nity typically involves flooding, that is, searching each peer in the community.
Common search methods, when the peers within a community are arbitrarily
connected, are Breadth First and Depth First Searches, with or without using a
spanning tree. A search may be initiated from any node. It may also be initiated,
in parallel, from several nodes. In each case, the search results may be forwarded
to one or more initiating nodes, to some other nodes, or even to all the nodes. In
this paper, we will neither be concerned with the actual search method nor with
any specific way of forwarding the results. We denote searching a community C
as C-search.

We explain a general search procedure with the graph in Fig. 5. Any query is
initiated at a peer. Suppose a query q is initiated at P2. Then, first, the (P2)-search
and, if necessary, an (e)-search will be performed. If q cannot be evaluated within
(e)-community, then P1 (which is the seer of [e]-community for (b)-community, will
initiate a (b)-search. This will involve the graph consisting of P1, P3 and P5. Then,
P5 may suggest that a (g)-search is appropriate, involving peers P4 and P5. On the
other hand, P3 may suggest that (the higher level) (a)-search, involving P3, P9 and
P11 may be appropriate. Taking up one or more suggestions and continuing the
search can be done either in a centralized or distributed fashion.
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Thus, in comparison to traditional query resolution via flooding, our method
provides the following benefits: Privacy and security constraints are maintained
as queries are only forwarded to visible (trusted) peers. On the other hand, each
peer may be a member of different seer communities at different levels. And,
based on the information it has on each of these communities, it may be able to
direct the search to any of these levels. For example, in the above search process,
P3 will be involved in the searches of (P3)-, (f)-, (b)- and (a)-communities.
Suppose (P3)-search is the first one. The next search could be (a)-search, then
(f)-search, etc. This allows the searches to be mixed rather than being strictly
top-down or bottom-up. In (P3)-search, its role is an individual peer; in (a)-
search, its role is a seer for [b]-community, and in that capacity it is supposed to
utilize some summary information of the [b]-community; and so on.

3.1 A Specific Example

We consider simple hierarchical path queries having the following syntax:

I := An area of interest in the underlying (hierarchical) ontology O.
Path := ε|I/Path
Query := (n)Path|(Query ∧ Query)|(Query ∨ Query)

where n refers to the number of nodes to retrieve satisfying the Path criterion.
I/(sub-)I refers to a pair of parent-child interests in O. A sample query is given
below:

Query q. (1)music/classic∧ ((1)music/jazz/fusion∨ (2)music/rock/soft).

Query q can be interpreted as follows: Find a peer interested in music/classic
and a peer interested in music/jazz/fusion, or a peer interested in music/
classic and two peers interested in music/rock/soft.

Given this, a search to evaluate query q over the global visibility graph
(Fig. 5) would be as follows. (We assume that a, b, c and d correspond to the
music, music/rock, music/jazz and music/classic communities, respectively.)

We assume that q is submitted at peer P3.

1. P3 initiates an (a)-search, that is, evaluates q within the (a)-community.
2. If unsuccessful, P3 chooses nodes in the (a)-community (peers P9, P11, and

peer P3 itself) for propagating (the entire query or parts of) q for further
evaluation. Peer P3 makes this decision based on the “similarity” between the
path criteria in q and the global names of the nodes in the (a)-community.
Here, P3 would choose itself for the (sub)query (2)music/rock/soft, while
P9 would be chosen for (1)music/jazz/fusion and P11 for (1)music/classic.

3. The nodes P3, P9 and P11 initiate a (b)-search, (j)-search and (d)-search,
respectively. In the course of (j)-search, P9 might find a need for, and initiate,
a (c)-search.

4. This continues until the appropriate peers are found, or all the peers in H
have been explored (in which case, there may not exist peers satisfying the
query).
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4 Visibility Structure Changes

P2P systems are highly dynamic in nature, with peers being added to or deleted
from communities, communities being added to or deleted from higher level
communities, merging and splitting of the communities, etc. All these operations
change the visibility graph. Our formalism facilitates these changes easily. We
outline the general procedures in the following, with examples from the hierarchy
of Fig. 4, and Fig. 5.

I. Basic operations

(a) Adding a peer P to a community C. Add the node P and a C-edge between
P and some node already in C. Note that the addition of this single edge is
sufficient to keep the new C-graph connected. Of course, additional edges can
be added too. We restrict our description to the minimum requirements.

(b) Deleting a peer P from a community C. This may require several opera-
tions: (i) P is deleted from the C-graph; (ii) If this disconnects the C-graph, then
additional C-edges, between other peers in C, are added to keep the C-graph
connected; (iii) Suppose P is a seer of a sub-community C′ of C for C. If P is the
only such seer, then some other peer P ′ of C′-community should be designated
as a seer for C and added to C.

(c) Deleting a peer P from the P2P system S. Then P must be deleted from
every community it is part of (as a seer).

II. Other structural changes

Some of the other structural changes are:

– adding a community C to a higher level community C′;
– deleting a community C from a higher level community C′;
– merging two same level communities;
– splitting a community to two communities under the same parent

community;
– merging two different level communities; etc.

These, and several other operations involving combinations of those considered
above, can be executed. All these involve essentially some generic operations
like adding a node to a graph, deleting a node from the graph but keeping the
graph connected after the deletion, etc. Depending on how the graph (C-graph
for community C) is maintained (as a tree, arbitrary connected graph, complete
graph, etc.), these operations can be implemented efficiently. The key property of
our formalism is that a node may be incident to C-edges of several communities
C, and so the node may have to be deleted from some C-graphs and not from
some others.

5 Implementation and Discussion

As we know, P2P systems are very highly decentralized. Peers are far apart, they
are highly autonomous, they may join the system and drop out in an ad hoc
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manner, their storage and processing capacities may be varied and limited, their
availability and accessibility may be different at different times, communication
between them may not be reliable, and so on. Therefore, implementation of the
algorithms for both searching the peers for query evaluation and for modify-
ing the structure of the visibility graph, outlined in the previous two sections,
requires special attention. For instance, in any distributed implementation, the
algorithms will be executed only lazily, that is, asynchronously. The algorithms
can be fine tuned for “safe” execution. For example, when a community is deleted
from another, and added to a different community, the addition part can be done
first, and then the deletion. This may result, in the worst case, in a concurrent
execution exploring more peers than necessary, but without loss of visibility.

We note that peers can execute their part of the algorithms autonomously.
For example (as discussed in section 3), a peer which is a seer for several (higher
level) communities could employ its own heuristics to decide on which order to
explore the various communities. The selection strategy could be different for a
different peer even for the same set of choices.

The core element of the implementation is the manipulation of C-graph for
each community C in the hierarchy. Depending on the type of connectivity main-
tained, the amount of work in the manipulation will be different. Searching could
be more systematic and efficient with tree structure. On the other hand, updates
on the hierarchical structure may be implemented more efficiently with graphs
which are not trees.

With our model, several C-graphs have to be manipulated. However, each
can be manipulated independent of the others. So, the complexity of the im-
plementation will not increase very much with the increase in the number of
communities. With proper extensions to the underlying hierarchy, an increase
in the number of peers in the P2P system can be accommodated by increasing
the number of communities without substantially increasing the size of the cor-
responding seer-communities. Thus, our data structure and the algorithms are
highly scalable.

At an abstract level, multi-level visibility seems close to the notion of database
views [6]. For a set of relational tables in a database, a view allows us to summa-
rize their data based on some characteristics. Here, the peers can be considered
as data. The information on the various peers in a community can be summa-
rized and kept in the seers of that community. However, since a peer can be a
seer of a higher level ancestral community without being a seer of a lower level
one, hierarchical relationships of the communities cannot be represented directly.

Having said this, there is also sufficient overlap between the two concepts, for
a lot of the existing work for database/views to be used here, especially, with
respect to query optimization and rewriting. Also, we have not considered con-
current query and update of the visibility graph which is very relevant, especially,
for collaborative P2P systems. Database solutions [7] appear very attractive for
the above as well.

Finally (as mentioned earlier), we consider visibility graphs as an abstrac-
tion to capture the visibility aspect of P2P communities, and we expect other



372 D. Biswas and K. Vidyasankar

middleware aspects, e.g., security, monitoring, etc. to build on this abstraction. In
the sequel, we briefly show how visibility graphs facilitate P2P security. Security
for P2P communities is usually provided with the help of a Trust Management
scheme [8]. In this scheme, each peer maintains the trust rating of all the other
members in its own group (group-mates), based on its own dealings with them.
For inter-community accesses, “when a member p requests to acquire resources
from a member q of another community, it sends a request to q. q checks with
the group-mates of p if p is trustable and what kind of access privileges it has.
q then accepts or rejects the transaction with p”. The above can be modeled us-
ing visibility graphs as follows: The underlying assumption, that the seer graph
of each community is connected, allows a peer to monitor the activities of its
group-mates (that is, to maintain their trust ratings). Inter-community access
between peers P1 ∈ C1 and P2 ∈ C2 may only occur via an access path from
a C1-seer to a C2-seer. Further, recall that visibility is symmetric. Thus, given
such an inter-community access, P2 can backtrack along the access path, and
retrieve the trust rating of P1 from the C1-seer.

6 Related Works

The notion of P2P communities was introduced in [4]. They also represent visibil-
ity using intra-community and inter-community edges. They use only one type of
inter-community edges. Our formalism uses different edges for (seer communities
at) different levels of the hierarchy.

Further works [8], [9] and [10] have extended the P2P community notion
as follows: [8] presents a Trust Management scheme for P2P communities. [9]
discusses efficient discovery for P2P communities based on the “type” of commu-
nities, e.g., co-operative, goal oriented, ad hoc communities, etc. [10] presents a
gossip based discovery mechanism for P2P communities. However, none of them
consider the visibility aspect with respect to P2P systems.

No other work (that we are aware of) has attempted to formalize the visibility
aspect for P2P systems. Some of the works which have touched upon this aspect
are the following: [11] identifies real-life scenarios where there might be a need to
deviate from the inheritance of access rights upwards through the hierarchy in a
role-based access control system. [12] considers the visibility aspect with respect
to sending publish/subscribe notifications for event based systems. [13] identi-
fies the need for visibility across levels of a supply chain management system as
follows: “The information required by downstream entities are mainly material
and capacity availability information from their suppliers. The information ac-
quired by an upstream entity is information about customer demand and orders.
The depth of information penetration can be specified in various degrees, e.g.,
isolated, upward one tier, upward two tiers, downward one tier, downward two
tiers, and so forth”.

In previous works [14] and [15], we have studied the visibility aspect for hi-
erarchical systems, especially, hierarchical Web Services compositions. In [14],
we introduced the notion of Sphere of Visibility (SoV) to capture the visibility
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aspect, and showed its application in the context of performing compensation
under visibility constraints. However, [14] only considered vertical visibility (that
is, visibility over ancestors and descendants) as compared to the more generalized
notion of visibility presented in [15] (visibility over siblings, uncles, cousins, etc.).
In [15], we also studied some inherent relationships which might exist among the
SoV’s of a group of providers, e.g., coherence, correlation, etc.

7 Conclusion and Future Work

In this paper, we have proposed a multi-level visibility graph formalism to cap-
ture the visibility of peers and communities in P2P systems. The formalism caters
to the grouping of peers in a hierarchical community organization. The graph
model accommodates, with equal ease, any number of levels in the hierarchy and
any number of communities in each level.

In this paper, we have assumed that at a level of the hierarchy, the node sets
of the children components are disjoint. When we consider multiple attributes,
the resulting components (at the same level) may be overlapping. This can be
accommodated in our model though the search and update algorithms would
become more complicated. For instance, in the event of such overlapping it may
no longer be sufficient to use the hierarchical path as the global name of a peer.

Further, the visibility graph formalism, and the search and update algorithms
in this paper have been defined for a single underlying hierarchy. The scenario
becomes more interesting as soon as we allow for multiple overlapping hierar-
chies. For example, in Fig. 1, in addition to the hierarchical classification by
type, the peers may also be chronologically (again, hierarchically) classified by
the interest in decades, years and months. Given this, a query evaluation, after
some initial search with respect to the type hierarchy and determining the year
of production, might switch to a search by the chronological hierarchy. Our for-
malism can easily be extended for multiple hierarchies. We leave this extension
and the above issues as directions for future work.
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Abstract. The stretched hypercube has recently been introduced as an attractive 
alternative to the well-known hypercube. Previous research on this network 
topology has mainly focused on topological properties, VLSI and algorithmic 
aspects of this network. Several analytical models have been proposed in the 
literature for different interconnection networks, as the most cost-effective tools 
to evaluate the performance merits of such systems. This paper proposes an 
analytical performance model to predict message latency in wormhole-switched 
stretched hypercube interconnection networks with fully adaptive routing. The 
analysis focuses on a fully adaptive routing algorithm which has been shown to 
be the most effective for stretched hypercube networks. The results obtained 
from simulation experiments confirm that the proposed model exhibits a good 
accuracy under different operating conditions. 

Keywords: stretched hypercube, analytical model, performance evaluation, 
wormhole routing. 

1   Introduction 

A large number of interconnection networks have been proposed and studied for 
highly parallel distributed-memory multicomputers [2, 3, 7, 8, 11, 14, 15, 17, 18, 19, 
26, 29]. Among them the hypercube has been one of the most famous ones which has 
many desirable properties such as logarithmic diameter and fault-tolerance. It is not, 
however, scalable from hardware cost point of view, i.e. when adding some few nodes 
to it, we have to duplicate the network size to reach the next specified network size. 
Other drawback with hypercubes was reported by Patel et al. [28] when considering 
VLSI layout. They showed that the minimum number of tracks for VLSI layout of an 
n-cube (n-dimensional hypercube) using a one-dimensional implementation has an 
order of network size. Their investigation revealed that for an example network of 1k 
processors (a 10-cube), at least 687 tracks are required for VLSI implementation. 

The stretched hypercube, introduced in [23], is a new interconnection network 
based on the hypercube network. While preserving most of properties of the 
hypercube, it has some other desirable properties such as hardware scalability and 
efficient VLSI layout that make it more attractive than an equivalent hypercube 
network [23]. 
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There are three main approaches for performance evaluation of interconnection 
networks. The first one is monitoring the behavior of the actual system; it can capture 
the effects of low-level design choices, but restricts experimentation with different 
router policies since it can be prohibitively expensive and time-consuming to change 
these features. Simulation is the second approach for performance evaluation of 
interconnection network. We may implement different routing algorithms, different 
switching methods, and different interconnection topologies with simulation environ-
ments, but simulation is time consuming especially when we study large networks. 
The last way is to using mathematical approaches for performance analysis of 
interconnection networks. Mathematical models are cost-effective and versatile tools 
for evaluating system performance under different design alternatives. The significant 
advantage of analytical models over simulation is that they can be used to obtain 
performance results for large systems and their behaviour under network configure-
tions and working conditions which may not be feasible to study using simulation on 
conventional computers. 

Several researchers have recently proposed analytical models of popular 
interconnection networks, e.g. k-ary n-cubes, tori, hypercubes, and meshes [1, 4,  
6, 24]. The most difficult part in developing any analytical model of adaptive routing 
is the computation of the probability of message blocking at a given router due to the 
number of combinations that have to be considered when enumerating the number of 
paths that a message may have used to reach its current position in the network. 
Almost all studies on stretched hypercube interconnection networks focus on topo-
logical properties and algorithmic issues. There has been hardly any study on 
performance evaluation of such networks and no analytical model has been proposed 
for stretched hypercubes. In this paper, we discuss performance issues of stretched 
hypercube graphs by introducing a reasonably accurate mathematical model to predict 
the average message latency in wormhole stretched hypercubes using a high-
performance routing algorithm proposed in [22]. 

2   The Stretched Hypercube Graph 

Among the various classes of interconnection networks, scalable symmetric (or even 
partially symmetric) graphs with lower average node degree and lower diameter are of 
great interest (for their lower cost) to the designers of multiprocessor systems. On the 
other hand, most of the well-known interconnection networks like the hypercube, star 
graph, and the pyramid, suffer greatly from not being scalable; for example, in the case 
of the hypercube, the network size is such quantized that, for adding a single node to the 
network, the network size must be duplicated. Stretched hypercube [23] tried to 
overcome the scalability problem by placing some processor nodes on edges of 
hypercube graph, thus achieving a far more scalable interconnection network. Stretched 
hypercube networks possess lower average degree than the same size hypercube 
networks. Accordingly, stretched hypercube networks are of lower average node degree 
in comparison with hypercube networks when equal network degree is considered. 

Definition 1. Let G = (VG, EG) be a hypercube graph, the Regular Stretched 
hypercube network, RSrH = (VRS, ERS), is an undirected graph based on G, where each 
edge of G is replaced by an array of r nodes. That is  
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VRS = { (b,b',i) | (b=b' & i=0) or (b<b' & < label-1(b), label-1(b') >∈EG 
& 0 i r< ≤ )}, 

where label is a bijective function as label: VG→ [ |VG| ] = {1, 2, …, |VG|}. 
From now on, we shall refer to every label value as a base graph node. For each 

( , , ) RSu b b i V′= ∈ , b (base vertex) and b' (last vertex) are two adjacent nodes in the 

base hypercube, and i, ri ≤≤0 , represents the index of node u in the  
array. Conventionally, we apply zero to the index of the base graph nodes and we  
set b b′ =  for such nodes; as a result, the base graph vertices can be add- 
ressed uniquely. The edge-set of the stretched hypercube can be defined as 

1 1 1 2 2 2{ , | ( , , ), ( , , ) }RS GE u v u b b i v b b i V′ ′= = = ∈ , where nodes u and v must satisfy one 

of the following conditions: Array edges where: 
1 2b b= , 

1 2b b′ ′= , 121 =− ii , and 

Junction edges where 
1 2b b= ,  01 =i , 12 =i ; or 

1 2b b′ = , ri =1
, 02 =i . 

Definition 2. The irregular stretched hypercube network, denoted as HIS
GErrr )(21 ,...,,

, 

(with 
, 1,2,..., ( )k k E Gr =  representing the length of the corresponding array), is defined 

similarly (to the regular stretched hypercube). The difference is that each array has its 
own length. 

The numbering order of the arrays is as follows. Starting with a base graph node 
that has the least label value, we number the array that connects the mentioned node 
to another node of the base graph with the next least label value, as 1. Then, the next 
array that connects the mentioned node to a node of the base graph with the next least 
label value is numbered as 2, and so on. After numbering all of such arrays, we do the 
same starting with the next base graph node that has the next least label value; at last, 
the base graph node with the greatest label value would not be used for numbering 
any array. Fig. 1 presents such a numbering in the RS4H3 and IS4,3,4,0,2,2,3,2,0,3,4,4H3. The 
gray numbered rectangles show the numbering order of the arrays. 

3   Adaptive Routing in Stretched Hypercubes 

In this section, we introduce a fully adaptive routing algorithm for the stretched 
hypercube. The algorithm can be used with both packet switching and wormhole 
switching techniques. To define a fully adaptive routing algorithm, we must first 
define a deadlock-free routing (with any level of adaptivity). We can then use the 
deadlock-free routing algorithm as described in [22] to construct a fully adaptive 
routing algorithm. 

In order to have a deadlock-free routing algorithm in the stretched hypercube, we 
use three classes of virtual channels A, B and C. Virtual channels of class A are used 
when the message is at the source stretched edge; we use virtual channels of this class 
until we reach the first base vertex of the source stretched edge. Virtual channels of 
class C are used in the destination stretched edge; it means that when we enter the 
destination stretched edge, we use this class of virtual channels until we reach to the 
destination node. Finally, virtual channels of class B are used for a deadlock-free 
routing algorithm in the base hypercube, e.g. e-cube routing. The minimum number of 
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virtual channels in each class is 1. Thus, we need at least 3 virtual channels per 
physical channel to implement a deadlock-free routing algorithm in stretched 
hypercubes. 

According to Duato's methodology, since the base deadlock-free routing algorithm 
requires 3 virtual channels, we can have a fully adaptive deadlock-free routing 
algorithm in the stretched hypercube using at least 4 virtual channels, three of which 
used by the base routing algorithm and the remaining one used in any possible way 
that can brings the message closer to the destination node. 

We call the virtual channels used for base deadlock-free routing as the base virtual 
channels and the remaining virtual channels as the adaptive virtual channels. 

When there are more than 4 virtual channels per physical channel, the network 
performance is maximized when the extra virtual channels are added to adaptive 
virtual channels. Thus, with V virtual channels per physical channel, the best 
performance is achieved when we have V-3 adaptive virtual channels and three base 
virtual channels.  

The proposed routing algorithm contains three main steps: 1) Move towards the 
nearest base neighbor using any of the V-3 adaptive virtual channels. If all V-3 
adaptive virtual channels are busy use the virtual channel of class A from base virtual 
channels to move toward the nearest base neighbor in the source stretched edge. 2) 
Move towards the nearest base node of the destination node using fully adaptive 
routing algorithm in the hypercube with V-3 adaptive virtual channels [13]. If all V-3 
virtual channels are busy use the virtual channel of class B with e-cube routing in the 
base hypercube. 3) Now the current node is one of the base vertices of the destination 
stretched edge. Move towards the destination node using any of the V-3 adaptive 
virtual channels. If all V-3 adaptive virtual channels are busy use the virtual channel 
of class C from base virtual channels to move toward the destination node in the 
destination stretched edge. 

4   The Analytical Model 

In this section, we derive an analytical performance model for wormhole adaptive 
routing in a stretched hypercube. Our analysis focuses on the routing algorithm which 
was introduced in previous section (described in [22]) but the modelling approach 
used here can be equally applied for other routing schemes after some few changes. 

The measure of interest in our model is the average message latency as a 
representative for network performance. The following assumptions are made when 
developing the proposed performance model. These assumptions have been widely 
used in similar modelling studies [1, 5, 6, 9, 12, 16, 20, 24, 27]. 

a) Messages are broken into some packet of fixed length of M flits which are the unit 
of switching. The flit transfer time between any two neighbouring nodes is 
assumed to one cycle.  

b) Message destinations are uniformly distributed across the network nodes. 
c) Nodes generate traffic independently of each other, which follow a Poisson 

process, with a mean rate of λg messages/cycle. 
d) Messages are transferred to the local processor through the ejection channel once 

they arrive at their destination. 



 Mathematical Performance Modelling of Stretched Hypercubes 379 

e) V virtual channels per physical channel are used. These virtual channels are used 
according to the routing algorithm described in the previous section. 

In order to compute the mean message latency in each of the three sub-networks 
(the network parts used in the three steps listed above), we must consider three 
parameters: the mean network latency, S , that is the time to cross the network, the 
mean waiting time seen by a message in the source node to be injected into the 
network, 

sW . To model the effect of virtual channels multiplexing effects, the mean 

message latency is then scaled by a factor, V , representing the average degree of 
virtual channels multiplexing that takes place at a given physical channel [10]. 
Therefore, the mean message latency in each sub-network can be approximated as 

( )sLatency S W V= +                     (1) 

The average number of hops that a message makes across the network, d , can be 
computed as follows [23]: 

     
k

n
d ×⎟

⎠
⎞

⎜
⎝
⎛ += 1

2
              (2) 

where
2

n
k  is the average number of hops that must be crossed in the main hypercube 

and k is the average number of hops that must be crossed in the source and destination 
stretched edges. 

Fully adaptive routing in the stretched hypercube allows a message to use any 
available channel that brings it closer to its destination node, resulting in an evenly 
distributed traffic rate over all channels. Since each message travels, on average, d  
hops to cross the network, the rate of messages received by each channel, cλ , can be 

approximated as  

L

dN g
c

××
=

λ
λ                      (3) 

where N is the number of nodes in the stretched hypercube which is equal to 
12 ( 2)n nk− + and L is the total number of links which is equal to n2n-1(k+1) [23].  

Let us follow a typical message which makes d  hops to reach to its destination. 

The average network latency, S , seen by the message crossing from the source to the 
destination node consists of two parts: one is the time due to the actual message 

transmission, and the other is due to the blocking time in the network. Therefore, S , 
can be expressed as 

bTddMS ++−= 1            (4) 

where M is the message length, and 
bT  is the average blocking time seen by the 

message at each hop. The term 
bT  is given by 

                   wPT blockb =                           (5) 
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with 
BlockP  being the probability that a message is blocked at the current channel and 

w is the mean waiting time to acquire a channel in the event of blocking. A message is 
blocked at a given channel in the stretched edge sub-network when all adaptive and 
deterministic virtual channels of the current physical channel are busy. Let 

aP  be the 

probability that all adaptive virtual channels of a physical channel are busy and 
daP &

 

denote the probability that all adaptive and deterministic virtual channels of a physical 
channel are busy. In stretched edge sub-networks, we have only one path for the 
messages, so no adaptivity exists for messages moving across a stretched edge. 

In order to compute
daP &

, we must consider three cases: (a)  The probability that all 

of V virtual channels of a physical channel are busy,
VP . (b) When V-1 virtual 

channels of the V virtual channels associated to a physical channel are busy. In this 
case, if the free virtual channel is the channel of class B or C when in source stretched 
edge, class A or C when in the base network, and class A or B when in the destination 
stretched edge, then all adaptive and the base virtual channel that can be used by the 
message are busy. Thus, at any step, only two combinations can result in blocking out 
of all possible combinations that V-1 virtual channels of the total V virtual channels 
are busy. (c) When V-2 virtual channels of the V virtual channels associated to a 
physical channel are busy. In this case, the message is blocked if virtual channels of 
class B and C are free when routing in the source stretched edge, or if virtual channels 
of class A and C are free when routing in the hypercubic part, or if virtual channels of 
class A and B are free when routing in the destination stretched edge.  Thus, at any 
step only one combination out of all possible combinations that V-2 virtual are busy 
can result in blocking. 

Therefore, the probability that all of the adaptive and base virtual channels of a 
physical channel are busy can be expressed as 

           
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+= −−

21

2 21
&

V

V
P

V

V
P

PP VV
Vda

.             
      (6) 

In order to compute aP ,  we must consider 4 cases: (a) The probability that all of V 

virtual channels of a physical channel are busy, VP . (b) When V-1 virtual channels of 

the V virtual channels associated to a physical channel are busy. In this case, if the 
free virtual channel is one of the base virtual channels we end up with blocking. Thus 
only 3 combinations out of all possible combinations that V-1 virtual channels are 
busy can result in blocking. (c) When V-2 virtual channels of the V virtual channels 
associated to a physical channel are busy. In this case, 3 combinations of two free 
channels from virtual channels in class A, B and C may result in blocking out of all 
possible 
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results in having all adaptive virtual channels being busy. 
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Thus, we have 
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In order to compute the probability of blocking,
blockP , we calculate the average of 

all the probabilities that a message may be blocked crossing d  hops in the network. 

d hops can be divided into two parts: a) n/2 hops when we are in the main hypercube 
nodes and we have adaptivity, and b) the remaining n/2(k-1)+k hops are made in 
stretched edges without any adaptivity. A message is blocked at a given channel in the 
main hypercube nodes when all the adaptive virtual channels of class B of the 
remaining dimensions to be visited and also the deterministic virtual channel of class 
B for the current dimension are busy. A message is blocked in the stretched nodes 
when all virtual channels of class A are busy (for a message leaving the source and 
not yet visited a hypercubic node), or when all virtual channels of class B are busy 
(for a message that has already visited its first hypercubic node), or when all virtual 
channels of class C are busy (for a message that has visited the last hypercubic node 
along its path to the destination node). Considering all above mentioned cases, we can 
write 
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where 
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 is the probability that the current node is a hypercubic node, and 
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+
−+  is the probability that it is not a hypercubic node.     

To determine the mean waiting time, w, to acquire a virtual channel when a 
message is blocked, a physical channel is treated as an M/G/1 queue with a mean 
waiting time of [21] 
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where λc is the traffic arrival rate on the channel, S  is its service time calculated by 
equation 4, and 2

S
σ  is the variance of the service time distribution. Since the minimum 

service time at a channel is equal to the message length, M, following a suggestion 
given in [12], the variance of the service time distribution can be approximated 
as 2 2( )

S
S Mσ = − . Hence, the mean waiting time becomes 
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Similarly, modelling the local queue in the source node as an M/G/1 queue, with 
the mean arrival rate of Vg /λ  and service time S  with an approximated variance 

2( )S M−  yields the mean waiting time seen by a message at the source node as [21] 
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The probability, Pv, that v virtual channels are busy at a physical channel can be 
determined using a Markovian model. State Pv (0� v� V)

 
corresponds to v virtual 

channels being busy. The transition rate out of state Pv to state Pv+1 is the traffic rate 
λc (given by equations 3) while the rate out of state Pv to state Pv-1 is 1/S  (S is given 
by equation 4). The transition rates out of state Pv are reduced by λc to account for the 
arrival of messages while a channel is in this state. 

The Markovian model results in the following steady state probability [21], in 
which the service time of a channel has been approximated as the network latency of 
that channel, as 
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When multiple virtual channels are used per physical channel, they share the physical 
bandwidth in a time-multiplexed manner. The average degree of multiplexing of 
virtual channels, that takes place at a given physical channel, can then be estimated  
by [10] 
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.                            (15) 

The above equations reveal that there are several inter-dependencies between the 
different variables of the model. For instance, Equations 4 and 5 reveal that S  is a 

function of w while equation 9 shows that w is a function of S . Given that closed-
form solutions to such inter-dependencies are very difficult to determine, the different 
variables of the model are computed using an iterative technique. 

5   Validation of the Model 

The proposed analytical model has been validated through a discrete-event simulator 
(Xmulator [25]) that mimics the behaviour of the described routing algorithms in the 
stretched hypercube network at flit level. The simulator uses the same assumptions as 
the analysis, and some of these assumptions are detailed here with a view to making 
the network operation clearer. The network cycle time is defined as the transmission 
time of a single flit from one router to the next. Messages are generated at each node 
according to a Poisson process with a mean inter-arrival rate of λg messages/cycle.  
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Fig. 1. a) A regular stretched hypercube with n=3 and k=4 b) An irregular stretched hypercube 

Message length is fixed at M flits. Destination nodes are determined using a uniform 
random number generator. The mean message latency is defined as the mean amount 
of time from the generation of a message until the last data flit reaches the local 
processor at the destination node. The other measures include the mean network 
latency, the time taken to cross the network, the mean queuing time at the source 
node, and the time spent at the local queue before entering the first network channel. 
Numerous validation experiments have been performed for several combinations of 
network sizes, message lengths, and number of virtual channels to validate the model. 

Figures 2 depict latency results predicted by the model explained in the previous 
section, plotted against those provided by the simulator for different sized stretched 
hypercubes. The horizontal axis in the figure shows the traffic generation rate at each 
node while the vertical axis shows the mean message latency. In figure 2-a, we 
consider a large network (about 1000 nodes) with V=10 virtual channels per physical 
channel, and three different message lengths of M=32, 64 and 128 flits. Figure 2-b 
represents the same results for a medium sized network (about 256 nodes); here we 
have V=8 virtual channels per physical channel and messages of length M=32, 64 and 
128 flits. Finally, in figure 2-c, we have shown a comparison between the results 
given by the model and those gathered from the simulation experiments for a small 
network (about 100 nodes); here the number of virtual channels is V=6 per physical 
channel and message length is M=32, 64 and 128 flits. 

The figure reveals that in all cases the analytical model can predict the mean 
message latency with a good degree of accuracy. However, some discrepancies 
around the saturation point are apparent. These can be accounted for by the 
approximations made to ease the derivation of different variables of the model, e.g. 
the approximation made to estimate the variance of the service time distribution at a 
channel. 

Such an approximation simplifies the model as it allows us to avoid computing the 
exact distribution of the message service time at a given channel, which is not a 
straightforward task due to inter-dependencies between service times at successive 
channels as wormhole routing relies on a blocking mechanism for flow control. 
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Fig. 2. The average message latency predicted by the model against simulation results for 
different sized networks 

6   Conclusion 

The stretched hypercube network has recently been introduced as an attractive 
alternative to the well-known hypercube. However, most of studies reported in the 
literature have focused on topological properties and algorithmic aspects of these 
networks. In this paper, we introduced the first mathematical performance model of 
adaptive wormhole routing in stretched hypercubes and validated it through simulation 
experiments. We saw that the proposed model manages to achieve a good degree of 
accuracy while maintaining simplicity, that make it a practical evaluation tool that can 
be used by the researchers in the field to gain insight into the performance behaviour of 
fully adaptive routing in wormhole-switched stretched hypercube. 
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Abstract. We address the problem of message authentication in com-
munication networks which are resource constrained or are performance
bound. Recent research has focused on development of symmetric key
protocols for authentication in such networks. In these protocols, the
sender generates a pool of keys -used to sign the messages, and dis-
tributes a different subset of keys -used to verify the signatures, to each
user. However, in these protocols, users can collude to combine their
keys and impersonate the sender by generating the sender signatures.
In this work, we describe a family of collusion resistant symmetric key
distribution protocols for authentication which address the problem of
collusion. We show that the collusion resistance achieved using our pro-
tocols is practical (and hence, sufficient) for networks whose communica-
tion diameter is known or is within fixed bounds. Furthermore, we show
that some existing protocols in literature are members of our family of
protocols.

Keywords: Authentication, Collusion resistance, Key Distribution.

1 Introduction

In communication networks, many critical tasks require regular exchange of in-
formation among the nodes in the network. In such scenarios, motivated by
economic gains or other malicious intent, the data may be manipulated by a
single node or by a group of such intermediate nodes. The propagation of such
incorrect data can lead to instability of networks, loss of service, loss of revenue
and damage the reputation of service providers. In particular, data manipula-
tion by a group of colluding nodes is a serious problem as the extent of damage
possible is higher than that is possible by attacks launched by a single malicious
node. Thus, protecting the integrity of the data against attacks launched by a
group of colluding users is an important problem in communication networks.

A standard solution to achieve collusion resistant message authentication is
to employ digital signatures using public-key cryptography. A sender signs the
message with its private key and the receiver can check the authenticity of the
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signature using the public key of the sender. However, the cost of signature
generation and verification in public-key crypto systems is relatively high for
network devices and can slow down per-packet processing considerably.

To address the computational overhead in public-key crypto systems, several
works [1,2,3] have proposed using symmetric key protocols for achieving message
authentication. The sender uses a shared symmetric key to sign the message and
the receiver verifies the signature using the same key. As most protocols [1,4] rely
on multiply shared keys for reducing sender and user storage, collusion is likely
in such protocols. However, in earlier works, the issue of collusion resistance has
not been studied in detail.

In this paper, we address the issue of collusion resistance in symmetric key
distribution protocols such as those in [1]. Towards this, we propose a family of
collusion resistant symmetric key distribution protocols for message authentica-
tion in a communication network. Our contributions are as follows:

– We show that our key distribution protocols provide sufficient collusion re-
sistance against message tampering for networks whose communication di-
ameter is known to be within certain bounds, say, O(log N). Higher collusion
resistance can be achieved by increasing the sender storage marginally. Al-
though, our protocols require higher storage at the sender, the storage at the
receivers is still O(log N) as in [1]. Furthermore, we show that, the currently
known solution [1] is a member of our family of protocols.

– We show that, for most practical networks, the sender can choose to store a
smaller number of keys and hence, reduce the signature cost per packet.

Organization. In Section 2, we describe the problem in detail, outline our
network model and assumptions. In Section 3, we describe our family of collusion
resistant symmetric key distribution protocols and provide a detailed analysis
of their collusion resistance. In Section 4, we present the experimental results of
applying our protocols to networks with different diameters. Finally, in Section 5,
we conclude the paper and outline some future work.

2 Problem Description

We address the problem of message authentication in communication networks.
As an example, consider the link state routing protocol on the Internet (e.g.,
OSPF) that requires a router to broadcast link updates in its neighborhood to
the entire network. This information is critical as other routers recompute their
routing tables using this information. Since the information passes through dif-
ferent routers, one or more malicious routers can manipulate the information for
selfish gains. Hence, there is a need for message integrity preserving mechanisms
that are able to withstand a wide variety of falsification attacks particularly,
those that are launched by a group of colluding malicious routers.

In [1], the authors describe a logarithmic keying protocol for achieving authen-
tication in communication networks. In this scheme, a sender maintains 2 logN
keys for a set of N receivers. The sender assigns a unique log N bit identifier
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to each receiver and gives each receiver a unique subset of log N keys using the
bit-values in the receiver’s identifier. The authentication technique is that, the
sender signs each message with all its keys and each receiver verifies those sig-
natures for which it has the corresponding signing key. Since, by construction,
each receiver maintains a different subset of the sender keys it is not possible for
any single receiver to replace all the sender signatures. However, in this scheme,
a select pair of users i.e., users who have complementary binary identifiers can
collude and compromise all the keys of the sender.

In this work, we describe a family of key distribution protocols that use the
same authentication techniques from [1]. We show that the collusion resistance
of our protocols depends on the number of keys stored by the sender. For prac-
tical purposes, we assume that the sender storage is directly proportional to
the communication network diameter and hence, is logarithmic in size. The net-
work diameter assumption can be justified by the fact that most well-known
network topologies including the class of hypercubic graphs [5], random graphs
in the G(n, p) model with p = O(1/ log n), the Internet, and most peer-to-peer
networks [6] have a small diameter.

Threat Model and Assumptions. Our threat model considers a group of
malicious nodes that can falsify data and impersonate as the sender. We assume
a communication network where critical data is exchanged among the nodes
for network related tasks. We do not assume any support from the underlying
network other than best effort message delivery. A node can be a router or an
end-host and is capable of symmetric key signature generation and verification.
We assume that the nodes follow the semantics of communication i.e., the nodes
do not drop packets or launch denial of service attacks. These problems are
orthogonal to the issues addressed in this current work.

Related Work. In [2], the authors describe a collaborative shared key technique
for authentication which has low storage and signature cost. However, it can be
shown that this technique can compromised by an arbitrary number of routers.
In [4], the authors propose a scheme where the number of keys stored by users is
equivalent to the probability of compromise. The only drawback in this scheme
is that a large number of keys need to be stored by users. In [3, 7], the authors
describe one-way hash chain based techniques for message authentication. In [3],
the protocol requires loose synchronization of routers which cannot be guaran-
teed in most real-time applications. In [7], the authentication approach requires
complex setup and protocol state overhead making it more expensive than the
protocol from [1]. In the next section, we describe our protocols which improve
upon the collusion resistance properties of the protocol described in [1].

3 Our Approach

We describe our family of key distribution protocols in Section 3.1 and give a
detailed analysis of their collusion resistance in Section 3.2.
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3.1 Key Distribution Protocols

Initially, the sender assigns a unique kl-bit identifier to each receiver where
k and l are chosen according to network parameters. The identifier is viewed
as k pieces of length � bits. For each piece, a sender maintains 2� keys, one
key for each possible value of � bits. A key is represented as Kb1b2···b�

i for the
ith piece, 1 ≤ i ≤ k and bj ∈ {0, 1} for 1 ≤ j ≤ �. The values of k and �
are chosen depending on the desired collusion resistance or the corresponding
network diameter.

Now, if the identifier of a receiver t is t1t2 · · · tk then, t1, t2 . . . tk are each l-
bit values. For each of these ti’s in the receiver’s identifier, the sender gives the
receiver the key that corresponds to the l-bit value from the 2� keys that it stored
in ith position. For example, if t1 = 001 , then the sender gives the receiver the
key, K001

1 from the K2�

1 keys that are associated with the first identifier location.
Thus, in this key distribution protocol, the user stores k keys per-sender and the
sender stores k2� keys. When k = log N and l = 1, then, the above protocol is
the same that is described in [1]. Furthermore, for different values of k and l we
get a different member from this family of key distribution protocols.

Using our protocols, we achieve authentication using an approach that is sim-
ilar to that described in [1]. We describe the authentication approach for unicast
and multicast communication. For unicast, the sender computes an XOR of the
all keys held by the user and uses this combined secret to compute the message
authentication code, e.g., by using SHA-1, for the message. For multicast, the
sender computes several message authentication codes using each of the keys
that are in the union of all keys held by the multicast receivers. A user verifies
those signatures for which it has the corresponding signing keys to detect mes-
sage tampering. In the next section, we analyze the collusion resistance of these
protocols and show that they perform well in most practical scenarios.

3.2 Collusion Resistance of Our Protocols

Suppose that a message M from source s to destination t is traversing a path P
with u1, u2, · · · , ud as the intermediate nodes in the path. We wish to guarantee
that M cannot be tampered with even if all the d intermediate nodes collude.
For this we will compute the desired value of �. We use Kst to denote the set of
keys used by a sender s to sign the message for a receiver t.

Let Xi denote the random variable that the intermediate node ui can tamper
the signature with respect to key Kj

st where j denotes the jth key from Kst. From
our key distribution protocol described in Section 3.1, we have: E[Xi] = 1/2�.

Now, let X =
∑d

i=1 Xi, then, X denotes the random variable that any of
the d intermediate nodes have success in tampering with the signature of key
Kj

st. Assuming independence, it also holds that using Chernoff bounds, that,

E[X ≥ 1] ≤ e
−2�

2d . Let Eπ be the event that all the signatures can be tampered
along a path π. Then, Pr[Eπ] ≤ exp{− 2�k

2d }.
Let E be the event that there exists some path of length d over signatures

can be tampered. The number of paths of length d can be at most nd+1 since
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any node of the path can be chosen in n ways. Thus, applying the union bound
of probability we have: Pr[E] = Pr[∪πEπ] ≤

∑
π Pr[Eπ] ≤ nd+1 · exp{− 2�k

2d }.

Choosing � and k: From the above analysis, the value of � and k depend
on d. A cursory glance reveals that in fact d should be the diameter of the
network. Considering logarithmic-diameter networks, for the event E to have a
low probability, we require that nd+1 ·exp{− 2�k

2d } ≤ n−c for some constant c > 1.
Simplifying, we require that (d+1) logn−2�k/2d < −c log n or 2�k > O(d2 log n).
By letting k = O(log n), we can choose � = O(log d). With these values of k and
�, it now implies that for an n-node network, nodes have to choose identifiers of
length at most O(log n log d) bits.

4 Results

We analyze the performance of our proposed family of key distribution protocols
with respect to the protocol from [1]. We show that the collusion resistance
in our protocols, for most practical networks with a given diameter, is better
than the protocol from [1]. Our results aid a system designer in choosing an
appropriate protocol based on the network diameter and/or the probability of
collusion among nodes.

Our experiments were simulated on random network sizes with different diam-
eters and averaged over 1000 trials. In Figure 1, we show the percentage of the
signatures that are compromised for networks with diameters: log N/2, log N
and 2 logN for a total of N users. This percentage represents the number of
forged signatures that can be generated by the colluding users. For this compar-
ison, we chose the value of 2l = log N , i.e., the number of keys stored by the
sender as log2 N . We compare the performance of our scheme (termed, “Our
Scheme”) with the scheme from [1] (termed, “Gouda”). In Figure 1(a), the num-
ber of sender signatures that are compromised along a diameter are shown. We
see that our protocol exhibits better collusion resistance even when the network
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diameter is as large as 2 logN . In Figure 1(b), we show the scenario where the
keys held by an individual receiver are compromised by nodes that are along the
path from the sender to the receiver. We observe that, even for large network
diameters, the receiver still has some keys that are not compromised and hence,
signature verification by the receiver can detect falsification attempts. Hence,
these results show that for most practical situations our protocols provide the
necessary collusion resistance.

We have compared the collusion resistance of different members of our family
of protocols. Our results show that, by progressively choosing smaller/larger
values of 2l we are able to trade off collusion resistance with cost of signing the
messages. Due to lack of space we do not present those results.

5 Conclusion and Future Work

In this work, we have addressed the issue of collusion resistance in symmetric key
distribution protocols for authentication. Towards this, we have described a fam-
ily of collusion resistant protocols where the desired collusion resistance can be
achieved by choosing appropriate values for the parameters. Using probabilistic
analysis and experimental evidence we have shown that our protocols offer the
required collusion resistance for most practical network diameters. Currently, we
are investigating the exact level of collusion resistance of different members of
our protocols. This analysis will aid a system designer in choosing an appropriate
member from our family of key distribution protocols.
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Abstract. Intrusion detection systems are increasingly a key part of systems 
defense. Various approaches to intrusion detection are currently being used, but 
they are relatively ineffective. Constructing and maintaining a misuse detection 
system is very labor-intensive since attack scenarios and patterns need to be 
analyzed and categorized, and the corresponding rules and patterns need to be 
carefully hand-coded. Thus data mining can be used to ease this inconvenience. 
This paper proposes a multiple level hybrid classifier for an intrusion detection 
system that uses a combination of tree classifiers which rely on labeled training 
data and applies an Ant colony clustering algorithm for mixed data. The main 
advantage of this approach is that the system can be trained with unlabelled data 
and is capable of detecting previously “unseen” attacks. Verification tests have 
been carried out by using the 1999 KDD Cup data set. From this work, it is 
observed that significant improvement has been achieved from the viewpoint of 
both high intrusion detection rate and reasonably low false alarm rate.  

Keywords: Intrusion Detection, Data Mining, Multiple-level decision tree, Ant 
colony Clustering. 

1   Introduction 

As network-based computer systems play increasingly vital role in modern society, 
security of network systems has become more important than before. It is difficult to 
keep the system safe by static safeguards like firewall. As an active defense 
technology, an Intrusion Detection System (IDS) attempts to identify existing attack 
patterns and recognize new intrusion, and hence becomes an indispensable component 
in security architecture. 

However, the existing intrusion detection methods, including misuse detection and 
anomaly detection [1][2], are generally incapable of adapting detection systems to the 
change of circumstance, which causes a high false positive rate. Moreover traditional 
Intrusion Detection methods can only detect known intrusion since they classify 
instances by what they have learned. However, the necessity to build an adaptive IDS 
with self-learning abilities has become a hot spot in security field [3]. In this paper, a 
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multiple level hybrid classifier for an intrusion detection system that uses a 
combination of tree classifier and an Ant colony clustering algorithm for mixed data 
to distinguish intrusions from legal behaviors effectively. At the first level, the data 
are split into normal, DOS, PROBE and “others” (a new class label containing both 
U2R and R2L). The second level splits the “others” into its corresponding U2R and 
R2L, while the third level classifies the attacks into its individual specific attacks. 

The subsequent sections are organized as follows. In Section 2, we first present a 
general survey in the field of misuse detection and anomaly detection in network 
intrusion detection. Section 3, describes the systems architecture of the new multiple 
level hybrid classifier. Section 4, gives a brief introduction on both decision tree [4] 
and enhanced fast heuristic clustering algorithm [5]. In Section 5, we discuss the 
results and its possible implications. Conclusions and plans for future works are given 
in Section 6. 

2   Literature Survey 

The research on IDS carried out many of the current researchers who are interested in 
network security. A Data Mining based Adaptive Intrusion Detection Model 
(DMAIDM) is presented in [5] with several data mining techniques. This DMAIDM 
applies a Fast Heuristic Clustering Algorithm for mixed data (FHCAM) to distinguish  
intrusions from legal behaviors efficiently and an Attribute - Constrained based Fuzzy 
Mining Algorithm (ACFMA) to construct intrusion Pattern-database automatically. 
However, some parameters of DMAIDM are still based on limited statistic data and  
knowledge of domain experts.  

There are many clustering algorithms that are found in the literature [6][7][8]. 
However these classical clustering algorithms, whether based on K-means or K-
medoids have two shortcomings in clustering large network data sets namely number 
of clusters dependency and lacking of the ability of dealing with the character 
attributes in the network transactions. Among these the number of clusters depen-
dency suggests that the value of K is very critical to the clustering result and should 
be fixed before clustering and the lacking of the ability to deal with the character 
attributes is focuses on the similarity of character  attribute.(e.g. Protocol) is 
difficultly computed by K-means or K-medoids. Hence it is necessary to propose a 
new clustering technique that provides a solution to these problems.  

MADAM ID [9] is another work which utilized data mining for adaptive and 
automatic construction of intrusion detection models. The key idea in that paper is the 
use of auditing programs to extract an extensive set of features that describe each host 
session or network connection, and to apply data mining programs to learn rules that 
accurately capture the characteristics of normal activities and intrusions. In MADAM 
ID, the goal of constructing a classification model is to apply a serial of attribute tests 
so that the dataset can be divided into “pure” subsets, i.e., each in a target class. This 
target class can be normal/abnormal judgment, different intrusion categories or 
specific intrusion types. In particular, MADAM ID used C4.5 algorithm [4] to 
construct one decision tree where each node of the tree specifies a test on an attribute, 
and each branch of the node corresponds to one of its values. The leaves are the 
classification results. In contrast to using only a single tree classifier to classify 
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intrusions, as that in MADAM ID, a multiple level tree classifier was recently 
proposed in [10][11][12] to design an IDS, which contains 3 levels of decision tree 
classification. At the first level, the data are split into normal, DOS, PROBE and 
“others” (a new class label containing both U2R and R2L). The second level splits the 
others” into its corresponding U2R and R2L, while the third level classifies the 
attacks into its individual specific attacks. It was shown to be easy to design and very 
efficient in detecting old attacks. However, serious shortcoming of this approach is its 
high false alarm rate as well as low detection rate for new attacks. 

In this paper, we propose a new multiple level hybrid classifier for an intrusion 
detection system that uses a combination of tree classifier that uses enhanced C4.5 
algorithm and applies an ant colony clustering algorithm for mixed data to distinguish 
intrusions from legal behaviors efficiently to further reduce the false alarm rate to an 
industrially acceptable level while maintaining the low false negative rate. 

3   System Architecture 

The multi level hybrid IDS architecture proposed in this paper is presented 
schematically in figure 1. In this hybrid approach, classification is done in multiple 
levels and KDD cup 1999 data set is used. Enhanced C4.5 algorithm is used for 
classification. In the first level DoS and PROBE types of attacks are classified from 
the data set. U2R, R2L and normal connections are grouped as ‘OTHERS’. This is 
because U2R and R2L attacks have close resemblance with the normal connections. 
This step helps to reduce the false alarm rate and improve the detection rate. In the 
next level normal connections are separated from the data set and grouped as normal 
and abnormal connections.  

Data set DoS

Probe

Others Normal

Abnormal

U2R

R2L

Ant colony
clustering

C4.5

 

Fig. 1. System Architecture 
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This is done using the ant colony-clustering algorithm as explained in section 3.2. 
The clustering algorithm groups the new types of attacks into the abnormal category. 
This module performs the anomaly detection. In the next level, the abnormal group is 
classified into U2R and R2L using the classifier. Enhanced C4.5 algorithm is used for 
classification. 

3.1   Enhanced C4.5 Algorithm 

A classifier, which is a function (or model) that assigns a class label to each data item 
described by a set of attributes, is often needed in these classification tasks. There are 
quite a few machine-learning approaches for generating classification models, among 
which decision tree learning [4] is a typical one.  Figure 2 pictorially represents the 
misuse detection module. In this paper, an Enhanced C4.5, a later version of the ID3 
algorithm, has been used to construct the decision trees for classification. The specific 
algorithm is given below 

Algorithm: Generate_decision_tree. Generate a decision tree from the given training 
data. 
Input: training samples, represented by discrete/continuous attributes; the set of 
candidate attributes, attribute-list. 
Output: a decision tree 
Method: 

(1) create a node N; 
(2) if samples are all of the same class, C, then 
(3) return N as a leaf node labeled with the class C; 
(4) if attribute-list is empty then 
(5) return N as a leaf node labeled with the most common class in samples; 

(majority voting) 
(6) select test-attribute, the attribute among attribute-list with the highest  

information gain ratio ; 
(7) label node N with test-attribute; 
(8) for each known value ai of test-attribute 
(9) grow a branch from node N for the condition test-attribute = ai; 
(10) let si be the set of samples in samples for which test-attribute = ai; 
(11) if si is empty then 
(12) attach a leaf labeled with the most common class in samples; 
(13) else attach the node returned by Generate_decision_tree (si, attribute-list ). 

Gain Ratio Criterion 
 

The notion of information gain introduced earlier tends to favor attributes that have a 
large number of values.  The gain ratio, expresses the proportion of useful information 
generated by split, i.e. that appears helpful for classification. If the split is near trivial, 
split information will be small and this ratio will be unstable. To avoid this, the gain  
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Fig. 2. Misuse Detection Component 

ratio criterion selects a test to maximize the ratio above, subject to the constraint that 
the information gain must be large, at least as great as the average gain over all tests 
examined. 

3.2   Ant Colony Clustering Algorithm 

Ants are model organisms for bio-simulations due to both their relative individual 
simplicity and their complex group behaviors. Colonies have evolved for collectively 
performing tasks that are far beyond the capacities of individual ants. They do so 
without direct communication or centralized control. Given points in some space, 
often a high-dimensional space, group the points into a small number of clusters, each 
cluster consisting of points that are “near” in some sense. 
 
Ant colony algorithm 

 
• Initialize randomly the ant positions 
• Repeat 
• For each ant (i) do 
• Move ant (i) 
• If ant (i) does not carry any object Then look at 8-cell neighborhood and pick 

up object according to pick-up algorithm 
• Else (ant (i) is already carrying an object O) look at 8-cell neighborhood and 

drop O according to drop-off algorithm 
• Until stopping criterion 
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4   Implementation and Results 

4.1   Training and Test Data 

The dataset used in the experiment was taken from the Third International Knowledge 
Discovery and Data Mining Tools Competition (KDD Cup 99) [11]. Each connection 
record is described by 41 attributes. The list of attributes consists of both continuous-
type and discrete type variables, with statistical distributions varying drastically from 
each other, which makes the intrusion detection a very challenging task. 

4.2   Experimental Results 

The hybrid approach is implemented using the enhanced C4.5 tool and the Ant colony 
clustering is implemented in Java. The results are compared with other traditional 
models namely MADAMID, multiple level classifier and multiple level hybrid 
classifiers (Baysian). The results are shown in table 1 and 2. The implementation of 
ant colony algorithm improves the detection rate and decreases the false alarm rate as 
interpreted in the tables 1 and 2. 

Table 1. Comparison of Old Attacks Detection Rates (%) 

 MADAM 
ID 

Multiple 
level 

classifier 

Multiple level 
Hybrid Classifier 

(Bayesian) 

Multiple level Hybrid 

Classifier (Ant Colony) 

DoS 79.9 99.11 99.19 99.35 
PROBE 97.0 96.76 99.71 99.7 

U2R 75.0 76.92 66.67 73.2 
R2L 60.0 65.46 69.50 71.1 

Normal N/A 42.73 90.89 95.42 

Table 2. Comparisons of New Attacks Detection Rates (%) 

 MADAM 
ID 

Multiple 
level 

classifier 

Multiple level 
Hybrid Classifier 

(Bayesian) 

Multiple level Hybrid 

Classifier (Ant Colony) 

DoS 24.3 37.44 83.59 83.32 
PROBE 96.7 88.54 70.60 70.81 

U2R 81.8 41.94 28.06 35.93 
R2L 5.9 9.10 28.53 51.04 

It was shown that this new approach is very efficient in detecting intrusions with a 
extremely low false negative rate of 3.37%, while keeping an acceptable level of 
false-alarm rate of 9.1%. Such an excellent intrusion detection performance with 
appropriate trade-off of false negative and false positive rates has never been reported 
in the literature, to the authors’ knowledge. 
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Fig. 3. Snapshot of the ant colony clustering 

5   Conclusion and Future Work 

A multiple-level hybrid classification model combining decision trees and ant colony 
clustering has been proposed. The novel feature of this approach is the combination of 
both supervised learning (tree classifier design) and unsupervised learning (clustering 
analysis). Application of data mining technology in anomaly detection is a hot spot in 
research of IDS. To facilitate adaptability and extensibility, ant colony clustering is 
used to classify the normal and abnormal. Experimental results with this new scheme 
on KDD Cup 1999 Data were compared with other popular approaches such as 
MADAM ID and multiple-level tree classifier. However further works may be done 
to improve the detection rate of U2R and R2L. 

However, a weakness observed is that it did not perform so well for detecting U2R 
attacks. This is the trade off for the high detection rate of other attack types. 
Furthermore the low number of instances for U2R connections in the training and 
testing data makes the detection rate of U2R negligible compared to other attacks. • 
Detection rates of U2R attack may be further increased by focusing more research on 
the U2R training data. 
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Abstract. This paper presents a novel approach to processing continuous aggre-
gate queries in sensor networks, which lifts the assumption of tree-based rout-
ing. Given a query workload and a special-purpose gateway node where results
are expected, the query optimizer exploits query correlations in order to gen-
erate an energy-efficient distributed evaluation plan. The proposed optimization
algorithms identify common query sub-aggregates, and propose common rout-
ing structures to share the sub-aggregates at an early stage. Moreover, they avoid
routing sub-aggregates of the same query through long-disjoint paths, thus further
reducing the communication cost of result propagation. The proposed algorithms
are fully-distributed, and are shown to offer significant communication savings
compared to existing tree-based approaches. A thorough experimental evaluation
shows the benefits of the proposed techniques for a variety of query workloads
and network topologies.

1 Introduction

Recent advances in micro-electro-mechanical systems (MEMS) have enabled the inex-
pensive production and deployment of nodes with communication, computation, stor-
age and sensing capabilities. Sensor nodes can be deployed in large areas to monitor the
ambient environment, and they communicate their readings to one or more basestations
(referred to as gateways) in a wireless multihop manner.

A typical way of extracting information from a sensor network is to disseminate
declarative aggregate queries from a gateway node to sensor nodes, asking them to pe-
riodically monitor the environment, and return aggregate results in regular rounds. An
example of such long-running queries is “select avg(temperature) from Sensors where
loc in Region every 10 min”. Since nodes are battery-powered, energy preservation is a
major consideration in system design, as it directly impacts the lifetime of the network.
Recent studies have shown that radio communication is significantly more expensive
than computation or sensing in most existing sensor node platforms. Hence, the main
consideration in designing query processing algorithms is to minimize the communica-
tion overhead of forwarding query results from the sources to the gateway node. The
cost of disseminating query information into the network is assumed to have a sec-
ondary role for long-running queries, since query dissemination occurs once, whereas
result propagation occurs repeatedly at regular rounds. Moreover, many monitoring sce-
narios apply a pure push model, in which nodes are programmed to proactively send
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specific information to the gateway. The communication cost of result propagation thus
dominates the communication cost of query dissemination.

Tree-based routing has been proposed as an energy-efficient mechanism for pro-
cessing aggregate queries in sensor networks [6,8]. Tree construction is performed
using simple flooding algorithms [8], data-centric reinforcement strategies [6] or
energy-aware route selection schemes [13,16]. After a tree is constructed, sensor nodes
forward their readings along the paths of the tree, evaluating partial query results at
intermediate nodes. The aforementioned research focused on processing a single ag-
gregate query given a routing tree; the tree is generated using a tree selection scheme
and is thereafter used for result propagation. More recent research has focused on op-
timizing multiple aggregate queries given a routing tree [12]. Query commonalities are
taken into account to reduce the communication cost of result propagation, but without
making any attempt to select suitable tree routes [12].

Unlike previous approaches, this paper considers the more general problem of multi-
query optimization lifting the assumption of an existing aggregation tree. The objective
is to find efficient routes that minimize the communication cost of executing multiple
aggregate queries, by studying the interplay between the processing and routing aspects
of query evaluation. Unlike previous work, there is no limitation for the selected routes
to form a tree structure. The only requirement is that the optimizer must operate in a
distributed manner, and should scale gracefully with the network size. In summary, the
contributions of this paper are as follows:

– A demonstration of the interplay between the processing and routing aspects of
single- and multi-query optimization (Section 2).

– A formal definition of the multi-query optimization problem for aggregate queries
which lifts the assumption of a communication tree used in [6,8,12].

– Two novel heuristic algorithms, SegmentToGateway (STG) and SegmentToSeg-
ment (STS), for optimizing multiple aggregate queries (Section 4), by carefully
interweaving routing and processing decisions at each node. Existing query eval-
uation algorithms use tree routes constructed independent of the query workload.
Given a tree, they focus on in-network partial processing of one query [8,6] or mul-
tiple queries [12]. STG and STS are the first algorithms that select suitable routes
for a workload of multiple queries, and carefully interweave routing and processing
in the optimization process.

– Experimental results that compare the performance of the proposed algorithms with
the most efficient existing algorithm for multi-query optimization [12] (Section 5).
The benefits of STG and STS are demonstrated under a variety of query workloads
and network topologies, both in terms of network-wide communication cost and in
terms of local communication cost in the critical area around the gateway.

2 Illustrative Examples

The potential advantages of carefully selecting a routing and processing plan for exe-
cuting aggregate queries are shown in the following examples. Figure 1 shows an ex-
ample of processing a single aggregate query, which asks for the sum of all readings in
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Fig. 1. Example with one query

1 31(q1)

6

9

2

5

1(q1,q2)

4

87
1(q1,q2)

2(q1)
1(q2)

2(q1)
1(q2) 2(q2)

1(q1)1(q2)

3(q2)
1(q1)

5(q2)

q1

q2

1
2(q2)

3
4(q2)

6

9

2

5

1(q1,q2)

4

87
2(q1,q2)

3(q1)
2(q2)

3(q1)
2(q2) 1(q2)1(q2)

q1

q2

1

7

2(q2)
3

6(q2)

6

9

2

5

1(q1,q2)

4

8
2(q1)

3(q1)

3(q1)
1(q2)3(q2)

q1

q2

2(q2)

Fig. 2. Example with two queries: (i) the left plan is based on a randomly selected tree, (ii) the
middle plan is the output of STG, and (iii) the right plan is the output of STS

the dotted rectangular area. Notice that a total number of 15 messages are sent along
the left minimum-hop tree of Figure 1, whereas only 6 messages are forwarded along
the carefully selected right tree of the same figure. The right routing tree is better not
only in terms of total communication cost, but also in terms of communication cost in
the critical area around the gateway. Informally, the benefit of the second plan is that
it aggregates all readings of a query early and avoids sending different subaggregates
through disjoint paths.

Figure 2 illustrates the benefits of building a suitable execution plan in the case of
processing multiple count queries. For ease of understanding the graphs also include
node IDs and messages forwarded through network links. Messages have the format
v(q1, . . . , qn), which denotes that value v contributes to queries q1, . . . , qn. The left
plan does not exploit query commonalities, and therefore fails to aggregate together
readings (of nodes 8 and 9) within the intersection area. The middle plan incurs smaller
communication cost, because it exploits query commonalities, but still forwards the
subaggregate of the intersection area separately all the way to the gateway. This be-
havior is similar to the first heuristic proposed in this paper called SegmentToGateway
(STG). The right plan has an optimal behavior because it exploits query commonali-
ties and it avoids sending partial aggregates through long disjoint paths. Notice that the
optimal plan does not follow a tree structure, as node 8 sends the partial aggregate of
the intersection area to two parents. The intersection partial aggregate is thus merged
immediately with the other two query subaggregates and, eventually, only two partial
results are sent to the gateway. This would be the plan identified by the second proposed
algorithm, called SegmentToSegment (STS). Although the examples above use a grid
topology, both STG and STS are designed to work well for random topologies with
potential empty areas (or holes).
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3 Problem Definition

Sensors and queries: Consider a set of sensor nodes S = {s1, . . . , sn} with known
location coordinates. Two nodes capable of bi-directional wireless communication are
referred to as neighbors. Every node knows its location, as well as the identifiers and
locations of its neighbors. We consider a commonly used subclass of aggregate queries,
which we refer to as spatial range queries (SRQs). SRQs evaluate the aggregate aggr
of all sensors in a rectangular area, where aggr is a distributive or algebraic aggregate
function (e.g. sum, count, avg, max, min but not median) [8,4]. A query is denoted by
a tuple (aggr, x0, y0, xdim, ydim), where x0 and y0 are bottom left coordinates of the
rectangular area and xdim and ydim are the area’s x and y dimensions respectively. Let
Q = [q1, . . . , qm] be the vector of SRQ queries gathered for execution at the gateway
G ∈ S. Queries that evaluate the same aggregate function over different regions are
grouped together for periodic evaluation for a large number of rounds. Each node knows
the identifiers (qi) and descriptions of queries that cover itself and its neighbors.

Computation: Nodes can process values with negligible cost. A node is aware of its
own sensor value, as well as the partially processed values received from its neighbors.
We refer to these values as input values. A node processes the input values taking into
account how they contribute to the query results, and converts them into output values.
The contribution of a value (either input or output) to the query results is referred to as
semantics. In this paper, the propagation of data across an edge will be represented as
a directed edge, labeled with the pair (value,semantics). For uniformity, the generation
of a reading locally at a node is also represented as a directed edge (pointing to the
node, but with a dangling starting point). Such dangling edges are referred to as initial
directed edges and will be drawn in bold.

Computation and communication: Nodes receive input values from their neighbors
and the local sensors, and generate output values at a negligible cost. One-hop data
propagation is represented as a directed edge, labeled with the pair (value, semantics),
where the semantics denotes how the value contributes to each one of the queries. For
uniformity, the generation of a reading locally at a node is also represented as a directed
edge with a dangling starting point. Such edges are called initial directed edges.

Let ui be the sensor reading generated locally at a node si. The semantics of ui

consists of the set of queries that access the particular node, and is represented as a bit
vector of size m (equal to the number of queries). The j-th entry of the vector is 1 if
query qj accesses node si, and is 0 otherwise. Vectors that determine the contribution
of a value to the queries are referred to as coefficient vectors (CVs). For example, in
Figure 3, the initial directed edge of node s2, which holds information about the locally
generated reading, is labeled (1, [110]) to denote that the local sensor value 1 contributes
to the queries q1 and q2, and does not contribute to the value of q3. The result of a query
qj must be equal to the aggregate of all values of initial directed edges factored by their
j-th coefficients, i.e. Result(qj) = aggrn

i=1(ui ∗ CVui [j]), where n is the number of
sensor nodes.

As the initial (value,CV) pairs are pushed towards the gateway, they can be partially
processed at intermediate nodes. Let InAnnot = [(v1, CVv1 ), . . . , (vk, CVvk

)] be the
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Fig. 3. NoOptimization: Node 2 linearly reduces the three input (value,CV) pairs into two output
pairs

labels of the input edges and OutAnnot = [(v′1, CVv′
1
), . . . , (v′�, CVv′

�
)] be the labels

of the output edges of a sensor node. In any query plan, there should be no loss of infor-
mation as data is routed through a node, i.e. the result of a query when evaluated based
on the input edges must be equal to its result based on the output edges. Formally, each
node must satisfy the content preservation property, i.e. for every query j = 1, . . . , m,
aggrk

i=1(vi ∗ CVvi [j]) = aggr�
i=1(v

′
i ∗ CVv′

i
[j]). This property is satisfied in Figure 3.

In a candidate plan, (i) each output (value,CV) pair of a node is computable as some
function of the input pairs; and (ii) it should be possible to evaluate all query results
based on the gateway’s input pairs. The assumption in this paper is that a constant
number of bits is dedicated to storing the semantics (CV - Coefficient Vector) of a value.
For scalability, a node can use CVs of variable length to mark only queries affected by
the values forwarded through the node. For simplicity, however, we consider a fixed
CV length (equal to the number of queries m) for all nodes, and defer the study of
compressing CVs to future work.

As queries are evaluated periodically over multiple rounds, the propagated values can
potentially change at every round. Depending on whether we also allow the semantics of
these values to change, we distinguish two different models of value propagation: static
and dynamic. In the static model, the semantics remains unchanged at each edge, and
it is propagated through the directed edge only once, as opposed to the corresponding
value, which is propagated at every round. In the dynamic model, values must always be
annotated with their semantics, to reflect changes due to network dynamics or variable
sensor updates.

The assumption in this paper is a dynamic model in which a constant number of bits
is dedicated to storing the semantics (CV - Coefficient Vector) of a value.

Content Preservation Principle: Let InAnnot = [(v1, CVv1), . . . , (vk, CVvk
)] be the

labels of the input edges and OutAnnot = [(v′1, CVv′
1
), . . . , (v′�, CVv′

�
)] be the labels of

the output edges of a sensor node. In any query execution plan, there should be no loss
of information as data is routed through a node. Informally, the result of a query when
evaluated based on the input edges must be equal to its result based on the output edges.
Formally, ∀j = 1, . . . , m, aggrk

i=1(vi ∗ CVvi [j]) = aggr�
i=1(v

′
i ∗ CVv′

i
[j]). We call

aggrk
i=1(vi ∗ CVvi [j]) the projection of query qj onto [(v1, CVv1), . . . , (vk, CVvk

)].
The projection of a query onto the input edges of a node must be equal to its projection
onto the output edges. This property is satisfied in the network of Figure 3.
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Theorem 1. If every node in the graph satisfies the content preservation property except
for the gateway, then the values of all queries in the workload are given by the anno-
tated input edges of the gateway node. More specifically, if the gateway has k input
edges labeled with the pairs (v1, CVv1), . . . , (vk, CVvk

), then the value of a query qj is
Result(qj) = aggrk

i=1(vi ∗ CVvi [j]). The proof is omitted for space reasons.

Optimization goal: Start with a graph that consists of all sensor nodes and one directed
dangling edge per node, carrying its source value. Minimize the number of directed
edges that we need to add in the graph (excluding the initial dangling edges) such that
the content preservation property is satisfied at each node.

4 Algorithms

We now study the existing approach for processing aggregate queries, and propose two
novel energy-efficient algorithms to improve its performance. All three algorithms con-
sist of two phases: (i) a network configuration phase and (ii) a result propagation phase.
The former phase is repeated every time the node connectivity graph changes, e.g. in
case of link or node failures. The proposed heuristics are query-sensitive, and thus they
also repeat the configuration phase every time the query workload changes. The role of
the former phase is to set up routes to prepare the ground for the second phase, i.e. the
forwarding of results to the gateway in regular rounds. The initial state of the graph in a
given round is common for all algorithms: a node has an incoming edge annotated with
an input pair (value,CV), as discussed in Section 3. The entries of the input CV denote
which queries access that node.

4.1 The NoOptimization Algorithm

The existing state-of-the-art in optimizing multiple aggregate queries is the ECReduced
algorithm proposed in [12]. It outperforms Tag [8] and Cougar [15] in the context of
multiple queries, since these approaches were originally designed to process a single
query, as shown in [12]. ECReduced is therefore a good basis for comparing the two
proposed algorithms. In this paper, it is hereafter referred to as NoOptimization, to de-
note that it does not jointly optimize routing and processing taking into account the
query workload. NoOptimization uses a predefined tree, and only optimizes the pro-
cessing aspect of query execution.

Network Configuration Phase: Control messages are first flooded into the network,
and every node selects as its parent the neighbor in the shortest path to the gateway
node. If there are more than one candidate parents, the node selects its parent in one
of the following ways: (i) randomly, (ii) the first node from which it received a query
request, (iii) the node with which it consistently maintains better communication. In the
experimental evaluation of Section 5, NoOptimization is implemented as in [12], i.e.
breaking ties by random parent selection. Dynamic node or link failures are handled by
a local flooding phase to repair affected tree routes, as in AODV [2].

Result Propagation Phase: The routes of query results are predefined in the network
configuration phase, and the only decision that a node needs to make in this phase is how
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to convert its input (value,CV) pairs into output pairs. All output pairs, irrespective of
their content, are forwarded to the node’s parent. A naive application of the in-network
aggregation technique to processing multiple queries would be to forward one partial
aggregate value per query, and denote the query identifier in the coefficient vector. The
NoOptimization algorithm uses a more elaborate technique to reduce the number of
propagated (value,CV) pairs. In the case of algebraic aggregate functions, like sum,
count or avg, a node running NoOptimization computes a basis of its input coefficient
vectors and sends to its parent the basis vectors (and corresponding values) [12]. An
example of the effect of linear reduction is shown in Figure 3, where node 2 receives
three input (value,CV) pairs and reduces them to two output pairs. The linear reduction
technique yields the optimal solution for these aggregates in terms of communication
cost. The NoOptimization algorithm, which is used as a basis for comparison, is to our
knowledge the most sophisticated existing approach to processing multiple algebraic
aggregate queries.

In the simplest approach, every node sends a partial aggregate of each query for
which it has data to its parent. If an input CV refers to q queries, it is split to q different
CVs referring to one query each. Input CVs with one query are mapped to identical
output CVs. Duplicate output CVs are eliminated, and the corresponding values are
partially aggregated. The output (value,CV) pairs are sent to the parent node selected
during the network configuration phase. This is a naive extension of the TAG approach
for processing multiple queries.

4.2 The SegmentToGateway (STG) Algorithm

The first proposed heuristic algorithm exploits the fact that the intersecting query rect-
angles naturally divide the network into smaller segments. A segment S is a maximal set
of nodes, s.t. ∀si ∈ S, sj ∈ S, si and sj are covered by the same set of queries and they
are internally connected, i.e. there exists path from si to sj consisting only of nodes in
S. For example, the queries in Figure 5 form five segments {s1, s4}, {s2}, {s3, s5, s6},
{s7} and {s8, s9}. A segment S (or a node n in S) is represented by a bit vector that
denotes which queries cover the nodes of S (e.g., SGVector({s3, s5, s6})=[010]). STG
performs aggregation of local sensor data by building a tree per segment, instead of
building a tree per query, or a tree for all queries. The segment tree is rooted at the
SGLeader, i.e. the node with the smallest hop count to the gateway. We refer to: (i)
the number of hops from the SGLeader to the gateway as the SGDistance and (ii) the
number of hops from a node to its SGLeader as the distToSGLeader. For instance,
SGDistance(s6)=2 and distToSGLeader(s6)=1.

Network Configuration Phase: This is similar to the corresponding phase of the
NoOptimization algorithm, except that in this case each node identifies not only a par-
ent neighbor but also a SGParent (i.e., a neighbor on a path to the SGLeader). Upon
receiving a beacon message, a node updates the local list of neighbors and, if neces-
sary, the hopCount value (as in NoOptimization). The next step depends on whether the
beacon is sent from a node in the same or in a different segment. In the former case,
the node compares the local knowledge about the SGLeader with that in the beacon.
If the beacon knows of a SGLeader closer to the gateway (with smaller SGDistance),
the local SGDistance value is updated and the sender node is selected to be the local
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SGParent. In the latter case where a node receives a beacon from a node in a differ-
ent segment, it realizes that it is on the border of the segment and thus it is eligible to
become a SGLeader. It elects itself to be a SGLeader if its hopCount is smaller than
the local SGDistance. The beacon message is updated accordingly and is rebroadcasted
(Figure 4).

The cost of the network configuration phase of STG is similar to that of NoOptimiza-
tion (or of TAG) (see Section 5). In addition, the insertion (or deletion) of queries has a
local effect on segment formation, and does not require global network reconfiguration.
Dynamic network failures are handled by adjusting the local repair mechanism used by
NoOptimization to also update the segment-related state variables of nodes.

Result Propagation Phase: By the end of the network configuration phase, every node
knows its parent and SGParent. In the result propagation phase, a node merges dupli-
cate input CVs into the same output CV, aggregating values accordingly. An output
(value,CV) pair is sent to the SGParent if and only if the CV is equal to the current
node’s SGVector. The remaining output (value,CV) pairs are forwarded to the parent
node (after they have been linearly reduced in the case of algebraic aggregates). The
gateway’s neighbors send all their messages without exception directly to the gateway.
Code for this phase is provided in the send command of Figure 4.

Discussion: STG identifies query commonalities (segments) and aggregates the val-
ues of all nodes within each segment separately following a mini-tree rooted at the
SGLeader. The remaining values (whose CVs are not equal to the SGVector) are for-
warded through the parent node (instead of the SGParent) and reach the gateway
through the shortest path. By definition, STG performs better than NoOptimization.

4.3 The SegmentToSegment (STS) Algorithm

Although STG performs well in terms of merging readings of the same segment, it often
fails to merge sub-aggregates of the same query that come from different segments. In
the worst case, these sub-aggregates are propagated from the SGLeader nodes to the
gateway through long disjoint paths. STS addresses the weakness of STG by sending
messages towards neighbors that are likely to reduce them. STS manages to combine
segment-based aggregation (introduced in STG), with merging of CVs from different
segments, into a uniform mechanism.

Network Configuration Phase: The configuration phase of STS is similar to the corre-
sponding phase of STG except that each node selects as a segment parent a node on the
shortest (instead of on any) path to the SGLeader (Figure 4). In the flooding process, a
node selects as its SGParent the node in the shortest path to the SGLeader, and stores
the minimum distance to the SGLeader in the local variable distToSGLeader.

Result Propagation Phase: Initially, each node converts input to output (value,CV)
pairs exactly as in NoOptimization and STG. In the latter algorithms, this processing
step is followed by a well-defined routing step, namely NoOptimization forwards all
output pairs to the parent node, whereas STG forwards them to either the SGParent
or the parent node. It then interleaves two novel steps: 1) neighbor-message matching,
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event TOS MsgPtr RcvBeacon.rcv(TOSMsgPtr m)
{
bool mustRebroadcastBeacon = FALSE; else {// not equal vectors
BeaconMsg ∗ b = (BeaconMsg∗)m→ data; if ((SGDistance > hopCount)
addBeaconSenderToNeighbors(b); || (SGDistance == hopCount&&
if (b→ hopCount + 1 < hopCount) { b→ source == parent &&

mustRebroadcastBeacon = TRUE; b→ source! = SGParent&&
hopCount = b→ hopCount + 1; closer(myLoc, leaderLoc))){
parent = b→ source; mustRebroadcastBeacon = TRUE;

} SGParent = b→ source;
if (equalVectors(SG, b→ SG)) { SGDistance = hopCount;
if ((SGDistance > b→ SGDistance) distToSGLeader = 0;
|| (SGDistance == b→ SGDistance && leaderLoc = myLoc;
b→ distToSGLeader + 1 < distToSGLeader) }}}
|| (SGDistance == b→ SGDistance &&
strictlyCloser(b→ leaderLoc, leaderLoc)){

mustRebroadcastBeacon = TRUE;
SGParent = b→ source;
SGDistance = b→ SGDistance;
distToSGLeader = b→ distToSGLeader + 1;
leaderLoc = b→ leaderLoc;

}}

Fig. 4. NesC code for the network configuration phase of STG (excl. lines in bold) and STS (incl.
lines in bold)

which selects a suitable neighbor to forward each output pair, and 2) message splitting,
which often splits the output pair before forwarding it.

Step 1: Neighbor-message matching. The idea behind the first feature is to forward out-
put (value,CV) pairs towards nodes that are most likely to reduce them by merging them
with their local or route-thru data. The first (value,CV) pair considered for matching is
the one that contributes to most queries (with the greatest number of 1-bits in the CV).
The process of matching it with the best neighbor node is detailed below:

Step 1.1: To ensure that messages are not forwarded away from the gateway, only
neighbors closer to the gateway than the current node are considered, i.e. with lexi-
cographically smaller (hopCount,SGDistance,distToSGLeader,xCoord,yCoord).For in-
stance, node s3 considers sending messages to s2 (Figure 5). As an exception, a node
also considers neighbors in the same segment that are not closer to the gateway, if (i)
they are closer to their SGLeader and (ii) all queries that cover these nodes are also
included in the message CV. For instance, s3 also considers s6 to forward its initial
data (1, [010]) to, because distToSGLeader(s6)<distToSGLeader(s3) and the SGVec-
tor(s6) = [010] marks queries {q2} that are all marked in the message CV [010]. This
exception cannot result in sending messages in cycles or away from the gateway, be-
cause the message is merged immediately with the receiving node’s local data (input
pairs of s6 have equal CVs).

Step 1.2: Among neighbors selected in Step 1.1, consider only those that best match
the message CV, i.e. which are covered by the maximum number of common queries
with the message CV. If this number is 0 or the node is next to the gateway, send the
message to its parent. Node s3 has two candidate neighbors, s2 and s6, to send (1,[010])
(from Step 1.1). The SGVectors [011] and [010] of s2 and s6 both have one common
query with the message CV ([010]). Among neighbors with equal number of common
queries, select the one with the minimum number of queries (s6).
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Fig. 5. Value-semantic pairs in the evaluation plan of the sum queries q1, q2 and q3

Step 1.3: Among neighbors selected in Step 1.2, select the one with the lexicograph-
ically smaller (SGDistance,distToSGLeader,xCoord,yCoord). For instance, s8 has two
candidate neighbors s5 and s7 to send the output pair (2,[110]) to. Both have SGDis-
tance equal to 2 and distToSGLeader equal to 0 (both nodes are segment leaders), so s7
is selected because it has a smaller x coordinate.

Step 2: Message splitting. The rationale behind this step is that it is often beneficial to
divide data into its components in order to give it greater potential for later merging.
Most recent research efforts have focused on merging data to reduce their size. STS’s
novelty lies in offering further communication savings by means of data splitting. It is
often beneficial to divide data into its components in order to give it greater potential
for later merging. Let p be the pair considered for neighbor-message matching in the
previous step. The pair p is split into two pairs p1 and p2, based on the SGVector of the
selected neighbor. Assume that node s8 chooses s7 to forward p = (2, [110]) in Step 3.
Notice that the CV of p has more queries (q1 and q2) than the SGVector of the selected
neighbor (SGV ector(s7) = [100] denotes that s7 is covered only by q1). In this case,
p is split into two pairs, one contributing to the common queries p1 = (2, [100]), and
another contributing to the remaining queries p2 = (2, [010]). Pair p1 is sent to the
selected neighbor and p2 is re-inserted into the list of output pairs. During insertion,
pairs with equal CVs are merged. If the list of (value,CV) pairs is not empty, steps 1
and 2 are repeated.

Discussion: Although STS is tailored specifically for optimizing spatial aggregate
queries, two of its features - namely neighbor-message matching and message split-
ting - have broader applicability. For example, the idea of forwarding messages towards
nodes that are most likely to reduce them is applicable in the context of optimizing
GROUP-BY queries [10], where data is preferentially routed towards nodes that hold
data belonging to the same group. By means of careful message routing, merging and
splitting, STS ensures that all query subaggregates are merged together before they
leave the query area, thus offering significant benefits wrt STG and NoOptimization.

The benefits of STS are more pronounced in the critical area around the gateway and
increase with the number of nodes ensuring scalability (Section 5).

5 Experimental Evaluation

A thorough experimental evaluation was performed to compare the proposed heuristic
algorithms with the existing NoOptimization approach using a home-grown simulator.
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The experimental results below show the performance of the three algorithms varying:
(i) the number of queries, (ii) the number of nodes, (iii) the radio communication range,
and (iv) the number of holes (unpopulated areas in the network). The graphs below illus-
trate the communication benefits of STG and STS compared to NoOptimization. The
benefit of STG is (cost(NoOptimization) − cost(STG))/cost(NoOptimization)
and the benefit of STS is defined similarly. It remains to define how the cost of an algo-
rithm is calculated. In each graph two costs per algorithm are considered, the number of
messages sent and the number of messages received during result propagation, thus re-
sulting in four different measures of benefit (STG Send, STS Send, STG Receive
and STS Receive). Depending on which nodes are monitored, we provide three differ-
ent types of graphs, those based on counts of messages sent (or received) (i) by nodes at
most one hop away from the gateway (left), (ii) by nodes at most two hops away from
the gateway (middle) and (iii) by all nodes in the network (right). The figure position
and caption indicate whether global or local communication savings are considered.

The default simulation settings are as follows: We deploy 100 nodes uniformly at
random in a 300m×300m network area. The radio communication range is set to 60m.
The default query workload consists of five rectangular queries with randomly chosen
dimensions (x, y ∈ [30, 300]). In our experiments below we vary the values of one
parameter at a time, keeping the default values for the remaining parameters. Each point
in a plot is drawn by averaging 40 repetitions in which we vary the query workload and
network topologies within the scope of the experiment.

In the experiments below, the cost of the network configuration phase is very similar
for the three algorithms, with NoOptimization sending 4%-10% less messages than
STG and STS. This overhead is paid infrequently, and is counterbalanced by the benefits
offered by STG and STS during the frequent result propagation phase.
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Vary number of queries: The first experiment illustrates the effect of the number of
rectangular queries (sent together to the network for evaluation) on the communication
benefits of STG and STS compared to NoOptimization. Figures 6, 7 and 8 concern traf-
fic monitored within 1-hop, 2-hops, and max-hops (entire network) respectively. Notice
that the two proposed algorithms perform similarly in the context of the entire network
(Figure 8) obtaining a relative benefit of up to 20% compared to the NoOptimization
algorithm. However, STS outperforms STG if we take into account only the traffic near
the gateway (Figures 6 and 7). Notice in Figure 6 how STS saves up to 60% receive
messages compared to NoOptimization when the number of queries is 1, and the gap
between the benefits of STS and the benefits of STG increases as we increase the num-
ber of queries. The performance of STG for 10 queries falls considerably whereas STS
continues to have a 42% advantage (for receive messages) and a 20% advantage (for
send messages) over NoOptimization (Figure 6).

Vary number of nodes: Another experiment was done to measure the effect of the node
cardinality in the performance of the proposed heuristic algorithms. Figures 9, 10 and 11
clearly show that as the number of nodes increases, and the network density increases,
STG and STS demonstrate greater benefits compared to NoOptimization. Intuitively,
when the number of nodes is very small (less than 60) the number of disjoing paths
from a node to the gateway becomes small, leaving no flexibility for further reducing
the communication cost. As the number of nodes increases, NoOptimization routes data
through a large number of disjoint paths, whereas STG and STS manage to aggregate
results earlier by selecting suitable common paths.

Vary communication range: The next step is to monitor the role of the radio com-
munication range in the performance of the three algorithms (Figures 12, 13 and 14).
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The increase in network connectivity (without increasing the number of nodes) initially
increases the benefits of STS and STG compared to NoOptimization. Figure 12 shows
that, for a communication range of 100m to 120m, nodes within one hop from the
gateway receive up to 80% less messages with STS than with NoOptimization. STG
outperforms NoOptimization, but it is inferior to STS.

Vary number of network holes: We also measured the ability of STG and STS to
cope with network holes, i.e. areas completely void of sensors. Figures 15, 16 and 17
show that the number of holes (rectangles of dimension in the range [40, 80]) have a
minor effect in the benefits of STS and STG over the NoOptimization algorithm. In the
case of no holes, 48% less messages are received by the immediate 1-hop neighbors
of the gateway (from the 2-hop nodes) in STS compared to NoOptimization, and this
benefit decreases to 35% for 10 holes. The effect of holes is almost the same as the
effect of decrease of nodes from 100 to 80 in Figure 9. Holes do not cause the proposed
algorithms performance to deteriorate dramatically in unexpected ways.

6 Related Work

There has also been a plethora of work on energy-aware routing [3,13,16] but with-
out considering the interplay of routing and query processing. The TinyDB [8,9] and
Cougar [14,15] projects investigate tree-based routing and scheduling techniques for
processing aggregate queries like avg, count, sum, min and max in sensor networks.
The concept of semantic routing trees (SRTs) [9] is used to forward queries only to
children that satisfy the query predicate. Zhao et al. [17] compute aggregate summaries
over a reliable tree, utilizing a tree construction scheme based on high-quality links,
similar to the one used in this work. More sophisticated aggregates are supported in [5],
and the benefits of in-network aggregation are discussed in [1]. Directed diffusion [6]
is a data-centric protocol that deals with continuous aggregate queries; the network is
flooded with an interest for named data and the sources that contain the relevant data
respond with the appropriate stream. Madden et al. consider the problem of managing
multiple queries in [7], but without focusing on the routing aspect; they propose query
plan data structures (Fjords) that handle both push-based and pull-based extraction of
sensor data. Trigoni et al. [11,12] propose energy-efficient plans for optimizing multi-
ple algebraic aggregate queries in a sensor network. The aforementioned efforts rely on
tree-based aggregation and do not exploit the knowledge of the query workload to set
up efficient routes for result propagation. The study of decentralized operator placement
by Bonfils et al. is closer to our work since the idea is to place operators carefully in
the network to minimize the communication cost. Their work considers optimizing a
single query, and is more relevant to holistic aggregates, such as correlation or median,
and materialized aggregates, such as storage points. Sharaf et al. propose a query-aware
tree selection scheme, but for processing a different class of (GROUP-BY) queries [10].
We extend previous work on data aggregation in that we depart from the model of tree-
based routing, and consider the interaction of processing and routing in reducing the
volume of propagated data.
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7 Conclusions and Future Work

This paper shows the interplay of routing and processing in evaluating aggregate
queries in sensor networks, and proposes two novel algorithms that significantly out-
perform the existing approach. STG exploits the new concept of segment-based ag-
gregation, and offers up to 60% energy savings compared to NoOptimization. STS,
which avoids sending query sub-aggregates through disjoint paths, offers even higher
savings (up to 80%). It consistently behaves better than STG, especially in the pres-
ence of many queries. The greatest savings of STG and STS are observed in the critical
area around the gateway, which means that these savings directly reflect an increase in
the network lifetime. In the future, we plan to study the effect of local route repairs
on the cost of STS, as well as extensions of the algorithm to handle approximate ag-
gregates. Another exciting direction is to explore multi-query optimization techniques
for non-summary aggregates (e.g. median) and for queries without well-defined spatial
coverage.
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Abstract. Real-time and energy efficient Actor-Actor Coordination (AAC) is
an important problem in Wireless Sensor and Actor Networks (WSANs). Ac-
tor nodes need to communicate with each other to perform joint actions on the
environment. Unlike sensor nodes, actor nodes are resource-rich and their energy
can be renewed. In WSANs, only a few number of actors will be deployed due
to their cost and there is no guarantee that they form a connected network as
the actor nodes frequently move. We address the problem of efficiently bridg-
ing the partitions in an actor network using resource-constrained sensor nodes.
We propose a hybrid communication architecture in which actor nodes use dual-
channel and directional antenna. We show by theoretical analysis and simula-
tion results that exploiting resource-richness of actors and the use of directional
antenna help enabling real-time actor-actor communication with minimum over-
head in the energy-constrained sensor nodes. The results show that the use of nar-
row beam-width directional antenna at actor nodes reduces latency in AAC with
minimum wastage of energy in sensor nodes for bridging the actor partitions.

1 Introduction

Developments in embedded systems coupled with wireless capabilities, enable newer
class of ad hoc networking, known as Wireless Sensor Networks (WSNs). A sensor
node consists of three subsystems, viz. sensing, computing, and communication. Such
nodes are usually powered by a battery source and deployed in a large scale in a ter-
rain under monitoring. Thus, the nodes form themselves, an ad hoc network, collect
and forward environmental data towards a central sink. Typical applications of WSNs
include habitat monitoring, battlefield surveillance, vehicle tracking, and health moni-
toring [1] [2].

In Wireless Sensor and Actor Networks (WSANs), a special class of nodes called
Actors are deployed in addition to sensor nodes. These nodes are capable of acting
on the environment. For example, an actor node may be capable of putting off fire by
spraying water, activate heating elements if the observed temperature is below some
threshold, etc. In addition, actor nodes may be mobile as in the case of robots or trucks.
In WSANs, such actor nodes are also wireless enabled, so that they can either receive
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necessary commands from a central sink (semi-automated control) or they can directly
receive events from sensor nodes and decide to take appropriate action(s) on the envi-
ronment (fully-automated control) [3].

Sensor-to-Actor Coordination (SAC) and Actor-to-Actor Coordination (AAC) are
two important issues in WSANs [4]. While the SAC deals with the issues of dissemi-
nating the events from sensor nodes to one or more number of actor nodes in an energy
efficient and timely manner, the latter plays an important role when joint actions are
required to bring the environment under control. Thus, AAC demands for real-time
communication with high reliability. Moreover, as the number of deployed actor nodes
is usually small and due to their frequent movement for performing actions, the topol-
ogy of actor nodes becomes highly dynamic and results in partitions.

In this work, we propose a heterogeneous communication architecture and address
the problem of healing the partitions in the actor network with the help of resource con-
strained sensor nodes. We also propose routing protocols that exploit resource-richness
of actors in achieving real-time communications and in turn, maximize the sensor net-
work lifetime. We carried out simulation studies and theoretical analysis to evaluate the
performance of our scheme, both with and without using directional antenna at actor
nodes.

The rest of the paper is organized as follows: In Section 2, we briefly outline the
related work. Section 3, describes the problem in detail with our proposed hybrid ar-
chitecture. In Section 4, we justify the need for directional antenna at sink nodes and
an algorithm for actor discovery is explained. In Section 5, the performance gain of us-
ing directional antenna is analyzed and numerically evaluated for ideal settings. This is
followed by Section 6, in which extensive simulation results are discussed. Finally, we
conclude with summary of our contributions in Section 7 along with scope for future
work.

2 Related Work

“Anycast” [5] considers the problem of multi-mobile sinks. The sensor nodes construct
anycast trees in which the leaf nodes are the sinks. The sensor nodes route their data
to any one of their leaf nodes. As the sink nodes are connected by out-band channel,
the sink node which received the data packet from a sensor node, forwards the packet
to the intended sink node in fewer hops, thereby reducing the latency. However, such
an assumption of sink connectivity at all times, does not hold true always and hence
we address the problem of bridging the actor partitions through resource-constrained
sensor nodes. “Siphon” [6] considers the case of diverting the traffic generated by sensor
nodes to the Physical Sink via a set of Virtual Sinks (static deployment) in case of
congestion notification. Virtual Sinks are assumed to be resource-rich and have dual
radio, viz. short-range (in-band, typically Mote radio) and far-range (out-band, typically
IEEE 802.11). In case of network partition in the Virtual Sink backbone network, it
is suggested that the intermediate sensors are used to bridge the gap. In bridging the
network partition, the virtual sinks use their short-range radio, thus leading to increased
end-to-end latency.
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The use of directional antenna at sink node is proposed in [7] and [8] in order to
extend the lifetime of the sensor nodes in relay zone. The key idea lies in effective
scheduling of sensor nodes in relay zone such that nodes wake-up only during the pe-
riod when sink node’s directional beam focuses on them. However, these works do not
address the problem of multiple sinks and network partitioning.

In our earlier work, We formulated the problem of optimal assignment of actor nodes
in WSANs [9] as an optimization problem such that the energy required for the mobility
of actors is minimized while maximizing the number of events visited. We proposed a
suitable architecture and also distributed heuristics to obtain near optimal scheduling
of actors. We have also studied different strategies of optimally placing the actors at
the end of their scheduled events. However, this architecture relies on the presence of
static agents at every zone in order to have undisturbed connectivity among them to take
collaborative decisions.

In this work, we propose a heterogeneous architecture such that actors themselves
act as sink nodes and they can collaboratively take decisions. In particular, we address
the problem of healing the partitions in the actor network with the help of resource
constrained sensor nodes.

3 Our Work

We address the problem of efficiently bridging the actor network partitions using
resource-constrained intermediate sensor nodes. As explained in the following sections,
the routing layer in our architecture, attempts to exploit the resource-richness of actors
in order to minimize end-to-end latency in AAC while minimizing interference with
sensor traffic using directional antenna at actor nodes.

3.1 System Model

We consider the model of WSAN in which N number of sensor nodes and M number of
actors are placed randomly in a field which is to be monitored. The placement of nodes
are such that sensor nodes are densely placed to meet the coverage requirements and
they are static. But, the actor nodes are quite a few in number (M � N) and they are
mobile. While sensor nodes have single radio and use a single channel (as in motes),
actor nodes are provided with dual radio and use two different channels (viz. Sensor
Channel and Actor Channel).

Actors use the Actor Channel on a radio interface in order to have communications
among neighbor actors thus forming a network of actors. They use Sensor Channel
on a different radio interface, in order to have communication with their neighboring
sensor nodes. Since the actor nodes are provided with dual interfaces, simultaneous
communication, viz. actor-actor and actor-sensor communication is possible. In addi-
tion, actor nodes are equipped with directional antenna of n sectors. The need for and
the use of such antennas are discussed in next section. Let the variables Rs, Rao, and
Rad denote the transmission ranges of sensor node, actor node operating on omnidirec-
tional antenna, and actor node operating on directional antenna, respectively. Then, the
following relation holds among them: Rs � Rao ≤ Rad [10].
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3.2 Problem Description

Though the sensor nodes are static, the topology tends to be quasi static due to channel
abnormalities and node deaths. But, the topology of actors in WSANs is highly dynamic
due to frequent mobility of actor nodes to the places of events. Due to this and the fact
that only a few number of actors are deployed in a given terrain of larger dimension, the
connectivity among actors is not guaranteed most of the time. This results in partitions
in the network of actors such that an actor from a partition can not directly communicate
to another actor in a different partition using actor channel. For example, as shown in
Figure 1, the actor node A4 is isolated from all other actors, while the remaining actors
form a connected network. Under these circumstances, it may be necessary for A4 to
exchange some vital information with one or more actors in the other partition. We
address the problem of providing communication between partitions of actors through
a set of intermediate sensor nodes.

The actor nodes flood their interest immediately after deployment or whenever they
require, thus help forming routing paths originated from all the sensor nodes and des-
tined to these sink nodes. It is to be noted that such interest propagation is initiated on
the sensor channel with the transmission range adjusted such that Rao is same as Rs.
The actor channel is used only for data communication among actors. The topology is
maintained by every actor by knowing at least one actor in its communication range.

An actor may get isolated from the rest of the actors due to mobility. In such a case,
it makes an attempt to reach another actor through a set of intermediate sensor nodes.
In doing so, it may flood a query on its sensor channel to find a sensor node which has
a route to an actor whose node ID is different from that of this isolated actor. This is
because, sensors near this isolated actor will have route towards this actor, but such an
information will result in looping. Thus, only the sensor nodes which have route to an
actor other than the one from where the query is originated, will reply back to this actor.

Three important cases wherein actors remain unconnected by their actor channels
are depicted in Figures 2(a) to 2(c). If the actor positions are such that the distance
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between them is exactly equal to 2 × Ra (Fig. 2(a)), then the actors can reach the
farthest sensor node using sensor channel and push their data. From there onwards, the
data need to be transported to the destination on multi-hop. An important issue here is
that the farthest sensor node can receive packets from the actor node using single hop,
but it can not give link level acknowledgment using single hop due to its short-range
communication (Rs).

As the Ra (Rao or Rad) is typically 10 times greater than that of sensor node’s
transmission range, the end-to-end latency between actors is reduced by a factor of
approximately 0.5. As actor-actor communication typically demands for real-time data
transfers, exploiting actor resources would give better performance advantage.

An equally important cases of actor separation are Overlapping (Fig. 2(b)) and Sep-
arated (Fig. 2(c)). In case of Overlapping, the actors are positioned such that their dis-
tance between them is greater than Ra, but less than 2 × Ra. In this case, by reaching
the farthest sensor node on single hop, end-to-end latency can be further minimized.
If the actor positions are such that the distance between them is greater than 2 × Ra,
then it leads to the Non-overlapping case. As can be seen from Figure 2(c), more the
separation (ds), then higher will be the end-to-end latency due to the involvement of
several number of sensor nodes bridging the gap.

3.3 Challenges

The following are the important factors to be considered in designing efficient transport
protocol between actors through a bridge of sensor nodes:

1. Heterogeneity of nodes: Actor nodes are resource-rich with respect to energy (re-
newable), communication and computation. Sensor nodes are limited by their avail-
able energy (non-renewable), shorter communication range, computation and mem-
ory capacity.

2. Asymmetrical link: While an actor can reach a sensor node with its maximum trans-
mission range, the receiving sensor node can not acknowledge the actor directly,
due to the differences between communication ranges (Rad ≥ Rao � Rs). This
necessitates careful design of MAC layer.

3. Collisions due to long-range communication: While the objective of exploiting ac-
tor’s long-range communication is to minimize end-to-end latency in actor-actor
communications, this happens at the cost of increased collisions at intermediate
sensors. Hence, careful scheduling of sensor transmissions is required to keep the
collisions minimum and thus saving scarce energy.

4 Need for Directional Antenna at Sink

As discussed earlier, the proposed WSAN architecture has heterogeneous nodes, viz.
Actors and Sensors. The transmission range of actor nodes (Ra) is typically 10 times
greater than that of sensor nodes. Thus, when an isolated actor needs to establish con-
nection to another actor via a set of sensor nodes, it has the following two options:



Exploiting Resource-Rich Actors for Bridging Network Partitions 421

1. It can establish a routing channel to another actor using intermediate sensors. While
doing so, it can set its transmission range same as that of sensor node (Rs) and use
sensor channel.

2. It can reach a sensor node having route to the destination actor, using its maximum
transmit range (Ra) and from that sensor node onwards a multi-hop route towards
the destination actor can be established.

The first option has a potential demerit of increased end-to-end latency between ac-
tor communications. This option would also decrease the network lifetime, as many
intermediate sensor nodes are involved in carrying the actor traffic. The second option
aims to exploit the actor node’s powerful communication capability, thereby drastically
minimizing the end-to-end latency. But, it has a potential demerit of collisions with all
ongoing sensor communications in a circular area of radius Ra. This would happen only
for a brief period during which transmission of control packet is taking place. Once the
actor node knows a specific sensor node through which the destination actor has to be
reached, then the actor traffic can be scheduled in such a way that the sensor nodes
within Ra defer their transmissions, thereby saving their energy. As a consequence,
end-to-end latency in sensor traffic will get badly affected.

In order to minimize number of collisions during actor route repair process and also
to minimize the latency of sensor traffic, we propose to use directional antennas at actor
nodes. Thus, whenever a Route Repair is initiated at an actor node, it would only affect
ongoing transmissions within a sector rather than the entire circular area. Similarly, the
use of directional antenna would only affect end-to-end latency of sensor traffic within
a sector through which actor traffic is carried out.

Algorithm 1. Actor Discovery Algorithm

1: Choose a sector arbitrarily
2: Transmit RREQ packet at max. transmit power on Sensor Channel
3: Wait for Tresp interval to receive RREP messages, if any
4: if Timeout then
5: choose the next sector in Clockwise Direction
6: end if
7: Repeat from step 2 till all sectors are explored
8: if valid RREP messages are received then
9: if |RREP| > 1 then

10: Choose the node with highest hop count
11: else

Choose the node from where RREP arrived
12: end if
13: end if

4.1 Actor Discovery Process

As discussed in the previous sections, limited number of actor nodes in a terrain of
larger dimension would result in partitioning of actor network. Thus, an isolated ac-
tor would need to communicate with a neighboring actor for performing joint actions.
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When, an actor itself finds that it is isolated from the rest of the actor network, it can
initiate a Actor Discovery process as outlined in Algorithm 1. As shown in Figures 2(b)-
2(c), and in the Algorithm 1, the isolated actor broadcasts Route Request (RREQ) packet
with its maximum transmit power, so that all the sensor nodes up to distance Rad would
listen to this control packet. If any sensor node has a route towards another actor, then it
will send a Route Reply (RREP) message back to this actor. As the transmission range
of a sensor is limited, such RREP messages would reach in a multi-hop fashion. In order
to account for this multi-hop delay, the isolated actor should wait for Tresp duration to
receive one or more RREP messages. This value will be typically set to slightly more
than 10 times that of a packet transmission time, owing to the differences in communi-
cation ranges between actor and sensor nodes. If the isolated actor which initiated route
repair process, is in receipt of one or more RREP messages, then it chooses a node to be
its routing neighbor, whose RREP packet took higher number of hops. Ties are broken
arbitrarily.

If no RREP messages arrive within Tresp interval, then it implies that none of the
sensor nodes have route to any actor in the network. Then, the actor switches its direc-
tional antenna to the next sector and broadcasts the RREQ message. The actor scans
through all the sectors after every Tresp, in case of no RREP messages received and
finally gives up. Then, the application layer protocol can decide to move the actor node
to a different place and try to find a closest actor for connectivity. It is assumed that the
actors periodically beacon their presence and thus sensor nodes construct anycast tree
with leaf nodes as actors.

5 Theoretical Analysis

Let Nomni and Nθ denote number of ongoing transmissions by sensor nodes within the
communication range of actor when it uses omni-directional antenna and directional
antenna, respectively. Then, the following equation governs the number of collisions as
a function of directional angle, θ.

Nθ ≤ θ

360
× Nomni (1)

If the actor node initiates transmission of RREQ packet using its maximum transmission
power, then all these ongoing transmissions will get collided. Thus, the sensor nodes
need to retransmit the packets that did not reach destinations due to the occurrence of
this collision. This extra retransmission would waste the scarce energy of node and also
increases the latency in sensor traffic. Thus, a saving of collisions proportional to the
ratio, Nomni

Nθ
is possible when directional antennas are used at actor nodes. Also, the

choice of directional angle, θ has direct impact on energy conservation by reducing the
packet collisions. The numerical results in Figure 3 show the effect of θ on number of
collisions.

Next, we see the gain in end-to-end latency between actors if long-range communi-
cation is preferred as shown in Figures 2(a) to 2(c). The one-way and end-to-end delay
between separated actors can be given as



Exploiting Resource-Rich Actors for Bridging Network Partitions 423

 0

 50

 100

 150

 200

 250

 300

 50  100  150  200  250  300

N
um

be
r 

of
 C

ol
lis

si
on

s

Number of Transmissions

θ=30
θ=45
θ=60
θ=90

Omni (θ=360)

Fig. 3. Effect of angle, θ on collisions in
sensor traffic

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  10  20  30  40  50  60  70  80

E
nd

-t
o-

E
nd

 D
el

ay
 (

H
op

s)

Distance of Separation (ds)

Rs=15m, Rad = 320m
Rs=20m, Rad = 320m

Rs=15m, Rad = Rs
Rs=20m, Rad = Rs

Fig. 4. End-to-End delay Vs ds

Delayoneway = 1 +
ds

Rs
+

Rad

Rs
(2)

End − to − End Latency = 2 × Delayoneway (3)

The value of 1 in the first term of equation 2 implies that communication between
actor and farthest sensor is just one hop and ds in second term denotes the distance of
separation as depicted in Figure 2(c). The third term gives the number of hops a packet
has to travel via sensor nodes to the destination actor. The effect of ds on end-to-end
delay is shown in Figure 4. The numerical results given in this plot compares the end-
to-end latency (in hops) of long-range and short-range communications with values of
Rs set to 15m and 20m. As can be seen from this figure, reduction in latency as high
as 50% is possible when actors use long-range communication (Rad > Rs) than when
they use short-range (Rad = Rs) communication between them.

Next, we establish from the fundamentals of antenna theory that the use of direc-
tional antenna indeed helps in further minimizing the end-to-end latency. The Friss
formula [11] for transmission range is given by

Pr = PtGrGt

(
λ

4π

)2 (
1
dα

)

(4)

where Gr and Gt are the antenna gains of the receiver and the transmitter respectively,
Pr and Pt are the corresponding signal powers, λ is the wavelength, d is the distance
between receiver and transmitter and α (typically a value of 2 or 4 for free space and
two-ray ground reflection propagation models, respectively) is the power loss exponent
of the channel.

According to [12], the directional antenna gain (Gθ) of the main lobe is defined as

Gθ =
(

360◦

θ

)

Gt (5)

where θ is a beam-width in azimuth for each beam pattern and Gθ is applied to the
transmitter gain of the directional antenna with a beam-width θ.

Therefore, using equation 4 the communication range of omni-directional antenna,
domni can be derived as,
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domni =

(
PtGtGr

Pr

(
λ

4π

)2
) 1

α

(6)

Thus, when an actor is equipped with a directional antenna with beam-width of θ de-
grees, the communication range dθ of the directional antenna can be derived from equa-
tions 4 and 5;

dθ =
(

360◦

θ

) 1
α

domni (7)

where domni is the communication range of omni-directional antenna.
Thus, for the case of α = 4 (Two-Ray Ground Reflection Propagation Model) and

θ = 90o (4 sectors), we have
dθ =

√
2 × domni (8)

which shows that an extended communication range of about 40% is possible, if actor
nodes use directional antennas. Let Rao = 300m and Rs = 30m. Then from equation 8,
the extended communication range of actor node due to the use of directional antenna
is Rad = 420m. Also, in ideal settings, single hop communication of the actor node is
equivalent to 12 hops of sensor communications, thus saving of four hop delay in AAC.

6 Simulation Results

In the previous section, the performance advantage of using directional antenna is eval-
uated in the ideal settings. In order to verify the performance measures, we simulated
a network with 250 sensor nodes and 5 actor nodes, randomly deployed in a terrain of
dimension 450m × 450m. The figures 5 to 12 show the results of the simulation. The
results are average of 10 simulation runs and the vertical bars in graphs indicate the
confidence interval. The values shown conform to 95% confidence level.

In all the simulations, the values of Rs and Rao are set to 15m and 150m, respec-
tively. Rad is set according to the equation 7. Only a subset of nodes generate data at
regular intervals of time and they send them to the nearest actor. The actor nodes are de-
ployed such that there exists at least one partition among the network of actors. A pair of
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such actors which are out of communication range, attempt to communicate with each
other with Packet Inter Arrival Times as shown in the figures. In figures 5 and 6, we
compare the end-to-end latency of actor traffic by varying actor traffic and sensor traf-
fic, respectively. From both the figures, we see the results of latency when actor nodes
use short-range, long-range communication using omni-directional antenna and direc-
tional antenna with 4 sectors (θ = 90◦). It can be observed that the use of long-range
omni-directional antenna helps minimizing the latency by about 30% when compared
with that of short-range communication. Further reduction in latency of approximately
10% is due to the extended communication range of directional antenna.

Figures 7 and 8 show the results of collisions on sensor traffic, when actors use
omni-directional antenna and directional antenna of 4 and 6 sectors. Though not much
performance advantage is observed with respect to end-to-end latency of AAC, when
directional antennas are used at actor nodes, but it is evident from Figures 7 and 8 that
significant energy saving is possible if directional antennas are used with narrow beam-
width. The number of collisions are observed to be about 60% less at θ = 60o when
compared with θ = 90o.

Figures 9 and 10 show the effect of actor traffic on the latency of sensor traffic at
various directional angles. The results are plotted by varying packet inter arrival rates
of actor and sensor nodes, respectively. As shown in these figures, the latency decreases
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Fig. 11. Average Actor Discovery Delay
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with respect to ds

as the offered load is reduced. Use of 6 sector directional antenna helps minimizing
the latency on sensor traffic as high as 100% when compared with the use of omni-
directional antenna. Moreover, as can be seen from the Figure 10, the presence of actor
traffic by 6 sector antenna increases the latency of sensor traffic only by about 42%
whereas the use of omni-directional antenna increases the latency as much as 100%.

We have also carried out simulation studies on the effect of directional angle of
the antenna at actors on finding route to reach the destination actor. As shown in the
Figure 11, narrow beam-width search results in increased latency in finding a route to
the destination. This happens due to the fact that number of attempts is proportional
to the number of sectors and Tresp is higher for narrow beam-width due to extended
communication range (equation 7). Though rapid route discovery is observed with
Omni-directional antenna, it happens at the cost of severe energy drain in the resource-
constrained sensor nodes in actor’s communication range, as shown in Figures 7 and 8.

In Figure 12, we show the results of average end-to-end latency of actor traffic by
varying the distance between the end actors. In obtaining the simulation results, sen-
sor traffic was totally suppressed. As shown, use of directional antenna at actor nodes
reduces the latency to as low as 60% when compared with use of short-range com-
munication. Similarly, the use of narrow beam-width directional antennas help further
minimizing the latency due to their extended communication range.

Thus, it is evident from these results that the use of narrow beam-width directional
antenna at actors helps minimizing the energy wastage in the sensor nodes and also min-
imizes the end-to-end latency of AAC due to its long-range communication capability.

7 Conclusions

We have presented in this work, a communication architecture for WSANs that use di-
rectional antenna at sink nodes. Using this architecture, we have proposed an energy
efficient routing scheme that is designed to preserve connectivity among partitioned
actor network using energy constrained sensor nodes. We have shown by theoreti-
cal analysis and simulation results that the use of directional antenna at actor nodes
and exploiting the long-range communication capability of actors, sensor network life-
time can be maximized while enabling real-time communication among actors. We are
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currently investigating various strategies in choosing sectors so as to minimize the la-
tency in finding the route to an isolated actor. We are also extending the work, to design
an energy-efficient transport protocol for Actor-Actor Communication using this hybrid
architecture.
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Abstract. This paper proposes a new top-down hierarchical, multi-hop,
routing protocol for the wireless sensor networks. The proposed solution
is appropriate for random deployment and suitable for different sizes of
target areas. This protocol forms clusters in which each cluster member
is at one hop distance from the cluster head. This protocol ensures the
participation of all the cluster heads in hierarchical topology formation.
The proposed protocol is also capable of handling dynamic nature of the
wireless sensor networks. The simulation results show the scalability of
the proposed approach.

1 Introduction

Advancement in technologies has enabled the development of multi-functional
tiny devices known as sensor nodes [1]. These nodes consist of sensing, data
processing and communicating components. Network of sensor nodes is known
as wireless sensor network (WSN). WSN is a specific kind of ad hoc network.
WSN can be used in multiple applications in different spheres of life like mon-
itoring applications, acoustic detection, seismic detection, military surveillance,
inventory tracking etc.

The rest of the paper is organized as follows. Section 2 summarizes the related
work. Section 3 describes the assumptions, notations, the algorithm, and pro-
vides comparison with PEGASIS [2] protocol. Section 4 presents implementation
details and simulation results. Finally, section 5 concludes the paper.

2 Related Work

This section presents the related work on routing protocols for WSNs. These
routing protocols shaped understanding of the problem.
� He is also a Ph.D. candidate at Motilal Nehru National Institute of Technology,
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Low Energy Adaptive Clustering Hierarchy (LEACH) [3] is a hierarchical
protocol. It uses single hop routing. This protocol assumes that all the nodes
begin with equal energy capacity in each election round which is difficult to
achieve. The above assumptions for the LEACH are not feasible for relatively
larger target areas.

Threshold-sensitive Energy Efficient protocols (TEEN) [4], a hierarchical
protocol, tries to minimize the communications by using two threshold values
namely, hard and soft. TEEN protocol is not suitable for applications which
require reporting of each event which occurs in the target area.

AdaPtive Threshold-sensitive Energy Efficient protocol (APTEEN) [5] is an
extension to TEEN. APTEEN is a hybrid protocol. Transmission of sensed data
is similar to TEEN except, if a node does not send data for a time period equal
to the count time, it is forced to sense and retransmit the data.

Power-Efficient GAthering in Sensor Information Systems (PEGASIS) [2]
forms a chain of sensor nodes in a greedy fashion. Sensed data moves from node
to node, getting aggregated and eventually being sent to the end user. PEGASIS
assumes that all sensor nodes send data to end user in one hop. It also assumes
that all sensor nodes have same energy level and likely to die around the same
time. For relatively larger network, chain formation will not be energy-efficient.

An extension to PEGASIS is Hierarchical-PEGASIS [6]. This is achieved by
decreasing the delay occurred for packet transmission to base station. The chain
based protocol with CDMA capable nodes, builds a tree of chains of nodes.

HEAR-SN: a new hierarchical energy-aware routing protocol for heterogeneous
sensor networks [7]. Cluster-head nodes are superior in terms of computational
power, communication range, and storage capacity over cluster-member nodes.

Two-Tier Data Dissemination (TTDD) [8] protocol provides a solution for
multiple mobile sink problem. Sensor nodes are stationary and location-aware
in TTDD.

The proposed protocol uses homogeneous sensor nodes. The proposed routing
protocol falls into the category of hierarchical reactive network [4]. Cluster based
hierarchical routing has advantages related to scalability and efficient commu-
nication. It minimizes the power consumption of sensor nodes by performing
data aggregation, fusion, and multi-hop communication. This protocol is best
suited for area monitoring applications such as environmental monitoring, mili-
tary surveillance etc. In the next section proposed protocol is presented.

3 The Proposed Hierarchical Multi-hop Routing Protocol

This section describes the working of the proposed protocol that is a new top-
down hierarchical multi-hop routing protocol for WSN. First, this section notes
the assumptions about WSN and its components. Second, it provides the nota-
tions used. Third, this section presents the algorithm with explanation of each
phase. Finally, a comparison for energy consumption with PEGASIS [2] is made.

Assumptions: Every sensor node has a unique ID. Broadcast messages sent by
the cluster heads are received correctly within a finite time by all of its 1-hop
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neighbors. Network topology is static during the execution of algorithm. Packet
broadcast by base station is correctly received by some of the cluster heads. The
base station is static, and resourceful. All the sensor nodes in the sensor network
have same capabilities in computation and have equal communication range.

Notations Used: cid: Cluster id. holdback: Holds randomly generated value
which is used for cluster head making decision. status: Whether the node is
cluster member or cluster head. levelstatus: Whether or not the cluster head
is the part of hierarchical topology. MN: Member nodes of any cluster. Con-
nected Cluster Head (CCH): Cluster head connected to partially or fully formed
hierarchical topology.

The proposed protocol has been divided into six phases namely, (1) Initial-
ization phase, (2) Cluster setup phase, (3) Hierarchical topology setup phase,
(4) Enquiry Phase, (5) Event detection and reporting to base station, and (6)
Maintenance Phase. These phases are presented in detail in Algorithm 1.1.

Algorithm 1.1 Proposed Hierarchical Multi-hop Routing Protocol
1 Initialization phase:
2 Each node initializes the following its own parameters
3 cluster id (cid) = null, status = null, levelstatus = false,
4 holdback value to some randomly generated number,
5 Cluster setup phase
6 after every tc seconds each node decrements the holdback value by one
7 if (holdback == 0 && status == null)
8 set status = cluster head, cid = node id,
9 Initialize the packet.type=cluster head hello, broadcast cluster head hello
10 On receiving the cluster head hello broadcast
11 if (status == null && holdback �= 0 && packet.type==cluster head hello)
12 cid = SendID, /*ID of node that has broadcast the cluster head hello*/
13 set status = cluster member,
14 Hierarchical topology setup phase /*Top-Down Approach*/
15 Base station initializes the following parameters
16 Packet type= base hello, levelstatus=true, Level = 0
17 Now, base station initiates this phase by broadcasting the base hello message
18 cluster head(s) on receiving first base hello or base forward hello message
19 if((packet.type==base hello ‖ base forward hello) && status == cluster head

&& levelstatus==false)
20 Set its own levelstatus=true,
21 Level = Level +1, Remembers its parent address,
22 Forward the base forward hello packet to form the next level
23 Enquiry phase
24 if (levelstatus=false && status == cluster head)
25 the cluster heads send scan hello packet to its members
26 on receiving scan hello
27 Member nodes scan CCH by broadcasting the packet.type = scan,
28 on receiving scan packet
29 if(packet.type==scan && status==cluster head && levelstatus==true)
30 cluster heads reply by sending the packet of type=scan reply,
31 Member nodes receives the packet and decide to join the hierarchical topology
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32 if(packet.type==scan reply&&status==cluster member&&ReceiveID==NodeID)

33 Call Function 1
34 Forward the packet.type==scan reply forward to its cluster head,
35 After receiving the scan reply forward packet
36 Call Function 1
37 Function 1
38 Enqueue the packets, Set its own levelstatus=true,
39 Level = Level +1, Maintain the list of parents,
40 Event detection and reporting to base station
41 if((status == cluster member) && (levelstatus == true))
42 it sends report to its parents towards base station using hop-by-hop.
43 else
44 send report to its cluster head.
45 cluster head send the report to its parents hop by hop towards base station
46 Maintenance phase
47 Rerun the algorithm after tr round time
48 End of Algorithm 1.1

Initialization phase: During this phase, each node initializes its own cid (Clus-
ter id) to null value, randomly generated value into holdack, status to null, and
levelstatus to false.

Cluster setup phase: This phase divides the WSN into clusters in which the
MNs are at one hop distance from the cluster heads of respective clusters. This
phase make sure that each active sensor nodes will be either cluster head or MN.

Hierarchical topology setup phase: Base station is at level 0. The base
station starts this phase by broadcasting base hello packet to find out the
cluster heads for level 1. In turn, the cluster heads at level 1 broadcast the
base forward hello packet to find out the cluster heads for level 2 and so on.

Enquiry phase: After the hierarchical topology setup phase, there may be some
clusters / cluster heads which are not part of the hierarchical topology because
these cluster heads are not directly reachable from any other cluster head. But
member nodes of such clusters are connected to one or more CCHs. This phase
make sure that all the left out cluster heads will be connected to hierarchical
topology.

Event detection and reporting to base station: The member nodes of any
cluster, which is part of hierarchical topology, send packets to its parents rather
than to its cluster head. This saves the energy and reduces unnecessary delay in
routing. This is also an energy efficient approach. Otherwise, the member nodes
send the data to its cluster head and in turn to base station in hop by hop fashion.

Maintenance phase: In the last phase, the proposed protocol reruns the same
algorithm after tr round time. This adapts the change in population of sensor
nodes. Worst case of the proposed protocol occurs when the same nodes become
cluster heads in the next round, if all nodes get the same holdback values as in
the previous round.
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Comparison with PEGASIS: The proposed protocol uses the radio trans-
mission model of [3].

Assumptions: each node has n neighbor nodes. Each neighbor is at d distance.
Power consumption in computation is negligible in comparison with communica-
tion. Suppose, PEGASIS [2] forms a chain of m nodes. Hence maximum energy
consumed to send a packet to base station

Epegasis−total =(n + 1)m ∗ (k(Eelec+εamp ∗ d2))+(m ∗ n + m − 1)k ∗ Eelec. (1)

The proposed protocol consumes maximum energy to transfer a packet to base
station in using m clusters = m cluster heads transmit a packet + (m-1) cluster
heads receive a packet.

Eproposed−protocol =2 ∗ m(k(Eelec+εamp ∗ d2))+(m ∗ n + m − 1)k ∗ Eelec. (2)

Equations (1) and (2) show that the proposed protocol is approximately (n+1)/2
times energy efficient in comparison to PEGASIS [2].

4 Implementation Details and Simulation Results

The proposed protocol is implemented in NesC programming language with the
underlying operating system TinyOS. Simulation is done by using TOSSIM sim-
ulator. Fig. 1(a) shows the relation between the component of the proposed
protocol. ClusterC is the main component. It Contains the logic for initializa-
tion phase, cluster setup phase, hierarchical topology setup phase, enquiry phase,
and maintenance phase. EventDetetionC component is responsible for monitor-
ing the environment in which the sensor network is deployed, for occurrence of
events of interest. ReportC component prepares the report of the occurred events
and sends to the base station. For simulation purpose, the value of tc is 700
milliseconds. After every 700 milliseconds holdback value of every node decreases
by one. The graph in Fig. 1(b) shows the relationship between the number of
sensor nodes and simulation time for the proposed protocol and cluster setup
phase of the proposed protocol.

(a) Components of the proposed
protocol

(b) Number of nodes Vs Simulation time

Fig. 1. Major Components and simulation result
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5 Conclusion

A new top-down hierarchical, multi-hop, routing protocol for the wireless sen-
sor networks has been presented. This protocol divides the WSN into non-
overlapping clusters in which each cluster member is at one hop distance from
the cluster head. In the proposed protocol, all the cluster heads participate in the
hierarchical topology. The proposed protocol adapts the dynamic nature of wire-
less sensor network including changes in sensor node population and topology.
The simulation results show that the proposed approach is scalable. Radio model
equations of WSN show that the proposed protocol is approximately (n+1)/2
times energy efficient than PEGASIS [2].

The proposed protocol can be modified for hierarchical multi-hop secure rout-
ing protocol. Further, it can also be enhanced to support the mobility in wireless
sensor networks.
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Abstract. Optimization in energy consumption of the existing synchro-
nization mechanisms can lead to substantial gains in terms of network life
in Wireless Sensor Networks (WSNs). In this paper, we analyze ERBS
and TPSN, two existing synchronization algorithms for WSNs which use
widely different approach, and compare their performance in large scale
WSNs each of which consists of different type of platform and has vary-
ing node density. We, then, propose a novel algorithm, PROBESYNC,
which takes advantage of differences in power required to transmit and
receive a message on ERBS and TPSN and leverages the shortcomings
of each of these algorithms. This leads to considerable improvement in
energy conservation and enhanced life of large scale WSNs.

1 Introduction

Large scale WSNs have attracted a great deal of attention due to their po-
tential for applications in various areas such environmental monitoring, military
surveillance, industrial applications, agriculture etc.[1]. The key constraint in the
design of WSNs is the conservation of energy for each of the associated prob-
lems. According to [2], individual sensors can last only 100 to 120 h on a pair of
AAA batteries in the active mode and it is usually difficult, if not impossible,
to recharge or replace their batteries. Since a sensor network is usually expected
to last several months to one year without recharging, minimizing energy con-
sumption to extend the network lifetime, is an important design objective.

Time synchronization is an important requirement of most sensor networks
since almost any form of sensor data fusion or coordinated actuation requires
synchronized physical time for reasoning about events in the physical world. Pro-
viding synchronized time in WSNs poses challenges due to varying and contra-
dictory requirements specification for precision, efficiency, lifetime, scope, avail-
ability for various applications. Time synchronization protocols in traditional
networks are designed to achieve the highest possible accuracy. The higher the
required accuracy, the higher is the resource requirements. In large scale WSNs,
it may be useful to make a trade-off between accuracy and resource requirements.

An effort has been made in [3] to compare some of the state of art sensor
network platforms based on a set of general platform metrics like radio physical
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Table 1. Comparison of Salient Features of Mica2dot, Micaz and NMRC motes

Parameter Mica2dot Micaz NMRC

433MHz 916MHz

Rx Current(mA) 8 10 19.7 18

Tx Current(mA), -5 db 25 27 17.4 10.5

Range(m) 300 150 75-100 10

R=Rx to Tx Power .32 .37 1.13 1.71

properties and system core. However, it is difficult to compare different sensor
network platforms for problematic metrics like power consumption and capacity
due to the broad range of applications and architectures, each with their distinct
characteristics. In [4], comparisons between sensor nodes, viz., Micaz, Mica2dot,
NMRC and Intel motes have been made. The salient features Micaz, Mica2dot,
and NMRC motes have been summarized in table 1.

A significant point to be noted in the table 1 is that while transmit current
for Micaz motes is lower than its reception current, and it is other way round for
Mica2dot motes, i.e., the two types of motes have different reception to trans-
mission current ratio. It is this novel observation which forms the seed for our
proposed algorithm PROBESYNC. In our proposed algorithm, we take advan-
tage of the different power consumption characteristics of these platforms for
reception and transmission of a message for overall savings in the clock synchro-
nization algorithm for sensor networks.

The rest of the paper is organized as follows. In section 2, we present our
algorithm, PROBESYNC, along with review and analysis of existing algorithms
related to our sphere of work. The simulation experiments along with analysis
of the results are presented in section 3. Finally, section 4 concludes the paper.

2 Our Synchronization Algorithm

Before we present our algorithm, PROBESYNC, we discuss and analyze RBS
[7], ERBS [5] and TPSN [6], the protocols pertaining to our sphere of work. The
two synchronization algorithms, RBS and its efficient version ERBS, are based
on receiver-receiver synchronization approach and are more suited for a small
network environment where receivers are less in number while TPSN uses sender-
receiver synchronization approach for synchronization and is mainly suited for
large networks.

2.1 RBS (Reference Broadcast Synchronization) and ERBS
(Efficient RBS)

In Reference Broadcast Synchronization (RBS) [7] nodes send reference beacons
to their neighbors, by making use of the broadcast possibility of the network.
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Receivers use the arrival time of these beacons as points of reference for compar-
ing their clocks. The simplest form of RBS is executed in three steps: (i) A node
broadcasts a reference beacon. (ii) Each node that receives the beacon, records
its arrival time according to the node’s local clock. (iii) The nodes exchange their
observations. Using this information, each node can compute its offset to any
other node.

ERBS[5] is an improved version of RBS [7] in which only a percentage ( called
p-ratio) of the receiving sensor nodes exchange their observations. Authors of [5]
have evaluated the performance of ERBS in terms of total number of messages
at various p ratios and have claimed that the accuracy of ERBS when p=.7 is
similar to that of the original RBS while there is considerable savings in the
number of messages(43% of the original RBS).

2.2 Timing Sync Protocol for Sensor Network (TPSN)

The Timing-syncs Protocol for Sensor Networks (TPSN) [6] synchronizes time in
a sensor network by first creating a hierarchical structure and then synchronizing
nodes along this structure. When a hierarchical structure is established, pair-
wise synchronization is performed along the edges of the hierarchical structure
in synchronization phase to calculate clock skew and propagation delay.

2.3 PROBESYNC

PROBESYNC is based on energy conservation in time synchronization based
on number of messages exchanged . ERBS and TPSN described above report
very high precisions, of the orders of few μ secs. However, an important point
to note is that not only the number of messages used by the two methods is
quite different for different number of receivers(children surrounding the node)
but also ratio of number of received and transmitted messages is different in the
two algorithms for different number of receivers. Below we analyze this message
complexity of the two algorithms for n receivers.

For ERBS

No of Transmit Messages = pn

No of Reception Messages = n +
pn∑

i=1

i

= n +
p2n2

2
+

pn

2
Where 0 < p ≤ 1

For TPSN

No of Transmit Messages = n + 1
No of Reception Messages = 2n
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If R = Reception/Transmission power ratio for a platform, then in terms of
number of equivalent transmission messages for energy consumption, we can say

For ERBS(p=.7)

Energy Consumption = .7n + R(1.35n + .245n2)
(Equivalent Tx messages)

(1)

For TPSN

Energy Consumption = (n + 1) + R(2n)
(Equivalent Tx messages)

(2)

R indicates the cost of receiving a message vis-a-vis transmitting the same mes-
sage and it is different for different platform as can be seen from the table 1
and can be calculated based on the data sheet of various platforms. Depending
upon R, there will be a critical number of n of receivers, for which one mech-
anism will be better than the other depending upon the platform. This critical
number can be found by equating equation 1 and 2 with a given value of R for
a platform thus enabling us to identify critical switch point for optimization of
energy consumption. This forms the basis of PROBESYNC.

PROBESYNC follows a greedy strategy wherein in the initial phase, it carries
out carries out level discovery(as in TPSN) to establish the hierarchical levels in
the network based on the transmission range of the platform. In doing so, it also
establishes the number of receivers(children) surrounding each node in WSN. In
the second phase, depending upon the platform and therefore, R ratio supplied,
it finds out critical number of receivers(children) for which the two algorithms
(ERBS and TPSN) yield same energy consumption and follows a greedy syn-
chronization strategy at each node to switch between two algorithm depending
upon the number of receivers (children) ascertained in the level discovery phase.
The pseudo code for the PROBESYNC is as given below.

PROBESYNC (Input:Node id each node, R ratio for the platform, P ratio for
ERBS)

find levels and children;
receive probesync

=
(.65R + .3) +

√
(.65R + .3)2 + 4(.245R)
2(.245R)

;

For each node
if (num of child < numreceiver probesync )

// use ERBS to synchronize the children
Broadcast sync request;
Designate p% of the children as transmitters ;
For each child
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Note time of reception of sync request;
if (transmitter )

Broadcast obsn packet ;
Receive obsn packet from transmitters;

else
// use TPSN to synchronize the children

Broadcast sync request;
For each child

Note time of reception of sync request;
Send ack to parent after a random delay;

3 Performance Evaluation

Extensive simulations were carried out in Matlab 7.0 to compare the energy
consumption and efficiency of the PROBESYNC with those of RBS, ERBS and
TPSN in different WSNs with varying node density.

3.1 Simulation Experiments

Simulation experiments were carried out to ascertain the effectiveness of
PROBESYNC in both high density as well as low density environment on dif-
ferent platforms. PROBE1 version of PROBESYNC finds critical number of
receivers for which RBS and TPSN yield the same energy consumption for the
given platform and uses a greedy strategy to switch between the two algorithms
at each node based on this critical number while PROBE2 is the version de-
scribed in section 2.3 and uses critical number of receivers to switch between the
ERBS and TPSN. The two platforms selected for the simulation experiments
are Mica2dot(433MHz) and Micaz as both exhibit totally different R ratio and
their results could easily be used to draw the inferences for other platforms like
NMRC which exhibits R ratio similar to Micaz and Mica2dot(916MHz) which
exhibits R ratio similar to Mica2dot(433MHz) as seen from table 1. The exper-
iments compared energy consumption in terms of number of equivalent trans-
mission messages for the various algorithms for randomly deployed network of
nodes ranging from 100 to 1500 Nodes in an area of 1000m x 1000m and
500m x 500m.

3.2 Simulation Results

The data obtained from simulation experiments was analyzed to compute the
efficiency of both versions of PROBESYNC, i.e., PROBE1 over RBS and TPSN
as well as PROBE2 over ERBS and TPSN on both types of sensors and in both,
low as well as high, density configuration sets and the same is graphically shown
in the figure 1.
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Fig. 1. Percentage Improvement in Performance of PROBE1 and PROBE2

4 Conclusions

PROBESYNC optimizes energy conservation in large scale networks by taking
advantage of the difference in the energy requirements for transmission and re-
ception of a message for a particular sensor network platform and recognizing
varying density regions to fit in ERBS and TPSN to counter each others short-
comings without any additional overheads. While ERBS works efficiently in less
denser areas, TPSN comes into play in more denser areas without any additional
overhead, thereby enhancing the life of large scale WSNs. PROBESYNC apart
from being scalable is also tunable through p ratio lending it an advantage to ex-
ploit the trade-off between the synchronization accuracy and energy conservation
in applications with less stringent requirement for synchronization accuracy.

References

1. Akyildiz, I.F., Su, W., Sankara subramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine (2002)

2. Power management and batteries: http://www.xbow.com/Support/appnotes.htm
3. Beutel, J.: Metrics for Sensor Network Platforms. In: Proceedings of REALWSN

2006, Uppsala Sweden (2006)
4. Bellis, S.J., Delaney, K., Flynn, B.O., Barton, J., Razeeb, K.M., Mathuna, C.O.:

Development of Field Programmable Modular Wireless Sensor Network Nodes for
Ambient Systems: Computer Communications (2005)

5. Lee, H., Yu, W., Kwon, Y.: Efficient RBS in Sensor Networks. In: ITNG 2006.
Proceedings of the Third International Conference on Information Technology: New
Generations, vol. 00, pp. 279–284 (2006)

6. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-Sync Protocol for Sensor Net-
works. In: Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, Los Angeles, California, USA, pp. 138–149 (2003)

7. Elson, J., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization using
Reference Broadcasts: Fifth Symposium on Operating Systems Design and Imple-
mentation (December 2002)

http://www.xbow.com/Support/appnotes.htm


S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 440–451, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Adaptive Split Reservation Protocol (SRP) for 
Dynamically Reserving Wavelengths in WDM Optical 

Networks 

Malabika Sengupta1, Swapan Kumar Mondal1, and Debashis Saha2 

1 Kalyani Government Engineering College, Kalyani, India 
2 Indian Institute of Management, Kolkata, India 

sengupta.malabika@gmail.com, ds.calcutta@gmail.com 

Abstract. In WDM optical networks, prior to data transfer, lightpath 
establishment between source and destination nodes is usually carried out 
through a Wavelength Reservation Protocol (WRP), for which there are 
different approaches, such as Source Initiated Reservation Protocol (SIRP), 
Destination Initiated Reservation Protocol (DIRP) and Intermediate node 
Initiated Reservation Protocol (IIRP). At high load, due to scarcity of resources, 
a request is blocked primarily due to two important factors, namely ‘outdated 
link information’ (in case of DIRP) and ‘over reservation’ (in case of SIRP). To 
minimize the effect of both the factors (as attempted in IIRP), we propose to 
split a probe attempt into two concurrent (upstream and downstream) 
reservation attempts at some intermediate points (selected adaptively). This 
novel WRP, termed as Split Reservation Protocol (SRP) in the paper, is a 
potential competitor for IIRP. So we analyze SRP at length and compare it with 
IIRP for different network situations. The comparative results show that, for 
SRP, the blocking probability improves by even 90% in some cases, and the 
control overhead decreases by 29% sometimes. However, the average setup 
latency increases by 10% in most cases. So the proposed scheme appears quite 
promising especially for the applications (such as short messaging) where the 
blocking probability is the most important criteria. 

1   Introduction 

In Wavelength Division Multiplexing (WDM) [1] based optical networks, when a 
connection request arrives to a source, a proper route between the source and 
destination (called ‘routing’) is selected and an all optical path (commonly referred as 
a lightpath [2]-[3]) throughout the route is established. Though a complete lightpath 
establishment protocol is responsible for both routing and wavelength assignment, 
this work is restricted to wavelength assignment part only which can work with  
any standard routing. In this work, we consider fixed routing, based on the shortest 
path. Also, wavelength converters at intermediate nodes are not considered. 
Conventionally, lightpath establishment is handled in a centralized or distributed way 
and a signaling protocol is required to reserve resources along the selected route [1]-
[5]. One major hurdle of the reservation protocols is updating of global information 
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about wavelength availability, which cannot be guaranteed at any particular place and 
time in a distributed system [2],[4],[5]. Basically, updating of information of 
availability of wavelengths at different links is done at regular intervals and due to 
propagation delay, the received information is outdated upon arrival. To cope up with 
this challenge, different protocols are suggested at various points of time 
[2],[7],[8],[10]-[13]. Intermediate node initiated reservation protocol (IIRP) [7] is one 
of them, which is supposed to perform better than its peers. However, there are some 
limitations of IIRP, for example, the problem of “over reservation” is not addressed 
completely, which can be further looked into. Intermediate nodes in IIRP are 
predefined and fixed and hence the protocol lacks in flexibility. Also, in absence of 
any such predefined nodes between source and destination, IIRP behaves simply like 
DIRP. We attempt to address these shortcomings in the proposed scheme, called split 
reservation protocol (SRP). SRP uses an adaptive reservation scheme, where 
reservations may be initiated at any one of some predefined nodes, which are decided 
dynamically using some system parameters. This modification improves the overall 
performance of the protocol considerably. The paper is organized as follows. In 
Section 2, relevant reservation protocols are discussed. The proposed protocol is 
discussed in Section 3. Theoretical analysis is presented in Section 4, whereas results 
and discussions are presented in Section 5. Finally, Section 6 concludes the paper. 
The following terms are used in this text: source, destination, PROB, RES, REL, 
ACK, NACK. Source and destination means source node and destination node. 
PROB, RES, REL, ACK and NACK are all control packets used in a designated route 
to probe and collect the availability of wavelengths, to reserve one or more 
wavelengths, to release one or more wavelengths, to acknowledge the acceptability of 
a connection request and to acknowledge the rejection of a connection request 
respectively.  

2   Wavelength Reservation Protocols (WRPs) 

WRPs may be primarily divided into three categories (Fig. 1), depending on the 
initiation of reservation from the source (S), destination (D), and intermediate (IN) 
node. Intermediate node initiation may be done statically or dynamically depending 
on the flexibility of the reservation process. In source initiated reservation protocol 
(SIRP) [1],[2], a RES is initiated from the source to reserve wavelength(s) in all hops  
 

WRP

Source Initiated Destination Intermediate node Initiated
(SIRP) Initiated (DIRP) (INRP)

Static Dynamic
(IIRP) (SRP)  

Fig. 1. Classification of protocols 
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along the selected route towards the destination. The scheme suffers from “over 
reservation” [6]-[8] as it starts reserving the wavelengths in forward path towards 
destination, much before the actual use of the same during transmission. In DIRP this 
problem is addressed and it is established that DIRP outperforms SIRP. In DIRP 
[1],[2], source sends a PROB, which proceeds towards the destination. If PROB 
reaches destination, the destination selects one wavelength from the available set of 
wavelengths and sends RES towards the source to reserve the selected wavelength 
throughout the route. If RES reaches the source successfully, the source initiates 
transmission. Though DIRP performs better than SIRP, it suffers from “outdated 
information” which is addressed in intermediate-node initiated reservation protocols 
(INRPs). The main idea in INRPs is to allow reservation (towards source) to be 
initiated by a set of intermediate nodes [7],[8]. These intermediate nodes may be 
predefined and fixed (e.g., IIRP) or dynamic (e.g., SRP as proposed in this work). The 
concept of IIRP is to allow the reservation to be initiated by a predefined set of 
intermediate nodes. These predefined intermediate nodes (special nodes) have 
adequate link-state information of the entire path. When a PROB proceeds forward 
and reaches the first special node, the node initiates a fast RES in the backward 
direction towards source. This RES tries to reserve a particular wavelength (say λ1) 
upto source. The PROB then proceeds further until it reaches the next special node or 
the destination. In next special node, the node checks the availability of λ1. If it is 
available, PROB proceeds forward. However, if λ1 is not available, the node selects 
another wavelength (say λ2) (if such is available) and initiates a new RES which 
reserves λ2 towards source and releases λ1. This is repeated until the PROB reaches 
the destination. The destination then initiates the normal RES to reserve either 
previously selected wavelength (if such is still available) or new wavelength from the 
set of available wavelengths (if any). Failure cases may arise due to non availability 
of wavelengths during PROB or during reservation. In such cases REL is used to 
release the reserved wavelengths (if any) by this request. IIRP suffers from extreme 
cases as reservation from an intermediate special node is initiated unconditionally. 
Say, for a particular request, if a special node exists next to the source in the route, it 
initiates backward reservation after traversing one hop only and suffers from over 
reservation which increases blocking probability (bp). Similarly, if the first special 
node exists just before last position in a particular route, it initiates the fast RES when 
only one hop is left and thus probability of getting any free wavelength is reduced due 
to outdated information. This problem is addressed in SRP. 

3   Proposed Protocol 

In SRP, the intermediate nodes for initiation of reservation are not static, rather 
selected dynamically. It incorporates some important features to improve the extreme 
situations and limitations of IIRP. The first one is related to types of control packets 
generated from intermediate nodes during PROB. While IIRP uses RES towards 
source and PROB towards destination, SRP uses RES both towards source and 
destination. The second one is related to selection of the position of splitting. While 
IIRP may initiate fast RES anywhere in the path unconditionally once the first special 
node is available, splitting in SRP takes place conditionally based on two parameters 
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(i) the path already traveled by PROB, (ii) the status of PROB result. Third important 
feature is related to the basic idea of retries. The characteristic of retries is embedded 
in IIRP as it generates RES from multiple special nodes (if required). But in case of 
SRP, from the splitting point, the RES towards destination reserves one or more 
wavelengths and RES towards source reserves one wavelength. If RES towards 
source is blocked, it may go for one or more retries. The scheme is discussed below. 

Splittin
Source Destination

PROB RES
RES

REL ACK
RES

Data transmission + REL

Splitting
point

            

Source Splitting point Destination

PROB

RES
REL

ACK
RES

NACK
REL

 

          Fig. 2a. SRP for success with retry                    Fig. 2b. SRP for failure after retry    

PROB is initiated by source (like IIRP), which moves towards the destination. If 
PROB result at any node (which contains the updated available set of wavelengths 
upto that node) does not fall below some predefined value (say c), and PROB reaches 
the destination, the request follows DIRP for the rest. However, on the way to 
destination, if (i) PROB result falls below c and (ii) the PROB has already traversed at 
least a pre-selected number of hops expressed as percentage (say x) of total number of 
hops on the designated route then splitting occurs and two separate RES are initiated 
from that node. A backward RES moves taking one wavelength (say λ1 chosen 
randomly from the pool of available wavelengths) towards source and forward RES 
moves towards destination reserving predefined number of wavelengths (say m). This 
m includes the wavelength λ1 and rest (m-1) wavelengths are chosen randomly from 
the available set of wavelengths so far (excluding λ1). If forward RES reaches  
the node previous to destination and finds at least one wavelength available on the 
forward link (which is the last link of the route), an ACK is sent to the source by this 
node and reserves the last link. This ACK while passes through the splitting point, the 
node of splitting point retains the information of reserved wavelengths as confirmed 
pool which may be used in future during retries.  If backward RES reaches source 
successfully and the ACK sent by forward RES is also received at source, source 
initiates transmission of data and also sends a REL to release all additional 
wavelengths (if any) reserved by forward RES from splitting point to destination. 
Also if any wavelength becomes unavailable during forward reservation, that 
particular wavelength is released using REL. If the forward RES is stuck at some 
node, a NACK is generated from that node which moves towards source releasing all 
the wavelengths reserved so far and the request is blocked. Now, if backward RES is 
stuck before it reaches the source, it comes back to the splitting point releasing the 
wavelength reserved so far. Then backward RES retries with another wavelength (if 
any) from the confirmed pool of available wavelengths or from the pool of expected 
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available wavelengths (i.e., m which are attempted for reservation by forward RES) 
depending on whether the ACK from forward RES has reached the splitting point or 
not. It may be noted that maximum possible number of retries is one less than m. If 
reservation using retries becomes successful then transmission takes place as shown 
in Fig. 2a otherwise the request is blocked as shown in Fig. 2b. In this paper IIRP 
means static IIRP unless specified otherwise. 

4   Theoretical Analysis 

The analytical model of the proposed scheme is based on the model presented in [7]. 
The state of a channel is said to be busy during data transmission and otherwise (if it 
is in free state or reserved) idle. To make the comparisons easier, propagation delays 
for both IIRP and SRP are defined incorporating the position of splitting point. This 
does not alter the calculation of durations for IIRP. The position of splitting point may 
exist between half the total path of the route considered and destination. It is 

considered that RS denotes the set of segments present between source and 

destination of route R. Also, it is considered that the kth segment includes the splitting 

point and segment sj(∈ RS ) includes the link j (Fig. 3). The analysis consists of the 

following two sections.  

sj k destination
Source jth link splitting point

)( jR
)( jR S )(spj

s
)(spR

)(ksp

)( jtR
 

Fig. 3. Different time components of theoretical analysis 

4.1   Wavelength Reservation Duration 

The wavelength reservation duration )( jt r
R  of jth link of route R is defined as the 

duration from the moment a channel on link j is reserved to the moment it becomes 

busy. Thus, the value of )( jt r
R  can be expressed as, 

for IIRP )( jt r
R = )( jRτ + )( jR sτ + )(spj

sτ + )(spRδ  ,   j = s
Rl    

 )( jt r
R = )( jRτ + )(spj

sτ  + )(spRδ ,   j ≠ s
Rl    

for SRP, )( jt r
R = )( jRτ + )(spRδ ,      
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where s
Rl  is the last link of segment sj and k is the number of segments present 

between source and splitting point. )( jRτ is the round trip propagation delay 

between the source of R and the downstream node of link j, )( jR sτ  is the round trip 

propagation delay between the downstream node of link j and the downstream node of 

last link of segment sj. )(spj
sτ is the round trip propagation delay between 

downstream node of last link of segment sj  and the splitting point (sp). 

)(spRδ  is the round trip propagation delay between the splitting point and 

destination. From the above expressions it is clear that )( jt r
R for SRP is less than that 

of IIRP by at least )(spj
sτ   and this will reduce the overall value of bp of SRP.  

4.2   Vulnerable Period 

We define vulnerable period )( jt v
R as the duration from the moment when the link 

state information is collected (during probe) and the moment when the reservation of 

wavelength is done on link j. Thus we can write the value of )( jt v
R  as, 

For IIRP, )( jt v
R = )( jR sτ  

For SRP, )( jt v
R = )( jR sτ + )(spj

sτ , when segment sj varies between 1 and k-1 

= )( jR sτ - )(kspτ , when sj=k, for splitting before end node of the segment

  = )( jR sτ ,     when sj=k for splitting at the end node of the segment 

  = 0,     when sj varies between k+1 and RS  

)(kspτ  denotes the round trip propagation delay between splitting point and 

downstream node of the last link of kth segment. From the above expressions it can be 

found that )( jt v
R  for SRP is better or at least equal to that of IIRP for sj >=k. 

However for sj <k, )( jt v
R  of SRP is more than that of IIRP by )(spj

sτ . 

4.3   Validation 

As )(spj
sτ  contributes in making the difference between IIRP and SRP to calculate 

)( jt r
R  and )( jt v

R , )(spj
sτ  is analytically calculated for a particular route in the 

network and the same is compared with the simulated results. It is found that for a 
selected route R, and for the selected link j of segment sj (sj < k), simulated result of 

)(spj
sτ  deviates by 7.05%. 
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5   Results and Discussions 

It is reported that IIRP performs better or at least at par with DIRP at various 
situations. Hence, SRP is compared with IIRP only in this work. We assume the 
routing to be fixed shortest path. Connection requests in the net arrive following 
Poisson’s distribution with mean rate of λ per second and connection holding times 
are exponentially distributed with an average holding time of 1/μ second. λ is varied 
between 25 and 150 while μ is kept fixed at 25. The source and destination for each 
request are selected randomly with equal probability. One channel is used for 
exchange of control messages (i.e., out-band signaling is considered). The simulation 
model is event driven. It is assumed that no processing delay is involved at the nodes. 
There is no wavelength conversion device used in the network.  Representative results 
for a fixed network using mesh topology with 40 nodes and 46 links are presented in 
this paper.  

A key performance metric in lightpath establishment schemes is bp and hence bp 
is mainly considered to compare the performances. However as x and m decide the 
position of splitting which plays an important role to yield fairly optimized results, 
the behaviour of these two parameters are studied  first for different situations and it 
is found that x has an optimum value of 0.5 which yields optimized results. A 
representative result in support of this is shown in Fig. 4. Fig. 4 shows variation of 
bp with m for different values of x for SRP keeping cr=70 and other parameters 
fixed. From the figure it is observed that x=0.5 gives best result. This is justified 
because if the splitting takes place near about 50 percent of the total path, then retry 
packets always travel a path between splitting point and some point between source 
and splitting point for retries (instead between destination and some point between 
source and destination), thereby reducing the average propagation delay. Hence in all 
subsequent results of SRP, x is considered as 0.5. Now the effect of m on bp for 
different values of cr and number of wavelengths (wls) is studied. It is observed from 
the results that for a given set of parameters, bp changes with m and becomes 
optimized for a particular value of m while other parameters remain fixed. This 
particular value of m is referred as mopt. One such representative result is shown in 
Fig. 5. From the figure it can be seen that for wl=40, mopt =3 and for wl=60, mopt =5. 
However, as wl (a hardware dependent characteristic) remains fixed for a particular 
network, so depending on the values of cr, different values of mopt can be used and 
that will yield best performance in respect of bp. But it may be noted that if m 
increases, the number of retries also increases (maximum number of retries may be = 
m-1) and hence the number of control packets also. This aspect restricts the use of 
very high values of m. So there should be a judicious choice of m (<= mopt) if other 
parameters like control packet becomes equally important.  

Now variation of bp with cr are shown in Fig. 6 for wl=40 and in Fig. 7 for wl=80. 
From these two figures the following can be observed: (i) As wl is increasing, bp in 
general is decreasing as more paths will be available. (ii) SRP is always better for any 
value of wl and cr, (iii) The betterment of SRP over IIRP has considerably increased  
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Fig. 4. Variation of bp with m for different values of x for cr=70 
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Fig. 5. bp vs m for different  values of wl and for cr=50 

with the increase of wl. Fig. 8 and Fig. 9 show average setup time versus cr for wl=40 
and 80 respectively. It can be observed from Fig. 8 that setup time decreases with 
increase in cr and IIRP performs better. SRP improves rapidly and approaches 
towards the value of IIRP at higher values of cr. This happens because in case of SRP 
as cr increases the position of splitting tends towards the middle of the whole path 
which reduces the average path traveled and hence set up time. From Fig. 9, it can 
also be observed that setup time of SRP initially tends to increase and finally reaches 
to peak value and then decrease. This happens due to the fact that for a combination  
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Fig. 7. Comparison of bp with cr for wl=80   

of values of cr and wl, the number of retries for successful attempts reaches to a 
maximum value where setup time becomes maximum. Fig. 10 and Fig. 11 show the 
variation of average control packet with cr for wl=40 and 80. It is found that average 
control packet of IIRP is almost independent of cr as inter communication amongst 
the fast RES and normal RES is not used in this scheme. In case of SRP, average 
control packet remains considerably less at lower values of cr. This is because at 
lower values of cr, number of splitting is less. However it increases rapidly as more 
and more retries takes place with the increase of cr and thus the difference with that of 
IIRP reduces. At some value of cr it may even be more than IIRP in a given situation.  
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Fig. 8. Comparison of average setup time with cr for wl=40   
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Fig. 9. Comparison of average setup time with cr for wl=80   

In Fig. 10 average control packet of SRP becomes more than IIRP at cr=70. This 
crossover point is skewed towards higher values of cr (does not cross at all upto 
cr=125 for wl=80 as shown in Fig. 11). This happens because with the more available 
resources (higher values of wl), the need of retry is reduced for a given value of cr. So 
it is found that SRP is better than IIRP in terms of bp for all values of cr but at the 
cost of setup time. However set up time of SRP improves as cr increases and 
approaches towards the values of IIRP. Average control packets remain less for lower 
values of cr and becomes higher at higher values of cr. Considering all these aspects it 
can be justified that SRP may be the better choice with better bp at any situation and 
moderate control packets and setup time. 
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Fig. 10. Comparison of control packets with cr for wl=40 
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Fig. 11. Comparison of control packets with cr for wl =80 

5   Conclusion 

In WDM optical networks, prior to data transfer, lightpath establishment between 
source and destination is usually done through a wavelength reservation protocol. 
Different existing wavelength reservation protocols (DIRP and IIRP) are discussed in 
this paper. The analytical model is also outlined in reference of IIRP. In IIRP 
reservation is initiated at intermediate nodes without waiting for completion of 
probing up to destination. The proposed SRP, is basically dynamic in nature with the 
concept of conditional splitting and both way reservation. In SRP, PROB is split into 
two reservation packets to reserve wavelength(s) in both directions towards source 
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and destination and splitting is done dynamically depending on some parameters of 
the network at that instant of time. If the availability of wavelength during probing 
falls below a certain level and the PROB travels a certain distance in the network, 
reservation is initiated from that intermediate node in both directions. This immediate 
reservation reduces the effect of outdated information and thus blocking becomes less 
compared to that of IIRP. Though the proposed SRP may require more average setup 
time but considering the betterment in blocking probability and average control 
packets used, the protocol can be considered as better performer. 
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Abstract. Wavelength Division Multiplexing (WDM) offers the capability to 
handle the increasing demand of network traffic in a manner that takes the 
advantage of already deployed optical fibers. A lightpath is an all optical 
communication path between end-to-end over a same wavelength used on each 
intermediate link. Wavelengths are the main resources in WDM optical 
networks. The wavelength assignment problem has been solved by mapping it 
to a heuristic based clique partitioning problem under the wavelength continuity 
constraint. For routing, Dijkstra’s shortest-path algorithm is used. Here, we 
propose two new polynomial time heuristics for wavelength assignment called 
CPWA1 and CPWA2, based on clique partitioning concepts for static traffic 
demand with the objective of minimizing the number of wavelengths. The 
performance of our proposed algorithms are analyzed through extensive 
simulations on different set of traffic demands under a wide range of network 
topologies. The results show that proposed mechanism  requires less number of 
wavelengths per fiber for a given set of traffic demand as compared to an 
existing well known algorithms. 

Keywords: WDM, RWA, clique partitioning, heuristics, lightpath. 

1   Introduction 

Wavelength Division Multiplexing (WDM) is becoming commonplace in the recent 
years, providing tremendous bandwidth of the optical fiber. The WDM technique 
divides the enormous bandwidth of an optical fiber into many non overlapping 
channels (wavelength), which can satisfy the demand of the high bandwidth 
applications in the next generation networks. The fundamental problem in WDM all-
optical networks is routing and wavelength assignment (RWA) problem, which is NP-
hard in general [1], [2]. In practice, RWA problem solved separately due to NP-
hardness, that is, first solved the routing problem by determining the consecutive links 
between source and destination nodes and after that the wavelength assignment 
problem is solved by assigning wavelengths to each link. Lightpath is implemented 
by selecting a path of physical links between the source and destination nodes, and 
reserving a particular wavelength on each of these links for the path. A lightpath 
must use the same wavelength on all of its links if there is no wavelength converter 
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at intermediate nodes, this is known as wavelength continuity constraint [1], [2]. The 
traffic assumptions generally fall into one of two categories: static or dynamic. In the 
static RWA model we assume that the demand is fixed and known, i.e. all the 
requests that are to be set up in the network are known beforehand. The objective is 
typically to accommodate the demand while minimizing the number of wavelengths 
used on all links. By contrast, in a stochastic/dynamic setting, we assume that 
requests between source-destination pairs arrive one by one at random, and objective 
in this case would be to minimize the call blocking probability. 

In the routing aspect, there are three basic types of routing approaches: fixed 
routing, fixed- alternate routing, and adaptive routing. In fixed routing, there is only 
one fixed route (e.g. the shortest path) between a pair of source and destination nodes. 
In fixed-alternate routing, each node maintains a routing table that contains an ordered 
list of fixed routes to each destination node.  In adaptive routing, routing is based on 
the current wavelength availability on each link. In particular, the optimal static 
lightpath establishment problem without wavelength converters was proven to be NP-
complete in [3] by showing the equivalence of the problem to the graph-coloring 
problem. Relaxed linear programs have been used to get bounds on the desired 
objective function [4]. Due to computational complexity in obtaining an optimal 
solution, much of the previous work on RWA problem has focused on developing 
efficient heuristic methods.  

In this paper, we have considered static RWA model and it treated as two separate 
problems, one routing and other wavelength assignment. For routing, Dijkstra’s 
shortest-path algorithm is used. The wavelength assignment problem is formulated as 
clique partitioning problem and proposed two heuristics (based on algorithms in [5]) : 
Clique Partitioning Wavelength Assignment 1 (CPWA1) and other is Clique 
Partitioning Wavelength Assignment 2 (CPWA2) to partition and assign appropriate 
wavelengths to the given set of static connection requests. Both algorithms produce 
optimal or near optimal wavelength assignment in polynomial time. 

The rest of the paper is organized as follows. In section 2, we give an overview of 
previous related work in this field. The routing and wavelength assignment problem 
modeled as clique partitioning problem is presented in section 3. Our proposed 
heuristics are present in section 4. The simulation results are reported and analyzed in 
section 5. Finally, the paper is concluded in section 6. 

2   Related Work 

A large number of heuristic algorithms have been developed in the literature to solve 
the RWA problem discussed here or its many variants. A review of various routing 
and wavelength assignment approaches is given in [1]. A new wavelength assignment 
scheme, called Distributed Relative Capacity Loss (DRCL), that works well in 
distributed controlled networks is also presented in [1]. Chlamtac et al. [3] used a 
greedy heuristic, called the Longest First Fixed Path (LFFP) algorithm to establish all 
lightpaths with minimum number of wavelengths. They used fixed shortest paths for 
all source-destination pairs. The shortest paths for a given connection requests are  
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sorted in decreasing order and the longest request is assigned a wavelength first. One 
technique is to use LP-relaxation followed by rounding [6]. In this case, the integer 
constraints are relaxed to a non-integer problem which can be solved by linear 
programming method, and then a rounding algorithm is applied to obtain a new 
solution which obeys the integer constraints. A greedy approach taken in [7] is to 
create lightpaths between end nodes in order of decreasing traffic demands as long as 
the wavelength continuity and distinct wavelength constraints are satisfied. Raja Dutta 
et al. [8] presented a polynomial time algorithm that optimally assign a single 
wavelength to maximize one hop traffic in a tree topology. This algorithm used 
dynamic programming and also proposed a heuristic to use this optimal algorithm for 
general graph. The evolutionary algorithms in the design of general wide area mesh 
network that minimizes the network cost is studied in [9], and [10]. In [11], Baroni 
and Bayvel proposed an algorithm, called the minimum number of hops (MNH) 
algorithm, for minimizing the maximum load per link in arbitrarily connected 
networks. The work in [12] proposed two algorithms, called the Longest First 
Alternate Path (LFAP) and the Heaviest Path Load Deviation (HPLD) and shows 
these algorithms are better than algorithm MNH [11] and algorithm LFFP [3], to 
minimize the number of wavelengths used. In [14], J. Zhou and X. Yuan considered 
single fiber and multifiber systems and dynamic routing with three wavelength 
selection schemes, namely random-fit, first-fit and most-fit. A new ant-based 
algorithm for dynamic routing and wavelength assignment problem in WDM optical 
networks under the wavelength continuity constraint is presented in [15]. To best of 
our knowledge, clique partitioning based heuristic was first proposed for routing and 
wavelength assignment in [16]. In this paper, we have proposed two algorithms based 
on clique partitioning. 

3   Network Model and Problem Formulation 

The optical network can be modeled as a directed connected graph G(V,E) where  
V and E are the sets of nodes and bi-directional links (edges) of the network, 
respectively. Here each link e Є E has a finite number of wavelengths. In the network 
a non-negative cost C(e) is assigned for every e Є E. The cost of moving from  
one node i to another node j is assumed as infinity, if there is no link between i and j. 
A request is denoted as r(s : d), where s is the source node and d is the destination 
node. 

The route for each connection request is determined based on the Dijkstra’s 
shortest path algorithm, i.e., the shortest path is used to set up a connection from node 
s to node d, for all node pairs in the network. Now, we need to optimally assign 
wavelength to each of these connection requests. We can modeled as clique 
partitioning problem in routing and wavelength assignment. For this purpose, we 
determine the compatibility graph. The compatibility graph can be modeled as an 
undirected graph GC = (VC,EC), where, VC is the set of vertices (actually connection 
request) and VC = |R| i.e., total number of connection requests in the original network 
G. The set of edges is EC and an edge (i, j) Є EC if routes of the two requests i and j do 
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Fig. 1. Physical Topology and 6-connection 
requests with best route  

Fig. 2. Compatibility Graph for connection   
requests in Fig. 1 

not share a common link between them and i, j Є VC. Figure 1 shows the physical 
topology of a five node network and six different connection requests with best route. 
The compatibility graph shown in Fig. 2 corresponding to connection requests  
in Fig. 1. 

In the compatibility graph, we can assign the same wavelength to all connection 
requests (nodes) those are connected with each other. For example, same wavelength 
can be assigned to three connection requests (nodes), if all these three nodes are 
connected with each other in the compatibility graph. So, we would like to partition 
the compatibility graph in such a way that it forms minimum number of complete 
graphs or cliques. Now, the same wavelength can be assigned to all the connection 
requests belonging to each clique. The total number of wavelengths required to 
establish the given set of connection requests R for the network is the minimum 
number of cliques in the compatibility graph. Therefore, the routing and wavelength 
assignment problem is mapped into a minimum clique partitioning problem. We 
know that the minimum clique partitioning problem is NP-complete. So, we have 
proposed heuristic based algorithms to find optimal or near optimal solutions. 

4   Proposed Heuristics 

In this section, we have proposed two heuristic based algorithms CPWA1 and 
CPWA2 (based on algorithms in [5]) for wavelength assignment (i.e., minimum 
number of cliques) that gives optimal or near optimal wavelength assignment in 
polynomial time.  

4.1   Algorithms 

In each iteration of algorithm CPWA1, consider a vertex x with minimum degree. 
Next, choose a vertex y which is neighbor of x and of minimum degree. If more than 
one y exist, then choose which has any common neighbor with x. Now combine x and 
y, call it x  and delete edges from x and y that are not connected to their common 
neighbors in the compatibility graph. If the list of edges in the compatibility graph is 
empty then exit from algorithm, otherwise, repeat the said process. 
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Algorithm CPWA1 
 
Input      :  Compatibility graph Gc for a set of given connection requests. 
Output  : CLIQUE,  minimum number of cliques and number of wavelengths 

          required to setup all connection requests R. 
Remark  :  CLIQUE is a 2-D array. All connection requests belonging to ith clique 

          is stored in CLIQUEi and ith wavelength is assigned to all connection 
          requests belonging to this clique.  

Begin 
 Unmark all nodes of the compatibility graph Gc. 
 //Compute clique that contain more than one nodes. 
 i = 1 
 While (list of edges in compatibility graph Gc is nonempty) 

  Pick a node x with minimum degree. 
  If more than one x exist, consider x which has lowest index.  
  Store x to CLIQUEi  
  Mark node x in Gc. 
  While (x has any remaining neighbor) 

  Pick a node y which is neighbor of x and with smallest 
  degree. 

  If more than one y exist, then consider y, which has any 
  common neighbors with x. Otherwise, consider lowest 
  index of y. 

  Store y to CLIQUEi 
   Mark node y in Gc. 

  Combine x & y and let it be x. 
  Delete edges from x and y those are not connected to their 

  common neighbors and accordingly update compatibility 
  graph Gc 

   End While  
   i = i+1  
  End While 
 // Compute clique that contain single node. 
 While (Gc has any unmarked node) 

 Consider an unmarked node z and store it in CLIQUEi 
   Mark node z in Gc 
  i = i+1 
 End While 
 NumberOfClique = NumberOfWavelengthNeed = i-1 
 Return (CLIQUE, NumberOfWavelengthNeed) 
End of Algorithm CPWA1. 

Conceptually both algorithms, consider two vertices such that number of edges 
deleted can be minimized and the number of edges remains after they are merged is 
always maximum. Let, node x and node y are merged, then number of edges deleted, 

Ed  = ex + ey – cxy  – 1 
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where, Ed  = number of edges deleted, 
   ex   = number of edges of node x, 
   ey   = number of edges of node y, 
   cxy = number of edges between common neighbors (of x & y) with node x 

and y. 
To minimize the number of edges deleted, we select x and y with minimum ex & ey 

and maximum cxy. In algorithm CPWA1, consider nodes with minimum number of 
edges, i.e., with minimum ex and ey, Now we proposed algorithm CPWA2 for 
wavelength assignment that consider the node x with minimum number of edges and 
search for node y which has maximum number of nodes with x, i.e., we consider 
minimum ex and maximum cxy and others are similar concept of CPWA1.  

 
Algorithm CPWA2 
 
Input      :  Compatibility graph Gc for a set of given connection requests. 
Output  : CLIQUE,  minimum number of cliques and number of wavelengths 

          required to setup all connection requests R. 
Remark  :  CLIQUE is a 2-D array. All connection requests belonging to ith clique 

          is stored in CLIQUEi and ith wavelength is assigned to all connection 
          requests belonging to this clique.  

Begin 
 Unmark all nodes of the compatibility graph Gc. 
 //Compute clique that contain more than one nodes. 
 i = 1 
 While (list of edges in compatibility graph Gc is nonempty) 

  Pick a node x with minimum degree. 
  If more than one x exist, consider x which has lowest index.  
  Store x to CLIQUEi  
  Mark node x in Gc. 
  While (x has any remaining neighbor) 

  Pick a node y which is neighbor of x and number of  
  common neighbors with x is maximum. 

  If more than one y exist, then consider y which has lowest 
  index. 

  Store y to CLIQUEi 
  Mark node y in Gc. 
  Combine x & y and let it be x. 
  Delete edges from x and y those are not connected to their 
  common neighbors and accordingly update compatibility 
  graph Gc 

   End While 
  i = i+1 
 End While 

 // Compute clique that contain single node. 
 While (Gc  has any unmarked node) 

 Consider an unmarked node z and store it in CLIQUEi 
   Mark node z in Gc 
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  i = i+1 
 End While 
 NumberOfClique = NumberOfWavelengthNeed = i-1 
 Return (CLIQUE, NumberOfWavelengthNeed) 
End of Algorithm CPWA2. 

4.2   Example 

To explain how the proposed algorithm CPWA1 and algorithm CPWA2 work, let us 
consider a  compatibility graph for  9 connection requests (numbered as 1 to 9) shown 
in Fig. 3. Both algorithms produce same set of cliques (also wavelength assignment to 
different connection requests) shown in Fig. 4(a). In algorithm CPWA2, first select 
node 2 as it is minimum degree and lowest index (since, minimum degree nodes are 2 
and 8) i.e., x = 2 and put it to CLIQUE1. The neighbors of node 2 are node 1, 6 and 9. 
Since, number of common neighbor of node 2 with node 1, 6 and 9 are 0, 1, and 1 
respectively. So in first iteration of inner while loop node 6 is selected as y and put it 
to CLIQUE1. Now combine x and y and assign it to x, i.e., x = 2, 6. Next statement is 
delete edges from x & y that are not connected to their common neighbor. So in this 
step edges (2, 1), (6, 3), (2, 6) and (6, 8) are deleted. Since, node 9 is common 
neighbor of node 2 and node 6, so node 9 is neighbor of x. Thus, inner while loop is 
satisfied for next iteration and node 9 is selected as y and insert it to CLIQUE1. Set x 
as node 2, 6, and 9. Next delete edges (2, 9), (6, 9), (9, 7) and (9, 8) respectively. Now 
exit from inner while loop because there is no more neighbor of x (are node 2, 6, and 
9) and we get first clique in CLIQUE1. The element in CLIQUE1 are    (2, 6, 9). Next 
iteration of outer while loop is started in a similar manner to find out the next clique. 
All the cliques  returned by this algorithm (CPWA2) is  shown in Fig. 4(a). Therefore, 
by this algorithm wavelengths 1, 2 and 3 are assigned to connection requests  (2, 6, 9), 
(1, 3, 4, 5)  and (7, 8) respectively. Fig. 4(b) shows the different cliques generated by 
algorithm CPWA2 for the compatibility graph (shown in Fig. 2). The CPWA1 
algorithm generates the same set of cliques (shown in Fig. 4(a)) for the compatibility 
graph shown in Fig. 3. 
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Fig. 4(a). Different cliques result by 
algorithms CPWA1 and CPWA2 for the 
compatibility graph in Fig. 3 
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4.3   Complexity 

In amortized analysis, we average out the time taken by the operation throughout the 
execution of the algorithm and it guarantees the average cost of the operation and thus 
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the algorithm in the worst case [13]. First we consider algorithm CPWA1. Let, R be 
the total number of nodes or connection requests in the compatibility graph Gc. In this 
algorithm, to pickup a node x or node y takes at most R times. Using amortization, the 
number of operation to considering all node x and y and store it in different cliques is 
obviously R2. As to the number of edge deletions, we note that no edge is deleted 
more than once and no new edge is inserted in the compatibility graph Gc by the 
algorithm CPWA1, thus the total number of edge deletions in this algorithm is at most 
R2.  Other operations takes constant time or less than R2. It follows that the total 
number of elementary operations: 

 1.  Selecting all node x and node y, and store its in different cliques, 
 2.  Deletion of edges from x and y, those are not connected to their common 
       neighbor 
altogether is 2R2. This implies that the time complexity of the algorithm CPWA1 is 
indeed Θ(R2). 

By similar amortized time analysis, we get the time complexity of the algorithm 
CPWA2 is also Θ(R2). 

5   Performance Analysis 

We evaluated the performance of the two proposed approaches CPWA1 and CPWA2 
using simulation on different network topologies. For comparison purpose we 
consider two popular wavelength assignment algorithm: the Longest First Fixed Path 
(LFFP) algorithm [3] and the First Fit (FF) algorithm (available in [1], [15]). Each 
node is working as both an access node as well as a routing node. We assume each 
physical link is bi-directional with the same length. The connection requests are 
randomly generated among all node pairs. The Dijkstra’s shortest path algorithm is 
used for the routing purpose. All simulations are performed 100 times. 

We show that our experiments on four example network topologies: a 6 node and 8 
links small network (shown in Fig. 5), ARPANET which has 21 nodes and 26 links 
(shown in Fig. 6), NSFNET which has 14 nodes and 20 links (shown in Fig. 7), and 
16-node bi-directional ring network (shown in Fig. 8). Figures 9 to 12 shows the 
results of our CPWA1 and CPWA2 algorithms for 6-node network, NSFNET, 
ARPANET and 16-node bi-directional ring network, respectively. The horizontal axis 
is the number of connection requests and the vertical axis is the average number of 
wavelengths per link required to satisfy all given requests.  

The four graphs (Fig. 9 to 12) in common indicate that: (i) The required number of 
wavelengths increases with number of connection requests for all four RWA 
algorithms. (ii) The algorithm CPWA2 outperform the existing well known LFFP and 
FF algorithms. (iii) The performance of CPWA2 is better than CPWA1, one main 
reason may be the algorithm CPWA2 select node y (for clique) which is neighbor of 
node x and maximum common neighbor with x, is more effective than in the 
algorithm CPWA1, where y is neighbor of x and degree of node y is minimum. (iv) 
The algorithm CPWA1 perform much better than the existing algorithm FF and better 
performance than popular LFFP algorithm. (v) The performance of the LFFP is better 
than FF.  
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Fig. 9. Average number of wavelengths per link
required versus number of requests for shown in
Fig. 5 

Fig. 10. Average number of wavelengths per 
link required versus number of requests for 
NSFNET 
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Fig. 11. Average number of wavelengths per 
link required versus number of requests for 
ARPANET 

Fig. 12. Average number of wavelengths per 
link required versus number of requests for 
16 node bi-directional ring network 

Therefore, the performance of the CPWA2 is much better than proposed CPWA1 
algorithm and the popular LFFP and FF algorithms, that is, the CPWA2 algorithm 
requires less number of wavelengths per link compared to CPWA1 algorithm and 
existing LFFP and FF algorithms.  
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The average % reduction of the wavelengths (per link) by the CPWA2, CPWA1 
and LFFP algorithms as compared to FF algorithm for different network topologies 
are shown in Table 1. Table 1 shows, on an average % of the wavelengths (per link) 
reduction by the algorithm CPWA2 is much more than the proposed CPWA1 and the 
popular LFFP algorithms for different network topologies. The algorithm CPWA1 is 
better than the algorithm LFFP in terms of average % reduction of the wavelengths. 

Table 1. Average % reduction of wavelength (per link) as compared to FF 

Network Topology CPWA2 CPWA1 LFFP 
6 nodes Small Network (figure 5) 24.32 18.07 15.31 
21 nodes ARPANET (figure 6) 25.81 16.49 3.28 
14 nodes NFSNET (figure 7) 22.00 15.95 5.06 

16 node Ring Network (figure 8) 19.40 8.12 1.61 

6   Conclusions 

In this paper, we have studied the problem of static routing and wavelength 
assignment in wavelength routed all optical networks and proposed two new efficient 
polynomial time heuristic algorithms CPWA1 and CPWA2 based on clique 
partitioning for wavelength assignment. Extensive simulation results for different 
network topologies indicate clearly that, algorithm CPWA2 outperform the algorithm 
CPWA1 and the existing FF and LFFP algorithms. The performance of CPWA1 is 
much better than FF and better than the LFFP algorithm. That is, the algorithm 
CPWA2 requires minimum number of wavelengths per link compared to our CPWA1 
algorithm and existing FF and CPWA1 algorithms. The average % reduction (as 
compared to FF algorithm) of the wavelengths (per link) by the CPWA2 and CPWA1 
algorithms are much better than the existing LFFP algorithm for different network 
topologies. The amortized time analysis shows that time complexity of both 
algorithms CPWA1 and CPWA2 are Θ(R2), where R is the total number of 
connection requests. 
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Abstract. This paper proposes fault detection and localization scheme to handle 
multiple failures in the optical network using wavelength-division multiplexing 
(WDM) technology. This proposed scheme is two-phased scheme containing 
(a) the detection of faults through monitoring devices raising alarms (fault de-
tection) and (b) subsequently the localization of these faults (fault localization) 
by invoking an algorithm. The later phase will obtain a set of potential faulty 
nodes (links). We demonstrate the performance of the scheme on 14-node 
NSFNet and 28-node EuroNet. We compare our scheme with an existing algo-
rithm [1] for locating faulty nodes (links). Our scheme outperforms the existing 
one.  

Keywords: Fault Detection, Fault localization, WDM, Optical Network. 

1   Introduction 

High capacity optical networks are immensely used in industries due to its large 
transmission bandwidth and low cost. But these networks are also vulnerable to fail-
ures like malfunctions of optical devices, fiber cuts, soft failures i.e., the impairment 
due to subtle changes in signal power such as degrading signal to noise ratio (SNR), 
etc. One of the most important requirements to ensure high speed optical network 
survivable is to manage fault detection, localization and recovery. In this work we dis-
cuss only fault detection and localization and the block diagram of our proposed 
scheme is shown in Figure 1.  

Fault diagnosis and localization is a challenging problem and hence it is an active 
field of research. Different approaches were used to solve the problem. Approxima-
tion algorithms were shown in [2]-[3] to reduce the number of monitoring elements. 
In [4] author showed that the optimal monitor placement (reduction) is an NP hard  
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Fig. 1. Proposed fault detection and localization scheme 

problem. Also in [1], [5] false and miss alarms are considered. In [5], authors showed 
that false alarms can be corrected in polynomial time but the correction of miss 
alarms is NP-hard.  

We model the network by a directed graph G = (V, E) where each node v∈V of the 
graph represents an optical component, and the directed edge (u, v)∈E represents a di-
rected lightpath from u to v. We have taken 14-node NSFNet (shown in Fig 2) as our 
network model which is the backbone network for US. The Fig. 2 is self-explained. 
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Fig. 2. Reference NSFNet 

2   Proposed Scheme 

2.1   Fault Monitoring: Monitors Placement with Dynamic Lightpaths 

Monitors initially are placed to all possible number of locations so that the failures 
can be detected and located for all components distinctly. In Fig. 2, M1 – M11 i.e., 11 
monitoring devices are placed to achieve maximum coverage. We propose a greedy 
algorithm which determines the optimal number of monitors in such a way that fail-
ures can be located for all components (i.e., for node(s) or link(s)) distinctly and no 
component remains unattended i.e., if a fault occurs in a component it must not re-
main undetected. The algorithm is described detail in [3]. In Table 1 (generated from 
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Fig 2), ‘1’ denotes that if a node fails the monitor with ‘1’ triggers an alarm. The set 
of monitors which generate alarm on failure is called Domain of the faulty compo-
nent(s). From Table 1 we can say that the set {M1, M2, M6, M8, M9} is the domain 
of ND5 (node 5). We have selected the optimal monitors using the algorithm [3] until 
domain patterns for all components are distinct. In the pre-computing stage, these 
domain patterns (see Table 2) are stored and used to locate the probable faulty  
components. 

Table 1. Alarm matrix for reference network 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 
ND4 0 0 0 0 0 0 0 1 0 0 0 
ND5 1 1 0 0 0 1 0 1 1 0 0 
ND6 0 0 1 0 0 0 0 0 0 0 0 
ND7 0 0 1 0 1 0 0 0 0 1 1 
ND8 0 0 0 0 0 0 0 0 0 0 1 

ND10 0 1 0 1 0 1 1 1 1 0 0 
ND13 0 0 0 1 0 1 0 0 0 0 0 

Table 2. Reduced Alarm matrix for reference network 

 M8 M3 M6 M11 M1 
ND4 1 0 0 0 0 
ND5 1 0 1 0 1 
ND6 0 1 0 0 0 
ND7 0 1 0 1 0 
ND8 0 0 0 1 0 

ND10 1 0 1 0 0 
ND13 0 0 1 0 0 

2.2   Detecting Multiple Faults 

When one or more monitors raise alarm, the network manager comes to know that 
probable faults occur in the network. This stage is called Fault Detection stage. So the 
function of this stage is to make the network manager alert about a possible failure in 
the network, so that he can run the fault localization algorithm (described later) to lo-
calize the faulty components. 

2.3   Locating Multiple Faults 

When there is any fault occurred in any component(s) some monitors which are in the 
domain of that component(s) will trigger alarms. But networks are frequently inter-
rupted with corrupted alarms namely false and miss alarms. The fault localization al-
gorithm (which also takes care for corrupted alarms) for multiple faults is described 
below. In this algorithm M is the set of all alarms, Mr is the set of all ringing alarms, 
Ms is the set of all silent alarms and C is the set of all components. 
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Algorithm for Locating Multiple faults 
Set_of_multiple_fault(){ 
Initialize an empty set FC=∅ 
Multiplefault(Mr) 
for ( i=1 to │Mr│){ 

Dr = Mr\Mr(i) where Mr(i)∈Mr 
Multiplefault(Dr) } 

for (i=1 to │Ms│){ 
Br = Mr∪Ms(i) for Ms(i)∈Ms 
Multiplefault(Br) } 

for (i=1 to │Mr│){ 
Gr = Mr\Mr(i) for Mr(i) ∈ Mr 
for (k=1 to │Ms│){ 

Hr = Gr∪Ms(k) for Ms(k)∈Ms 
Multiplefault (Hr) }} 

Output set FC;} 
Multiplefault(set Mr){ 
for (i=1 to │C│){ 

search for a component Ci∈C such that Domain (Ci)⊆ Mr 
incorporate Ci to S 
 FC=FC∪{Ci} }} 

In our fault localization algorithm we have considered four cases i) No false alarm 
and no miss alarm ii) One false alarm and no miss alarm iii) No false alarm and one 
miss alarm iv) One false alarm and one miss alarm. We explain our algorithm using 
Table II. Let us consider at any time the received alarm (RAL) has been noticed {1 1 
1 0 0} i.e., M3, M6, M8 have triggered alarms and M1, M11 remain silent. For case i) 
it is assumed that there are only correct alarms in the network. Now as Domain 
(ND4)⊆ Mr, Domain (ND6)⊆ Mr, Domain (ND10)⊆ Mr, Domain(ND13)⊆ Mr, {ND4, 
ND6, ND10, ND13} is included in faulty component (FC) (from Fault Localization 
algorithm). For case ii) we have made the all combination of received alarm pattern 
considering that there is one false alarm in the network. So, in the above mentioned 
received alarm pattern three more patterns are available. They are {(1 1 0 0 0), (1 0 1 
0 0), (0 1 1 0 0)}. For case iii) where there is one miss alarm but no false alarm we 
have more combinations of received alarm pattern. They are {(1 1 1 1 0), (1 1 1 0 1)}. 
For case iv) where there are one false alarm and one miss alarm there are eight more 
possible combinations of received alarm pattern. They are {(0 1 1 1 0), (0 1 1 0 1),  
(1 0 1 1 0), (1 0 1 0 1), (1 1 0 1 0), (1 1 0 0 1)}. 

3   Simulation Performance 

We have implemented our scheme on 28 nodes EuroNet and the results are shown be-
low. Fig. 3 shows that the cardinality of the set of possible faulty nodes in the case of 
single and double faults which is the output of fault localization algorithm. Fig. 4 and  
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Fig 5 show that the number of monitoring devices remains more or less same with the 
change of ligthpaths in three different situations namely a) during a single and double 
fault, b) after single and double fault and c) after addition of a new monitor (node) in 
the network. 
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Fig. 3. Number of elements in faulty set vs. load 
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Fig. 4. Monitor number vs load before single fault, after single fault and after new node  
addition 
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Fig. 5. Number of monitor vs load before double fault, after double fault and new node addition 
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4   Comparison Between Our Scheme and Algorithm Discussed  
in [1] 

We have compared our scheme with the algorithm of [1] on the fault localization i.e., 
how the cardinality of the set of faulty nodes varies in both schemes (shown in Fig. 6 
and Fig. 7). The cardinality set generated from [1] is higher in both cases. Therefore, 
our algorithm performs better in locating faults than existing one [1]. 
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Fig. 6. Comparison of single fault 
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Fig. 7. Comparison of double faults 

5   Conclusion 

In this paper we have presented two-phased scheme containing (a) fault detection and 
(b) fault localization. We have shown the performance of our scheme on 28-node Eu-
roNet and also compared fault localization scheme with an existing algorithm [1]. 
Clearly, it has been found that our algorithm outperforms the existing one. 
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Abstract. In today’s broadband communication optical network is mostly used 
for backbone network establishment. In optical networks, it’s the advent of 
wavelength division multiplexing, WDM, not only helps us to properly utilize 
available bandwidth of optical fiber but also helps us to manage the optical fiber 
medium in better way. Continuous lightpath would be treated as solution for 
lightpath establishment. And availability of the same wavelength throughout the 
whole path would be, only, cause of a lightpath establishment. It’s the 
unavailability of the same wavelength throughout a path would cause lightpath 
not to be established and that would increase call blocking probability. 
Wavelength conversion in limited manner, one step wavelength conversion, is 
one solution to minimize call blocking probability. Here one wavelength 
assignment and one routing algorithm have been proposed which give us better 
results in terms of call blocking probability and processing time for wavelength 
assignment. 

Keywords: WDM, One step conversion, Degree of conversion. 

1   Introduction 

If we see the trends in optical network technology, its clearly visible that the trend 
dynamic lightpath establishment or on demand lightpath establishment has become 
very popular in order to satisfy service providers' requests to respond quickly and 
economically to customer demands. For the efficient usage of network resources, the 
dynamic light- path establishment scheme should be able to maximize the number of 
connections that are established in the network [1]. However, there is always a 
possibility that the network resources are not sufficient to setup a lightpath when 
connection requests are issued, resulting in connection blocking. This blocking 
probability will increase if time taken to reserve wavelength in each link of a route 
path, returned by routing algorithm is high. Thus, wavelength assignment algorithm 
plays a pivotal role in dynamic light path establishment. In an optical network [3], it is 
usually not feasible to establish lightpaths on a single wavelength between every pair 
of nodes due to physical constraints on the number of wavelengths limited by the 
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ehium doped fiber amplifier bandwidth (35nm) [2], limited number and tunabilily of 
the optical receivers at each node and light wave dispersions that limit the physical 
length of the lightpath. A wavelength converter can transfer a signal on one 
wavelength to another wavelength at its output port (if there is no wavelength 
conflict). In all optical conversion, it is less costly to convert a wavelength to another 
wavelength not farther away [4]. In our study we have considered that all nodes in an 
optical network will have optical converter with one-step conversion capability. In 
other words, if incoming signals are with λi, the outgoing signal could be with either 
λi-1 or λi+1. Here we should know why should we stress on less usage of conversion 
although available? The answer is too much conversion: a) causes signal loss and b) 
increases power consumption.  

In recent studies [6]-[11], authors tried to solve the problems or it variants and 
have not considered the wavelength convertibility criteria. This motivates us to solve 
the assignment problem with assumption of limited convertibility at each node of the 
network. 

The literatures [7], [12] have proposed different routing strategies and the best 
algorithm has been proposed in literature [7]. We have proposed one new routing 
algorithm, which performs better than the shortest path algorithm and the proposal in 
literature [8]. 

2   Network Model 

The network consists of some nodes and connectivity by optical fiber. Each node of 
the network has switching and conversion capability to connect channels to form 
lightpaths. Conversion capability of each node is one step. The figure 1 depicts one 
node with one step wavelength convertibility. Here the term, one step wavelength 
conversion means - if λ1, λ2, λ3 etc are the serially assigned wavelength of any link 
then λ2 can be converted to either λ1 or λ3; λ1 can only be converted to λ2 and λ3 only 
to λ2 if available on the next link. The amount of switching and conversion capability 
at a node can be called as wavelength degree [5]. A node has wavelength degree (for 
some integer ) if for each pair of incident links a channel in a link is attached to at 
most other channels in the other link. For this model, the limited conversion node 
shown in Fig 1 has wavelength degree two. Also note that a node with no or fixed 
conversion has wavelength degree one, while a node with full conversion has 
wavelength degree equal to total no of wavelength of each link. Here in presence of 
this one step conversion we have to find out a best path for any request so that the call 
blocking probability as well as number of conversion taken place in between nodes 
both can be reduced. 

 

Fig. 1. One step conversion for wavelength degree 2 
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3   Mathematical Formulation 

Let us assume that there are N nodes in a route path, P, returned by routing algorithm 
between any pair of nodes in an optical network. Each link in the network is having m 
wavelengths. For mathematical formulation let us consider the followings: 
 
LPk: k

th feasible lightpath in P, where k is positive integer 
λ: Set of wave1ength i.e λ = {λ1 , λ2 ,... ..., λm } 
L: Set of links in the path i.e.L={Ll, L2 ,.., LN-1} 
LSi

j: Link status of ith link, 1≤i≤N-1 and 1≤j≤m 
Xk: Assignment matrix where an element xij

k takes value 1 if wavelength λi is    
       assigned to the lightpath, LPk, on link, Lj, otherwise, 0 and 1≤i≤m, 1≤ j≤ N-1 
λUNU: is a matrix where λij

UNU takes value 1 if λi is free on the link Lj, otherwise 0, and  
          1≤i≤m, 1≤j≤N-1 
Yk:  is the number of wavelength conversion in a lightpath, LPk. 
CHi

j: jth child generated by ith parent, 1≤i≤n-2 and 1≤j≤2 (m-2) 
CONij

kl: Represents that to go from ith link to jth link kth wavelength to be converted  
               into lth wavelength. 
Cij

k: Conversion cost from Li to Lj calculated at node k. 
SOL_COST: ΣCij

k, for 2≤k≤N-1 
 
Objective of the problem: 
 

Minimize      ΣCij
k  , CBP and    TC    (1) 

 
Subject to: 
   
   λi = λi+1 or λi-1     if 1<i<m        (2) 
 
   λi = λi+1              if i=1        (3) 
 
   λi = λi-1           if i=m        (4) 
  

Here CBP is call blocking probability and TC is time consumption. The 2nd 
condition says that can be changed to either one step more or one step less if index of 
is greater than 1 and less than m. If its index is 1 then it can only be changed to one 
step more and in case of m it can be one step less.  

4   Algorithm 

Step 1: Branching at 2nd, 3rd, …..(N-1)th node is done in parallel as there are total N  
            nodes on the routed path to find out CHi

j. 
Step 2:  After branching, cost assigned to each and every child state. Left most 

children is the state itself and its cost is 0 and cost of all other is 1. 
Step 3: For each child state of each parent intersection operation is done with the next  
            link status value in parallel. 
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Step 4: Now cost of each intersection, Cij
k , is calculated adding cost child state with  

 

            cost of next link state, which is considered 0. This is calculated only if intersection 
            value is not 0. If all the intersection values on a node are 0, request cannot be 
 

             entertained. Here CONij
kl is also calculated. 

Step 5: At each node, pick up the least cost intersection and choose that as the best  
 

            alternative for solution and calculate SOL_COST. 

5   Routing Scheme 

Routing algorithm may be based on shortest path routing (SPR) algorithm. But here a 
new approach for routing will be proposed which will be better than SPR. 

This procedure will try to find a path keeping in mind two factors: length of path 
and wavelengths already used along the path. The total procedure is described below. 

First of all we will find out a set of paths (P). The first path of that set will be 
shortest path; second one will be next shortest path; third one will be next to second 
one etc. P set is finite and depends upon user. Minimum value can be taken as 3. 

Then we will calculate Wavelength Usage (WU) factor for each path. WU factor 
for each path is ratio of number of wavelengths presently in use and total number of 
wavelengths along that path.  
 
WU factor = (No. of wavelengths presently in use) / (Total number of 
wavelengths along that path) 
 
This says that if a path consists of two link each having three wavelengths and 
number of wavelengths in use along that path is three ( i.e one link has used two 
wavelengths and another only one wavelength), WU factor for this example will be 3/ 
(2*3) = 0.5. 

If WU factors for all the paths are calculated, we will calculate Deciding (D) factor 
for each path of the set. D factor is inverse of (L*WU factor), where L is length of the 
path. 
 
D factor = 1/ (L*WU factor) 
 
Once D factors are calculated, we will choose the path having maximum D factor as 
best path to be used for wavelength assignment. 

Why does this scheme consider two different factors for path selection? Length of 
path factor is important because too much length increases probability of conversion. 
And the second factor is most important because too much wavelength usage on a 
path increases probability of not having suitable combination of wavelength even in 
presence of wavelength conversion. 

Lastly, why did we take a finite set of paths? This has been considered in such a 
manner because too many paths in the set increases time consumption for selecting 
the best path.  
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6   Results 

For testing the performance of the proposed algorithms, two different networks have 
been taken. The first one is a seven-node network with predefined connectivity as 
shown in the Figure 2. We will run our experiment on this network and it can be run 
on other any other network also. 

 

Fig. 2. A 7-node sample network 

The results have been taken for different number of wavelength on each link and 
changing the total wavelength usage of the network. The percentage of wavelength 
usage means how much the network is loaded. Results on Table 1 show that the 
proposed concept, if applied, for wavelength assignment under one step wavelength 
conversion the call blocking probability can be improved to some significant amount. 
For simulation on this network total 28 calls were generated. From each source node 4 
different calls were generated for four different destinations.  
 
Legends which are used on the tables are as follows 
Exp No.- Serial no of the experiments, WL - Wavelengths on each link, WLU - 
Wavelength Used, WTC - Call blocking probability without conversion, WOSC - Call 
blocking probability using SP routing with one step Conversion, NRA – Call blocking 
probability with new routing algorithm. 

Table 1. Results show better performance of one step Conversion (WOSC) over without 
conversion (WTC) 

Exp No. WL WLU(%) WTC WOSC 

2 4 69 0.46 0.32 
3 5 69 0.46 0.07 
5 6 69 0.53 0.39 
6 6 60 0.60 0.50 
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Results of the Table 2 show that applying the routing concept, on the same network 
varying number of wavelength and wavelength usage, we can improve the call 
blocking probability further to some noticeable amount. The routing algorithm, for 
simulation, takes three different paths for selecting the best one, according to the path 
selection formula already discussed, for any request. 

Table 2. Results show better performance of new routing algorithm (NRA) 

Exp No. WL WLU(%) WOSC NRA 

2 4 75 0.32 0.28 
4 5 64 0.14 0.03 
5 5 84 0.39 0.35 
6 6 76 0.50 0.35 

Thus these two sets of result clearly say that the one step conversion wavelength 
assignment algorithm is a better concept and the routing algorithm proposed is also 
better one.  

 
Now the time complexity and time consumption 
The time complexity of the wavelength assignment algorithm proposed in literature 
[6] is O(L*W). Where L is length of the path selected from the set of paths and it can 
be maximum N(N-1)/2, where N is the number of nodes of the network. Actually, in 
one-step conversion all the wavelengths except first and last one can be converted into 
two wavelengths and total number of calculation will be 2(W-2) =2W-4. Again, the 
first and last one can be converted to only one wavelength and the total computation 
will be 2W-4+2= 2*W-2. For intersection operation again we need 2*W-2 
computations. So total computations for the selected route are L*2*(2*W-2) and 
complexity could be O(L*W). For this algorithm the time complexity is O(W). 
Because here for all the L-1 links computations will be going on in parallel and all the 
nodes can generate the output only with 2*(2*W-2) computations and this says that its 
complexity is O(W). 

7   Conclusion 

Here one routing algorithm and one new approach for assigning wavelengths in 
presence of limited range wavelength conversion have been proposed. The routing 
algorithm has been proposed keeping two vital factors in mind: a) length of the path 
and b) wavelength usage over the path. And the wavelength assignment algorithm can 
be applied in distributed environment where each and every node has the computing 
capability to some extent. It has also been proved that this algorithm if applied in real 
networks can run consuming less time. The routing algorithm has been proposed and 
the results, applying this algorithm, show that this is a better proposition.  
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Abstract. In this paper, a storage mechanism is devised to balance the
load and to provide immediate service to the clients with a start-up de-
lay of 2ms to 7 ms. The video storage is based on the probability of the
clients requesting for the video. Videos with higher probability of being
requested are stored and replicated to ensure guaranteed retrieval. Par-
ity generation scheme is employed to provide reliability to non-popular
videos. The system is also capable of handling disk failures transparently
and thereby providing a reliable service to the clients.

Keywords: Fault Tolerance, Load Balancing, Start-up Delay, Video
Server.

1 Introduction

Recent developments in storage mechanisms are making high performance Video-
on-Demand (VoD) servers a reality. The video server stores heterogeneous in-
formation on array of high capacity storage servers and deliver them to the
geographically distributed clients. The design constraint is to develop a large-
scale cost-effective video server with a scalability to admit and service the client’s
requests simultaneously.

2 Previous Works

A comparison of different RAID levels is made to bring out Random Duplicate
Assignment (RDA) [1]. In this strategy the video is striped and instead of being
stored sequentially they are randomly allocated in different disks and each strip
is mirrored to enable fault tolerance. The time required to access next block
in the disk increase as the blocks are randomly allocated. A map between the
blocks is to be maintained to handle this problem, which is an additional over-
head. Golubchik et al. [2] discusses fundamental issues associated with providing
fault tolerance in multi-disk VoD servers. In [3], [4] Replication of videos and
placement of video blocks based on popularity is discussed.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 478–483, 2008.
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3 System Architecture

The overview of storage mechanism is shown in Fig. 1. The video is divided
into blocks based on number of disks. Each block is stored in different disks
sequentially so that only once a block of video stored on the disk. The first disk
to store the video is rotated to ensure that the load is balanced among the disks.
If the block requested is stored in a disk, which is serving another client, the
request is queued. The requests in the request queue are serviced in round robin
fashion. If the video is popular then, the video is stripped across the array of the
disks and mirrored. The request is serviced by the mirrored storage, in case of
increase load for the popular videos. The mirrored data is also accessed in case of
disk failure containing the popular videos. If the video is non-popular video, it is
stripped across the disks with the last disk in the set of disks to store the parity
information. Performing XoR operation between all the blocks of data generates
parity block. This helps to rebuild the video block in case of disk failure.

Fig. 1. Overview of the Storage Mechanism

4 Algorithm

A: Video Storage (VideoId)
1. Determine the popularity of the video.
2. If (video is popular) then BlockSize = VideoSize / n

else BlockSize = VideoSize / n-1
3. If( space available to store video at BlockSize on disk j )

While(V ideoSize ≥ 0)
begin

j = ((V ideoId%n) + i)%n
reduceV ideoSizebyBlockSize.
storeblockondisk j
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increment i by1
end

4. if(videoispopular) then mirrortheblocksinmirrorstorage.
else Pj = B0 ⊕ B1

While (i < n)
begin

pj = pj ⊕ Bi

Store Pj in disk j
end

B: Handle Request (Video id)
1. found = search index table for VideoId
2. While (found=EOF)
3. Retrieve video info from index table.

begin
if (block not corrupted) and if (disk not loaded)
begin

stream block i from disk j
j = j+1

end
else if (video is popular) then handle request from replica disk

else Forward Request (Video Id)
else if (video is not popular)then rebuild block from parity block

else stream from replica.
end

The storage routine shows how the videos are stored in the server to fa-
cilitate load balancing and the HandleRequest routine is designed to illustrate
the behavior of the server on arrival of the request.

4.1 Illustrated Example

Consider the storage of 5 videos V0, V1, V2, V3, V4 of file size 1500Mb, 1000Mb,
2000Mb, 800 Mb, and 3000 Mb respectively, where V0, V1, V4 are popular videos
and V2, V3 are non-popular videos. The disk-id of first block is disk-1, disk-2,
disk-3, disk-4 and disk-5 with block size 300 Mb, 200 Mb, 800 Mb, 169 Mb and
600 Mb respectively. Considering 10 disks in the video server with 5 primary
disks, the storage allocation for each video in their corresponding disks is given
in Table 1. The request arrivals are indicated in Table. 2. The requests are served
with each request being allocated bandwidth (Refer Table. 3). If the disk is busy
serving different client it is moved to the request queue (Refer Table. 4). The
request queue is checked for every 5 sec and if queue is not empty then, the
clients are served in round robin fashion. It is assumed that the request queue
capacity is 5. If the number of requests increases or the delay increases more
than 10 ms then, the request is forwarded to other video server.
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Table 1. Storage of Videos

Video-id Block-size(Mb) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
V0 1500/5=300 B0 B1 B2 B3 B4
V1 1000/5=200 B4 B0 B1 B2 B3
V2 2000/4=500 B3 P B0 B1 B2
V3 800/5=160 B2 B3 P B0 B1
V4 3000/5=600 B1 B2 B3 B4 B0

Table 2. Request Arrival

Request Request-id Arrival clock time(secs)
R0 3 0
R1 1 5
R2 1 5
R3 3 5
R4 0 8
R5 1 8
R6 2 15
R7 0 15
R8 4 15
R9 0 18

Table 3. Bandwidth Allocated to Requests

Time(ms) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
T0=00 R0(600Mb) 2Mbps
T1=05 R1(200Mb) R0(590Mb) 1Mbps 1Mbps
T2=08 R4(300Mb) R1(197Mb) R0(587Mb) 0.6Mbps 0.6Mbps
T3=10 R4(298.2Mb) R0(200Mb) R3(160Mb) 0.6Mbps 0.6Mbps
T4=15 R4(295.2Mb) R5(200Mb) R6(800Mb) R0(585.2Mb) R8(600Mb)
T5=18 R4(294.2Mb) R5(200Mb) R6(499.4Mb) R0(584.6Mb) R8(599.4Mb)
T6=20 R7(300Mb) R1(195.2Mb) R6(499Mb) R3(157Mb) R8(599.9Mb)

Table 4. Request Waiting in the Request Queue

Time(ms) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
T0=00
T1=05 R2(200Mb) R3(160Mb)
T2=08 R2(200Mb) R3(160Mb) R5(200Mb)
T3=10 R2(200Mb) R3(585.2Mb) R1(195.2Mb)
T4=15 R7(300Mb) R1(195.2Mb) R3(157Mb) R2(197Mb)
T5=18 R7(300Mb) R7(197Mb) R0(584.2Mb) R9(300Mb) R2(199.7Mb)
T6=20 R9(300Mb) R2(197Mb) R0(584.2Mb) R4(294.2Mb) R5(199Mb)

5 Simulation and Performance Analysis

Fig. 2, illustrates the start-up delay of the clients to begin downloading the video
after the request is made. The average delay increases with the increase of load, as
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the clients are queued if the disk is busy serving other clients. The delay increases
by 17% with the increase of load. The start up delay can be further decreased
with increase in number of disks in the system which is evident from the graph.
Fig. 2, also depicts the decrease in start up delay with increase in number of disks.
Bandwidth utilization for varying load is ascertained in Fig. 3. The increase
in bandwidth decreases time to download the entire video. Variations of load
increase the time to download by 2% to 4%. Increase in bandwidth reduces the
time to download by 75% reaching saturation at higher bandwidth rates.
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6 Conclusions

An efficient storage mechanism has been proposed to balance the load in the
video server. The system has a low delay of 2ms - 7ms for a varying load. The
bandwidth is utilized efficiently and less time is required to download the videos.
The feasibility of replication-on-demand is critically dependent on the replication
bandwidth availability. We believe that the simplicity of their implementation
and the flexibility they offer makes these policies especially attractive for imple-
mentation in scalable video servers. Our future work is to examine the possibility
of providing fault tolerance along with balancing the load in a video server.
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Abstract. A desirable property of any system is that if a user is ready
to pay for a specific level of service, the system should be able to meet
his requirement. Currently, Internet does not provide a standard mech-
anism to price its resources. A multi level pricing scheme is proposed
to reflect the hierarchical structure of the Internet, care being taken to
ensure that it requires minimal changes to the Internet protocols. Data
statistics are maintained as an aggregate, thus reducing the load on inter-
mediate routers in the Internet. The proposed mechanism performs the
dual functions of providing service differentiation according to budgets,
and doing congestion control through feedback at time scale compara-
ble to a round trip time. We investigate stability issues of the multi
level pricing scheme. Simulation results for the different traffic scenar-
ios show that the proposed pricing model increases the aggregate user
utility function while adequately responding to congestion and providing
service differentiation.

1 Introduction

The motivation for using pricing in communication networks is two-fold. Firstly,
it provides a basis for signaling congestion. The price can indicate how desirable
it is to begin a new transmission given the current state of the network. Secondly,
pricing can be used to elicit how much the users value service relative to each
other [1].

Price is an important parameter in determining the utilization of the network.
One proposal is to choose representative applications for different classes, and
determine the prices at equilibrium. These can be then be the default prices for
the respective service classes [2]. Another idea is to use the TCP mechanism
to determine prices for the end users [3]. The proposal is a modification to
the existing TCP mechanism by using the ECN marks for pricing. On a slightly
different note, in the case of slowly varying demand statistics time-of-day pricing
suffices, and price changes at the scale of round trip times is not required [4].

Much of the work has focused on optimality of pricing schemes. There has been
a proposal to move away from optimality and instead focus on the structural
issues of the Internet, and design pricing schemes according to simplicity of
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implementation and deployment [7]. A complete architecture for pricing in a
DiffServ domain has been proposed [8], and it uses an underlying congestion
control algorithm in the domain, on top of which the pricing only provides the
required service differentiation.

Multi level pricing works at two different time scales. There is a first level
scheme which adapts price at time scales comparable to round trip times and is
similar in spirit to [5]. Its objective thus is to achieve congestion control. The
second level scheme works at session time scales, and is similar to the hybrid
schemes proposed in [6],[8]. The first and second level schemes are interconnected
in that the feedback from the second level scheme is fed into the first level scheme.

While multi-level pricing is a combination of two separate mechanisms, it
achieves much more than the individual schemes. It is compatible with the hi-
erarchical structure of the Internet, and has been structured so as to require
minimal changes to the current Internet. The question of increased load on in-
termediate routers has also been considered during the design of the scheme.
Multi level pricing achieves the dual objectives of congestion control and service
differentiation.

Details of formulation of the first level pricing scheme and its stability analysis
can be found in Section 2. Second level pricing is necessary to identify misbe-
havior in the Internet. Details of the second level pricing scheme and its stability
properties are discussed in Section 3. We have carried out simulation of multi-
level pricing on ns-2. The simulation setup details as well as results can be found
in Section 4.

2 First Level Pricing Scheme

In this model, a policing entity in the Internet regulates end users rates, and lets
in traffic according to the residual capacity in the network. The policing entity,
which is the ISP in case of the current Internet, does this regulation through a
pricing scheme.

The pricing can be class-based or user-based. User based pricing can involve
maintaining per user statistics and hence may be burdensome for the ISP. How-
ever, class based pricing needs information about the usage of specific classes
of traffic only, and no per user state needs to be maintained. The treatment of
users within a class cannot be differential though.

2.1 Formulation of the Pricing Scheme

Consider a network with a single bottleneck link of capacity C Mbps. Let there
be n users accessing the network at a given instant. The instantaneous rate of
user i at time instant t will be denoted by xi(t). Each user has a budget bi,
which indicates the maximum willingness to pay of that user. Let each user be
the source of a CBR stream with the instantaneous rate.

According to our pricing scheme, the users will be charged based on their
resource usage profile. There should also be a component in the price function
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that indicates congestion level on the link. This is required to bound the demand
from the users to a maximum of up to the link capacity.

There are two components in the pricing scheme. The first is that of a service
price. This is computed for user i based on the proportion of allocated resource
used up by user i. Let this be denoted by ps

i . It is given by the following formula

ps
i (t) =

xi(t)∑
i xi(t)

. (1)

The second component in the price function reflects the congestion state of
the network. Congestion in networks is reflected through the queue buildup at
intermediate routers. In the simple case of the traffic following Poisson arrivals
with mean λ, and exponential service rate μ, the average queue length is given
by 1

μ−λ . It is desirable that the pricing function tracks the congestion level as
represented by the queue length in Eq. (2.1). Hence we choose the congestion
price pc

i as,

pc
i (t) =

1
C −

∑
i xi(t)

. (2)

This can also be seen as the price depending on residual capacity in the network.
For other traffic types represented by different arrival distributions, a pricing
function can be determined along similar lines.

The price value for user i at time instant t is now given by,

pi(t) = ps
i (t) + pc

i (t); (3)

⇒ pi(t) =
xi(t)∑
i xi(t)

+
1

C −
∑

i xi(t)
. (4)

3 Second Level Pricing Scheme

The first level scheme works well at the ISP level in the Internet. But there is
multiplexing of ISP traffic inside the core. Hence, resource overflow may happen
at this point also. The ISP can regulate end users which it is servicing, but there
should be some entity which signals the resources at the core to the ISP’s. This
is achieved through a two level pricing scheme, with a core entity performing
the job of the second level of pricing.

In effect these are two markets, the retail market at the ISP and the wholesale
market at the Core. The adaptation at the ISP-Core level happens at much larger
time intervals than that of the User-ISP level.

Each ISP purchases some amount of resource from the Core. The core assigns
different codepoints to ISP’s to monitor their traffic for regulation. The usage
statistics are maintained per ISP at the core, and not per class as in case of the
ISP. Hence, the pricing is for a much higher aggregate of traffic here, than at
the first level between the user and the ISP.
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Let the amount of resource (bandwidth in the current case) purchased by
a particular ISP, say ISPj , is wj . Let the contract between core and ISP be
renegotiated at time interval of t seconds. The count of packets transmitted
for a particular ISP are maintained at the core for each such interval. Let the
count of packets for ISPj be denoted by pktsj. Let the average size of packets
transmitted by ISPj be pktsizej. Thus, the actual bandwidth used by ISPj

during a given interval is,
pktsj × pktsizej

t
.

Overshoot Oj is thus determined as,

Oj =
(

pktsj × pktsize

t
− wj

)

. (5)

The price for ISPj at the core pj
core, when it overshoots the contract is thus

determined as follows

pj
core = pj

core +
(

Oj

wj
× pj

core

)

, (6)

where Oj is determined by Eq. (5).
This price is fed into the price update equation at the ISP, Equation (4),

giving

pi(t) =
xi(t)∑
i xi(t)

+ pj
core ×

(
1

C −
∑

i xi(t)

)

. (7)

3.1 Stability Analysis

According to the formulation in Equation (6), the value of pj
core is proportional

to U(t) − wj , where U(t) is the sum of all the user rates currently connected to
ISPj . Thus Equation (7) becomes,

pi(t) =
xi(t)∑
i xi(t)

+
(

U(t) − wj

C −
∑

i xi(t)

)

. (8)

Again linearizing Equation (8) about the equilibrium point (Uo, x
i
o) we get,

δxi =
(

−bi

Uop2
o

)

δxi +
(

−bi

p2
o

) (
(C − wj)

R2
o

− xo
i

U2
o

)

δU ; (9)

δpi =
(

1
Uo

)

δxi +
(

−xo
i

U2
o

+
C − wj

R2
o

)

δU. (10)

The Eigenvalues are,
(

−bi

Uop2
o

)

,

(
−xo

i

U2
o

+
(C − wj)

R2
o

)

(11)

The first eigenvalue is always negative. For the second eigenvalue to be negative
the following condition needs to be satisfied,

xo
i >

U2
o

R2
o

(C − wj). (12)
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Fig. 1. Topology used for simulation of two level pricing

4 Results

Simulations have been done on the ns-2 simulator [9]. The ISP and core coun-
terparts have been implemented as agents. ISP and core agents make use of this
underlying model for contract establishment, marking of packets, and policing.

The topology used for the simulation of two level pricing is as shown in Fig. 1.
The scenario depicted in Fig. 2 is a case when the demand at the ISP exceeds its
allocated capacity. The ISP provides price feedback to the users at 0.01 second
intervals, while the Core provides feedback to the ISP at 5 second intervals.
The ISP keeps track of which users overshooted their contract. If the users are
permitted to go beyond the capacity reserved for the ISP, then congestion can
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set in. The core, identifies the misbehavior and communicates it back to the ISP.
The rates at equilibrium are in the ratio of their budgets.

The proposed two level pricing identifies and penalizes misbehaving users
through communicating with the ISP’s. The Core maintains statistics about the
achieved rates for each of the ISP’s, and at regular intervals compares this with
the contracted rates. Overshoot, if any, is penalized through a price component
which is communicated to the ISP by the core. The ISP in turn conveys this
information to the end users. Since no user’s budget is infinite, the regulation
happens eventually.

5 Conclusion

This paper has proposed a mechanism for providing effective service differentiation
based on budgets of users, and also perform congestion control functions. A math-
ematical proof for the local asymptotic stability of the pricing mechanism is pro-
vided. The pricing function is also validated through simulation results. To reduce
the amount of information to be maintained, the pricing algorithm has been split
across two levels.Data is thusmaintained inanaggregatedmannerat the individual
levels, and the lower level has the capability to split up the aggregated data com-
municated from the upper level into its constituents. The proposed scheme can be
scaled to higher degree of hierarchy. The scheme has been designed so as to require
minimal changes to the current Internet, and can be implemented incrementally.
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Abstract. The paper describes a policy-based model for cost-effective
‘data connectivity’ provisioning between session-level end-points. Data
flows with closely-similar QoS needs are aggregated over an end-to-end
logical path. The available infrastructure bandwidth is apportioned be-
tween various paths that carry (aggregated) data flows with distinct QoS
levels. Flow aggregation over a path allows reaping the statistical multi-
plexing gains in bandwidth. Whereas, a path-level bandwidth allocation
allows meeting the QoS needs of data flows sharing this path. The SP
installs policy functions at the end-points that can make the connectivity
provisioning cost-optimal in different operating regions of the system.

1 Introduction

To offer data-level connectivity as a service, end-to-end paths may be set up
between data aggregation points — say, between New York and London. Indi-
vidual clients may then exchange high volume information over these data paths
for sports, business, and entertainment applications.

In commercial settings, the service provider (SP) may lease the bandwidth
from infrastructure networks (say, telecom companies such as AT&T) to pro-
vide a session-level ’data connectivity’ between end-points. In public Internet
however, the raw bandwidth between end-points is available free of cost but the
availability of bandwidth is itself not guaranteed. From the SP’s standpoint, the
internet bandwidth is of use only if it can be packaged into a usable commodity,
i.e., a bandwidth that can be measured and made available to the end-users with
some guarantee of stability and predictability over meaningful time-scales. This
packaging of bandwidth into a usable form incurs a cost to the SP. Thus, revenue
incentives become a part of bandwidth management strategies when providing
transport connectivity as a service to the users.

The SP is faced with two conflicting goals: reducing the bandwidth costs in-
curred for data transfers (to maximize the SP’s revenues) and allocating enough
bandwidth to meet the QoS needs of application sessions (to satisfy the end-
user’s utility). Our end-point admission control function aggregates a large num-
ber of data flows with closely-similar QoS needs over a single logical connection.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 490–495, 2008.
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The resource management function then suitably apportions the available in-
frastructure bandwidth between the various connections that carry (aggregated)
data flows with distinct QoS levels. In contrast with the flow aggregation model
employed in [1], our model employs a session-level object, namely, ’data connec-
tion’, to effectively manage the data flows.

The SP may use policy functions that prescribe how distinct the flow specs
of data over various paths are and what cost the per-flow bandwidth appor-
tionment over a data path incurs. Our architecture allows installing a repertoire
of policy functions at end-points and selecting the appropriate ones to make
the connectivity provisioning cost-optimal. The paper describes the end-point
mechanisms to realize architecture, and evaluates it using simulation studies.

2 Bandwidth-Provisioned Connectivity

In our model, the links that provide the physical connectivity between end-points
constitute the ‘infrastructure’, and the available capacities in a path chosen to
connect peer entities constitute the ‘resource’.

2.1 A Management View of Connectivity

The management control is exercised on two types of session-level objects: ‘data
flow’ and ‘data connection’. A ‘data flow’ is a sequence of packets transported
from the source to the receiver with a certain end-to-end QoS. A ‘data connec-
tion’ is set up over the transport path between the source and receiver end-points,
with a prescribed amount of bandwidth allocation to carry a group of data flows
with a closely-similar QoS characteristics. See Figure 1. A ‘data connection’ is
the object granularity for bandwidth allocation purposes, whereas a ‘data flow’
is the object granularity for end-to-end admission control.

Suppose a flow parameter r captures, at a macro-level, the bandwidth usage.
Typically, r is a tuple: [p, A, Δ, D], where p is the peak rate, A is the average
rate, Δ is the loss tolerance, and D is the allowed delay1. An estimation of the
bandwidth needs may be represented as a mapping function:

F : r ∈ Q → b ∈ (0, W),

where Q and W represent the flow parameter space and network capacity re-
spectively. F depicts a policy to determine the level of bandwidth allocation
needed to carry the flow r. We say that a flow r has a stronger QoS need than a
flow r′ (i.e., r � r′) if F(r) > F(r′)|∀F . Likewise2, a policy F is more aggressive
than a policy F ′ if F(r) < F ′(r)|∀r .

1 The [p, A, Δ, D] tuples may be viewed as prescribing distinct ‘virtual link classes’
(see [2]). The admission controller then maps an application-generated data flow to
one of these ‘virtual links’.

2 [3] gives guidelines to prescribe the ‘�’ relation over Q.
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Fig. 1. ‘data connection’ versus ‘data flows’

2.2 Cost Reduction by Bandwidth Sharing

Given a bandwidth allocation br = F(r) for a data flow r, the total bandwidth
usage incurred by a ‘data connection’ C can be transcribed into a cost Θ(

∑

∀r
br)

for transporting multiple data flows {r} over C. The function Θ(· · ·) maps a
bandwidth usage onto a cost — which may include the infrastructure-level tariffs
incurred for bandwidth and any fixed cost of maintaining the connection.

With flow aggregation, b(r) = Rbw(n)
n , where Rbw is the total bandwidth

allocated and n is the number of flows of type r sharing this bandwidth. The SP
reduces b(r) by multiplexing r with other data flows to reap statistical bandwidth
gains, whereby the QoS needs of r can be met with a lower b(r).

The SP’s goal is to reduce the overall cost of data connectivity by exploiting
the statistical multiplexing gains that accrue when bandwidth is shared between
multiple data flows. This revenue-oriented incentive forms the basis for a dynamic
control of connectivity mechanisms. The latter are anchored on our architectural
notion of ’data connection’.

3 End-System Control and Management

The control mechanisms are built around: i) ‘packet scheduling’ over data con-
nections weighted by their bandwidth allocations, and ii) connection-level packet
delay checks against the tolerance parameter D. Both (i) and (ii) do not require
any per-flow state tracking at the infrastructure level.
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3.1 Effective Bandwidth with Policy-Based Control

Figure 2 illustrates how a policy function F may capture these gains, so that
it can be plugged in by the SP at appropriate control points. The study is
based on subjecting the packet flows generated from the video traffic traces of
a JurassicPark movie segment to our policy-based bandwidth allocations. Three
policies are employed: A, B and C — as indicated in the tables. Policy C incurs
the least amount of bandwidth allocation, policy B incurs the most, and policy
B is in-between. The tables are pre-computed based on a traffic analysis of the
traces, namely estimating the burstiness and average rate parameters from the
packet size distributions.
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Fig. 2. Bandwidth allocation policies for shared connections

3.2 Impact on End-User QoS

The multiplexing of data flows over a connection C can degrade the QoS due to
excessive levels of path sharing and sustained higher rates in many of the data
flows. It has been shown [4] that the queuing delay of packets monotonically
increases with the number of flows n that feed packets into the queue. This
condition is captured by the relation Rloss(n) > Rloss(n′) for n > n′.

Figure 3 corroborates this delay behavior based on our simulation studies of
policy functions A, B and C — c.f. Figure 2. Policy C incurs longer packet delays
than policy B, and the latter incurs longer delays than policy A. Thus, beyond
a certain level of sharing (say, for n > n′′), the end-to-end delay of packets may
increase to a level where the client-prescribed loss tolerance limits are not met.
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3.3 Optimal Multiplexing

The per-flow bandwidth cost Rbw(n) on a connection can be reduced by in-
creasing the number of flows sharing this path. The lower bandwidth usage may
however be counteracted by increased packet loss Rloss(n) arising from schedul-
ing delays. Accordingly, the management module should ensure that the number
of flows admitted into C does not exceed a threshold nopt that may cause con-
nection failures due to excessive packet loss. To determine this optimal point at
run-time, the SP prescribes a cost function of the form:

Θ(n) = a.Rbw(n) + b.Rloss(n)
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for use by the SP, where a and b are normalization constants. There is a unique
global optimal point nopt for each allocation policy.

Figure 4 shows this cost optimality behavior in our experimental study using
video traffic traces under policies A, B and C. An aggressive policy has a higher
nopt, yielding a lower cost minimum — such as the policy-B over policy-A.

The SP may determine the grouping of data flows by estimating the service-
level costs using the Θ(n) relation. The decision as to when a re-grouping of
data flows into distinct connections is necessary may be based on a policy that
interprets the cost changes with respect to n.

4 Conclusion

The paper described a new model of session-level connectivity provisioning for
use by QoS-sensitive networked applications. The connectivity provider (SP)
employs policy functions to map the application-prescribed flow specs onto the
bandwidth needs of connections that carry the data flows. The strategy is to
reduce the per-flow cost incurred by multiplexing many closely-similar data flows
on a single connection. The multiplexing brings in two benefits to the SP. First,
it reduces the per-flow bandwidth allocation due to the gains accrued from a
statistical sharing of connection bandwidth. Second, it amortizes the connection-
level overhead across many flows. The level of cost reduction, and hence the
revenue accrual, can be controlled by the SP using policy functions that take
into account the burstiness and loss/delay tolerance of data flows.

Our studies indicate that the model can be employed in large network settings
(such as IP networks), while dealing with the scalability issues arising therein.
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Abstract. Several analytical performance models for Circuit Switching (CS) in 
k-ary n-cubes have been reported in the literature. However, to the best of our 
knowledge, the performance properties of CS have not been investigated in the 
mesh networks. To address this shortcoming, this paper proposes the first 
analytical modeling approach to predict the mean message latency in 2-D mesh 
interconnect networks using CS augmented with virtual channels. Analytical 
approximations of the model are confirmed by comparing with those obtained 
through simulation experiments. 

1   Introduction 

Recently there has been a renewed interest for Circuit Switching (CS) in the 
communication systems and Internet [1]. Although several analytical performance 
models for CS in k-ary n-cubes have been reported in the literature [2, 3], there has been 
hardly any attempt to assess the performance properties of CS in mesh networks 
augmented with virtual channels. In an effort to fill this gap, this paper proposes the first 
analytical model for 2-D k × k mesh networks employing CS with virtual channels.  

The structure of the paper is organized as follows. Our model assumptions are 
illustrated in Section 2. Moreover, the performance modeling approach is presented in 
this section. Section 3 compares the massage latencies predicted by analytical model 
with those obtained through simulation experiments. Finally, Section 4 summarizes 
our findings and concludes the paper.  

2   The Analytical Model 

2.1   Assumptions 

The proposed model is based on the following assumptions that are widely used in the 
literature [2-6].  
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1. Each node generates messages independently, which follows a Poisson 
process with a mean rate of λnode messages per cycle.  

2. The arrival process at a given communication network is approximated by an 
independent Poisson process.  

3. The destination of each message would be any node in the network with 
uniform distribution.   

4. Message length is fixed at M flits, each of which requires one cycle to cross 
from one node to the next.  

5. V (≥1) virtual channels are used per physical channel. When there is more 
than one virtual channel available that bring a message closer to its 
destination, one is chosen at random. 

2.2   Derivation of the Model  

The analytical model computes the mean message latency using the following steps. 
First, the mean time to establish a path is calculated. Second, the mean network 
latency, i.e., the time for a message to cross the network from source to destination, is 
determined. Then, the mean waiting time seen by a message at the source before 
entering the network is derived using M/G/1 queuing system [6]. Finally the mean 
message latency is obtained by including the effects of virtual channel multiplexing.  

Let us first calculate the average message arrival rate on a given channel <a, b> 
where a and b are two adjacent nodes. In general, if there are n dimensions numbered 
0 to n −1 and there are Δi hops from a to b in the ith dimension, then the total number 
of minimal routes from a to b is calculated by 

( ) ( )11 11

, 00 0
! !

n
j i j

i

n nnn

i ia b ii i

Δ
Δ Δ Δ
−
=

− −−∑

< > == =
ℵ = = ∑∏ ∏                        (1) 

For every source-destination pair of nodes, s and d, for which channel <a, b> may 
be used, the probability that channel <a, b> is traversed can be expressed as 
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With uniform traffic pattern, messages generated at a node have an equal 
probability of being destined to any other node. Hence, the rate of messages produced 
at a specific node and destined to another node is equal to the ratio of the message 
generation rate, λnode, to the number of nodes in the network except itself. Therefore, 
the rate of messages generated at a specific node, s, and destined to another node, d, 
that traverse the channel <a, b> along its path is given by 

( )( , ), , ( , ), ,/( 1)s d a b node s d a bN Pλ λ< > < >= − , where N= k2                         (3) 

The rate of messages traversing a specific channel can be calculated as the 
aggregate of Equation (3) over all source-destination pairs that have at least one path 
between each other that traverses channel <a, b>. This parameter is denoted by    

( )
, ,

, ( , ), , ( , ), ,

( , ) ( , )

/( 1)
a b a b

a b s d a b node s d a b

s d G s d G

N Pλ λ λ
< > < >

< > < > < >
∈ ∈

= = −∑ ∑                  (4) 



498 F. Safaei et al. 

where G<a, b> is the set of all pairs of source and destination nodes that have at least 
one path between each other that traverses channel <a, b>. Let S=(Sx, Sy) be the source 
node and d =(dx, dy) denote the destination node. We define the set H={hx, hy}, where 
hx and hy indicate the number of hops that the message makes along X and Y 
dimensions, respectively.  We get  

,x x x y y yh s d h s d= − = −                                           (5) 

where ||x − y|| indicates the distance between a source node x and a destination node y. 
Moreover, the total number of hops made by the message between source and 
destination node is given by 

x yH h h= +                                                             (6) 

We define ( , )s dS as the network latency seen by a message crossing from source 

node s to destination node d. This parameter consists of two parts: One is the delay 
due to actual message transmission time, ||H|| + M, and another term accounts for the 

average set-up time, ( , )s dC , needed to reserve a dedicated path. Thus, ( , )s dS is 

determined by 

( , ) ( , )s d s dS H M C= + +                                                      (7) 

where M and ||H|| denote the message length and mean message distance (given by 

Equation (6)), respectively. In order to compute the quantity of ( , )s dC , we employ a 

Markov chain (details of the model can be found in [2]) to model the header actions to 

cross the network. Let ( , ),s d iC  be the expected time for a header to reach the final 

state starting from state i. When the header advances to the next node, the residual 

expected duration becomes ( , ), 1s d iC + . On the other hand, when the header backtracks 

to the source node, the residual expected duration is ( , ),0s dC . Given that the header 

requires one cycle to move from one node to the next, the expected time 

( , ),s d iC satisfies the following recurrence relation  
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Once the header reaches its destination, an acknowledgment flit is transmitted back 
to the source via the reserved path. Thus, the mean time to set-up a path for the ||H||-
hop message can be written as 

( , ), ( , ),0s d H s dC C H= +                                                 (9) 

where the term ||H|| accounts for the number of cycles that are required to send the 
acknowledgement flit back to the source. Averaging over the (N −1) possible 

destination nodes in the network gives the mean time to set-up a path, ( , )s dC , from 

source node s and destination node d as      
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( )( , ) ( , ),{ }
1/( 1)s d s d Hd G s

C N C
∈ −

= − ∑                                     (10) 

The probability of blocking depends on the number of output channels, and thus on 
the virtual channels that a message can use at its next hop. A message is blocked at its 
ith hop, if all the virtual channels that can be chosen for its next hop, are occupied. Let 
Ti be the set of possible ways that i hops can be distributed over two dimensions such 
that the number of hops made in dimensions X and Y be at most hx and hy. Ti can be 
expressed as  

{( , ) : ; , , , 0}i x y x y x x y y x yT i i i i i i h i h i i= + = ≤ ≤ ≥          (11) 

The probability that a message has entirely crossed dimension X on its ith hop is 
given by   

( )( , ), ( , ), ,/
x x

X X
s d i i i h i s d i VP T T P== ⋅                      (12) 

where ( , ), ,
X
s d i VP is the probability that all virtual channels used by a message over all 

the possible paths from s to d in dimension X are busy; this probability is denoted by    

( , ), , , ,1
( ) /

i i hx x

j j x x

TX
s d i V a b V i i hj

P P T
=

< > ==
= ⋅∑                                  (13) 

On the equation above, , ,j ja b VP< > is the probability that V virtual channels at a 

specific physical channel in path j, <aj, bj>, are busy. This probability is obtained later 
from Equation (21). Similarly, the probability that a message has entirely crossed 
dimension Y on its ith hop is given by  

( )( , ), ( , ), ,/
y y

Y Y
s d i i i s d i Vi h

P T T P
=
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1
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i i hy y

j j y y

T

Y
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=

= ∑        (14) 

On the other hand, the probability that a message has not entirely passed dimension 
X on its ith hop can be expressed as   

( )( , ), , ( , ), ,/
x x y y

XY XY
s d i i i h i h i s d i VP T T P<<= ⋅ , where 
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Finally, the blocking probability, ( , ),
b
s d iP , is calculated as the aggregate of the 

blocking probabilities at the ith hop . Therefore, the ( , ),
b
s d iP can be obtained as     

( , ), ( , ), ( , ), ( , ),
b X Y XY
s d i s d i s d i s d iP P P P= + +                      (16) 

When the header does not experience any blocking during the path set-up stage, a 
minimum duration to establish a path is 2||H|| cycles. So, the minimum average 
network latency seen by the message can be written as  

min,( , ) 3s dS M H= + ,  ( )min min,( , ){ }
1/( 1) s dd G s

S N S
∈ −

= − ∑          (17) 
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For a given node s in the network, the average latency seen by a message 

originated at that node to enter the network, sS , is equal to the average of all S(s, d) 

resulting in 

 ( ) ( , ){ }
1/( 1)s s dd G s

S N S
∈ −

= − ∑                      (18) 

Since a message can enter the network through any of the V virtual channels, the 
average traffic rate on each injection virtual channel is λnode/V. Using adaptive routing 
under the uniform traffic pattern results in the mean service time seen by messages at 

all source nodes being the same, and equal to the average network latency, i.e., sS . 

As a result, modeling the local queue in the source node as an M/G/1 queue, with the 

average arrival rate of λnode/V and service time sS  with an approximated variance 

min( )sS S− [5] yields the average waiting time, sW , seen by a message at the source 

node s as 

( ) ( ) ( )( )( )2 2 2
min{ }

1/ ( / ) 1 ( ) / / 2 1 ( / )s node s s s node sd G s
W N V S S S S V Sλ λ

∈ −
= + − −∑      (19) 

Equation (19) gives the network latency seen by a message to cross from the 
source node s to the destination node d. By averaging over all the N possible nodes in 
the network, the mean network latency is approximated as 

( )1/ s
s G

S N S
∈

= ∑                         (20) 

The probability , ,a b vP< >  that v (0≤ v ≤V) virtual channels at a given physical 

channel <a, b> are busy can be determined using a Markovian model [2, 4]. In the 
steady state, the model yields the following probabilities   
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When multiple virtual channels are used per physical channel in dimension X or Y, 
they share the bandwidth in a time-multiplexed manner. The average degree of virtual 
channel multiplexing that takes place at a specific channel <a, b>, can be estimated as 

2
, , , , ,1 1

V V

a b a b v a b vv v
V v P v P< > < > < >= =

= ⋅ ⋅∑ ∑                (22) 

Let Vmax, (s, d), j be the maximum ,a bV < >  of channels traversed by the path j, between 

source s and destination d. Vmax, (s, d), j can be calculated as 

( )max,( , ), , ,1
1/

i i

H
s d j a b ji

V H V< >=
= ∑                  (23) 

where j is a specific path between s and d, and ||H|| is the distance (in terms of the 
number of hops made by the message) between the source and destination nodes. The 
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parameter , ,i ia b jV < > is the average multiplexing degree of channel <ai,bi>, which is 

the channel traversed by the ith hop of path j. Let there be L different paths of minimal 
length from s to d. We then calculate the average degree of virtual channel 
multiplexing from source s to destination d along path j (1≤ j ≤L) as  

( )
( , ) max,( , ),1

1/
s d

L

s d jj
V L V

=
= ∑                       (24) 

Averaging over all possible source-destination pairs, results in the overall virtual 
channels multiplexing degree as follows 

( ) ( ){ } ,1/ ( 1) s d
s G d G s

V N N V
∈ ∈ −

= − ∑ ∑                                 (25) 

Scaling the mean network latency and waiting time at the injection channel by the 
factor V to model the effects of virtual channel multiplexing yields the mean message 
latency as [4] 

Mean message latency = VWS s )( +                                (26) 

Examining the equations of the analytical model reveals that it is very difficult to 
give closed-form solutions to the various variables of the model. Therefore, these 
equations are solved iteratively [6]. 

3   Model Validation 

In order to validate the proposed model, the analytical model was simulated. The 
results of simulation and analysis for the 8×8 (N =64) and 16×16 (N =256) networks 
with message length M =32 and 64 flits, and V =1, 6 virtual channels per physical 
channel are depicted in Fig. 1. The figure demonstrates that the analytical model 
predicts the mean message latency with a good degree of accuracy in all regions. 
However, some discrepancies around the saturation point are apparent. This is a result 
of the approximations made when constructing the analytical model. This 
approximation greatly simplifies the model by avoiding the computation of the exact 
distribution of the message service time at a given channel.  
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Fig. 1. The mean message latency predicted by the model vs. simulation results for the 8×8 and 
16×16 mesh networks with CS under Poisson traffic, V=1, 6 virtual channels per physical 
channel, and message lengths M =32, 64 flits 
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4   Conclusions 

This paper has described the first analytical model to capture the mean message 
latency in circuit-switched 2-D mesh networks when fully adaptive routing and virtual 
channels flow control are used. The proposed model is general and can easily be 
extended to other topologies. Results from simulation experiments have revealed that 
the model predicts latency with a good degree of accuracy. Another interesting line of 
research for future work may be the extent of the modeling approach described here 
to consider the behavior of CS with other traffic patterns, e.g. hotspot traffic, and in 
the vicinity of failures in mesh networks. 
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Abstract. In this paper, we determine class specific optimal minimum 
contention window (CWmin) values that simultaneously maximizes aggregate 
saturation throughput and provides proportional throughput differentiation 
meeting deterministic target throughput ratios among multiple priority classes 
in IEEE 802.11 wireless LAN (WLAN). We show that, with the current default 
CWmin setting, IEEE 802.11e Enhanced Distributed Channel Access (EDCA) 
cannot provide satisfactory throughput differentiation among multiple priority 
classes. Compared to EDCA, the proportional throughput differentiation can 
provide consistent and adjustable differentiation among different service 
classes. With these optimal CWmin values, the aggregate throughput remains 
maximum and insensitive to the number of active nodes in the network, thus 
improving the scalability of the protocol. 

Keywords: IEEE 802.11e EDCA, performance analysis, proportional 
throughput differentiation, quality of service, saturation throughput. 

1   Introduction 

IEEE 802.11 has become one of the most successful MAC protocols for wireless 
infrastructure and ad hoc LANs. The IEEE 802.11 standard [1] provides two access 
methods: (i) the Distributed Coordination Function (DCF), also known as the basic 
access method; (ii) the Point Coordination Function (PCF), an access method similar 
to a polling system, which uses a point coordinator to arbitrate the access right among 
nodes. DCF is based on carrier sense multiple access with collision avoidance 
(CSMA/CA) and supports only best effort service. Due to significant demand for 
Quality of Service (QoS) sensitive multimedia applications, the 802.11 Task Group E 
has recently ratified final proposals and specifications for the QoS aware MAC 
protocol with service differentiation mechanism (named 802.11e) [2]. The 802.11e 
MAC protocol employs a channel access function called Hybrid Coordination 
Function (HCF) that includes a contention based Enhanced Distributed Channel 
Access (EDCA) and a contention-free HCF Controlled Channel Access (HCCA). The 
EDCA mode of operation of 802.11e is an extension of the DCF with the goal to 
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provide priorities and traffic differentiation in the wireless access. Each traffic flow is 
classified into an appropriate Access Category (AC). Four AC’s are defined, each one 
has associated MAC transmission queue. The behavior of an AC depends on a 
number of MAC layer parameters: initial Contention Window size (CWmin), 
maximum Contention Window size (CWmax), Arbitration Inter Frame Space (AIFS) 
and Transmission Opportunity limit (TXOP_limit). If one AC has a smaller AIFS or 
CWmin, that class’s traffic has a better chance to access the medium earlier [2]. 

EDCA support CWmin based tuning to achieve differentiation among multi-priority 
classes. It has been proved that relative service differentiation can be achieved by 
varying CWmin alone [8]. It is well known that the aggregate throughput under DCF 
significantly degrades as the number of competing nodes increases [3]. Thus a 
distributed channel access mechanism such as DCF does not scale with the number of 
contenders. EDCA, which is a DCF based protocol also exhibit the scalability 
problem. In the case of EDCA, the throughput achieved by nodes of low priority class 
significantly degrades as the number of higher priority class nodes increases [9]. 
Further, under EDCA, selection of default CWmin values for service differentiation 
does not maximize aggregate throughput. In this paper, we determine the class 
specific optimal CWmin values to maximize aggregate throughput and provide 
proportional throughput differentiation among multiple priority classes. Through 
analysis and simulation, we demonstrate that proportional throughput differentiation 
and aggregate throughput maximization can be simultaneously achieved through 
appropriate assignments of per class optimal CWmin. Further, with the selection of 
optimal CWmin values, the maximum aggregate throughput of the WLAN approaches 
a constant value for large number of active nodes.  

Rest of the paper is organized as follows: Section 2 gives a brief account of related 
work. In Section 3, we derive the expression for class specific optimal CWmin.  
Section 4 presents the results, both analytical and simulation. The paper is concluded 
in Section 5. 

2   Related Work 

Several papers have appeared in the literature on the performance analysis of IEEE 
802.11 DCF [4, 5]. Several schemes have been proposed in the literature to enhance 
DCF and achieve service differentiation [6] - [9]. There have been several studies on 
evaluating the performance of EDCA in the context of IEEE 802.11e using analytical 
models or by simulation [9] - [13]. Most of the papers, mentioned above, analyze the 
effect of variation of CWmin on service differentiation, while the analytical model for 
EDCA discussed in [10] consider the effect of varying both CWmin and AIFS on 
service differentiation. Most of the existing literatures on EDCA consider relative 
service differentiation, where higher priority classes have better performance than 
lower priority classes based on differentiation of EDCA parameters. The issue of 
adjusting the degree of service differentiation so as to achieve a deterministic target 
differentiation ratio is not addressed.  

Several papers have been proposed in the literature to improve the performance of 
DCF and EDCA [14]-[20]. In [14], authors propose a fair medium access control 
(PMAC) protocol to maximize wireless channel utilization subject to weighted 
fairness among multiple data traffic flows. In [15], authors address the issue of 
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finding the optimal configuration of 802.11e EDCA with respect to the weighted 
max–min fairness criterion. Authors of [17] conduct simulation study of a method for 
proportional QoS control between low and high priority classes in 802.11eWLAN. In 
[18], authors propose Spacing Based Channel Occupancy Regulation (SCORE) MAC 
protocol to provide proportional service differentiation in WLAN. In [19], authors 
propose a class based p-persistent analytical model for EDCA and present a constraint 
optimization problem to maximize the system throughput while satisfying the QoS 
requirements. Work in [20] address the issue of finding the class specific optimal 
CWmin values that yield the maximum aggregate throughput while maintaining 
throughput differentiation between classes. It may be noted that in [19] and [20], 
closed-form analytical expressions for the optimal MAC parameters are not solved 
explicitly. In this paper, differently from the above, we consider a proportional 
throughput differentiation model of [16] in which the throughput ratio of different 
service classes is proportional to the ratio of their differentiation parameters. 

3   Proportional Throughput Differentiation and Maximum 
Aggregate Throughput  

For maximizing aggregate system throughput simultaneously with providing 
proportional throughput differentiation, we consider tuning CWmin values of multiple 
priority classes, assuming all other MAC parameters including the frame size to be 
same for all the classes. In this section, first we consider the throughput differentiation 
under EDCA employing tuning of CWmin [7, 8]. We, then present an analytical model 
to determine the class specific optimal CWmin values to meet the desired objectives. 
We also derive expression for optimal value of maximum aggregate throughput. 

3.1   Saturation Throughput Ratio between Two Priority Classes in EDCA 

We assume saturation condition (i.e., each node has always frames to send). N 
different types of traffic flows are considered with ni flows for class-i traffic (i = 1, 
2,..,N). It is assumed that each node carries only one traffic flow. The effects of bit 
errors due to noise are ignored. Consequently, packets are lost only due to collisions. 
Also the effect of hidden terminals is not considered. For class-i traffic, contention 
window size in the j–th retry/retransmission be Wi,j. Assume that, at each transmission 
attempt for a class-i traffic flow, regardless of the number of retransmissions suffered, 
each frame collides with constant and independent probability ip , where ip  is the 

conditional collision probability seen by a class-i frame at the time of its being 
transmitted on the channel. The probability that a node senses the channel to be idle 

idlep  is: 

∏
=

−=
N

i

n
iidle

ip
1

)1( τ                                                   (1) 

where iτ  is the probability that a node with class-i traffic transmits during a time slot, 

and can be expressed as [9]: 
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where Li represents the retry limit for class i traffic and m represents the maximum 
back off stage. The collision probability for class i traffic is: 
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Let Si be the normalized saturation throughput for class-i traffic, which is defined 
as the fraction of time the channel is used to successfully transmit the payload bits 
corresponding to class i traffic and is calculated as follows. 
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Here cstrsstrtr TppTpppE )1()1(][ −++−= σσ , where ptr is the probability that there 

is at least one transmission in a given time slot, ps is the probability that this 
transmission is successful, and ps,i is the probability that successful transmission 
occurs for class i traffic. These probabilities are calculated as follows: 

∑
∏

∏
=

≠=

−

=

=

−−

=−−=
N

i
isi

tr
s

itr

N

ihh

n
h

n
iii

is
n

i

N

i
tr pn

p
p

p

n

pp

hi

i

1
,

,

,1

1

,
1

1
;

)1()1(

;)1(1

τττ
τ              (5) 

In (4), ][LE denotes the average frame size corresponding to class i (assumed to be 

equal for all i). sT,σ  and ,cT  respectively, represent the duration of an empty time 

slot, the average time channel is sensed busy because of successful transmission, and 
the average time the channel is sensed busy because of a transmission failure due to 
collision. Let the per node saturation throughput ratio between class i and class 1 be 

iD . As in [8], the following approximate expression can be obtained:  
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3.2   Proportional Throughput Differentiation  

We apply the proportional service differentiation model of [16], which was 
introduced for DiffServ architecture in IP networks to provide quantitative service 
differentiation, for a WLAN with N number of classes. Let si be the per station 
throughput of class i traffic. The proportional differentiation model for WLAN is 
defined as follows: jiji ss φφ // =  for all i,j, where iφ  is the differentiation weight for 

class i. Assuming that class-1 stations have the highest priority, we define the 
differentiation ratio for class i stations, iD as follows: 11 // φφiii ssD ==  with 

11 =D  and NiDi ,...,2;10 =<< . It may be noted that iD  here represents a 
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quantitative measure for proportional throughput differentiation among different 
traffic classes. Analytical expressions for class specific optimal CWmin to achieve the 
desired proportional throughput differentiation and maximum aggregate throughput 
are determined in the following subsection.  

3.3   Evaluation of Class Specific Optimal CWmin Values 

Let S  be the aggregate system throughput. The throughput maximization problem 
with proportional differentiation is formulated as follows. 

Max ∑
=

=
N

i
iSS
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 such that NiDss ii ,...,3,2;/ 1 ==                        (7) 

Proposition 1. The optimal frame transmission probabilities Nii ,...,2;* =τ  

corresponding to (7) are given as follows: 
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and σ/'
cc TT =  is the collision duration expressed as number of idle slot time, σ . 

Proof: Combining (4), (5) and (6) and on simplifying, we get  
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where cTK /11 σ−= , cTLEK /][2 =  and cs TT −=δ . Similarly, combining (1) and 

(6), we have  
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Expanding in
iD )]1/(1[ 11 ττ −+  using binomial series and neglecting higher order 

terms, the following expression can be obtained for )/1( idlep : 
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Substituting (11) in (9), and replacing with a and b, the corresponding terms, 
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The value of 1τ  corresponding to maximum throughput is obtained by solving 
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Combining (13) with (6), we obtain  
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Using (1), (3) and (11), the optimal collision probabilities *
ip  can be deduced as 

follows: 
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Using (2) and (15), the class specific optimal CWmin values to achieve the desired 
objectives are obtained. 
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The optimal values are numerically computed as follows. Given NiDi ,....,3,2,1; = , 

and 802.11b parameters, the optimal frame transmission probabilities 

Nii ,....,3,2,1;* =τ are computed using (8). Then the corresponding collision 

probabilities *
ip  are computed using (15). The class specific optimal CWmin values 

are then determined using (16). 
 

Proposition 2. As the number of active stations increases unboundedly, the maximum 
aggregate throughput of the WLAN approaches a constant value and is given by: 
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Proof: Let *
idlep  be idle slot probability corresponding to the optimal transmission 

attempt probabilities Nii ,...,2;* =τ . From (12), we get the following expression for 

the maximum aggregate system throughput S*. 

cidles TapTa
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From (13), we have )/(21/ '*
1

*
1 cbT=−ττ . Let 2/'

cT=β  and note that 

ba ≈2. Then βττ /1)1/( *
1

*
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Substituting (19) in (18), we get the result.          ■ 
 

Hence we conclude that, in a WLAN with very large number of active stations, the 
optimal values of aggregate saturation throughput, is insensitive to the number of 
active stations as well as the number of priority classes in the network.  

4   Performance Evaluation 

In this section, we present the numerical results obtained from the analytical model of 
the previous section. We also present simulation results to validate the analytical 
model. The simulation model was developed using NS-2 [21] based on IEEE 802.11e 
draft and IEEE 802.11b standard [3]. In our simulation set up, all nodes in the 
network were within range of each other (no hidden terminal problem) and there was 
no mobility in the system. An ad hoc topology was used and stations were arranged at 
random positions in a rectangular grid with dimensions .500500 mm×  The interface 
queues at each station used a drop-tail policy and the queue length was set at 50 
packets in order to approximate an infinite buffer. We assumed in each station a 
single application. This corresponds to having only one MAC layer queue and one 
access category (AC) for each station. Because we consider all nodes under 
saturation, CBR type of traffic was considered. The traffic rate at each active node 
was selected to be larger than the raw physical transmission rate of the network so as 
to keep the nodes in saturation. Each simulation was run for 100 seconds of 
simulation time. All the reported results were averaged over three to five independent 
simulation runs. To obtain the numerical results, we have implemented the analytical 
model developed in Section 3 in MATLAB.  
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First we consider a WLAN with two traffic classes: class-1 stations have high 
priority ( 11 =D ) and for class-2 stations, the target throughput differentiation ratio is 

5.02 =D . Stations of both classes are configured with same AIFS values; n1 and n2 

respectively represents the number of nodes belonging to class 1 and class 2; and n1 = 
n2 = n. For EDCA with prioritized CWmin control, we select W1,0 = 16 and W2,0 = 32. 
The optimal CWmin values for class-1 and class-2 stations are tabulated in Table 2.  

Table 1. Optimal *
0,1W and *

0,2W  

Number of nodes *
0,1W  *

0,2W  

n1 = n2 = 1 31 62 
n1 = n2 = 2 77 154 
n1 = n2 = 5 213 425 

n1 =2 & n2 = 1 61 121 

n1 = 5 & n2 = 1 151 300 

n1 =1 & n2 = 2 48 96 

n1 = 1 & n2 = 5 95 190 

Next, we use these optimal values of CWmin to investigate further results. We 
measure the achieved aggregate throughput and throughput ratio between the two 
traffic classes for various values of n. Under proportional throughput differentiation, 
the differentiation ratio remains insensitive to the number of nodes n. We observe that 
the aggregate throughputs obtained with optimal CWmin values are much greater than 
those achieved for EDCA. Table 2 shows the throughput achieved by each class as 
well as the aggregate throughput for different values of n. With n1 = n2 =5, the 
proposed method achieves about 19% increase in aggregate throughput over EDCA 
while for n1 = n2 =10, the total throughput is greater than EDCA by 35%. Fig. 1 shows 
the variation of aggregate saturation throughput against n. The maximum aggregate 
throughput is almost insensitive to the number of stations, while under EDCA, the 
throughput reduces significantly as the network size increases. The throughput 
degradation in EDCA is mainly due to the increased frame collision probability as a 
result of more contending nodes in the network. The selection of proposed optimal 
CWmin values reduces probability of collision, still maintaining very high throughput 
and proportional differentiation. Figure 2 shows the probability of collision for the 
two traffic classes against n for EDCA as well as the optimal CWmin method. It may 
be noted that the probability of collision in the former case (EDCA) increases 
drastically as the network size grow, while for the latter case, the collision probability 
is almost a constant for large n . For n = 5, compared to EDCA, the collision 
probability reduces by about 70% and for n = 10, it reduces by 82%. Figure 3 shows 
the variation of aggregate throughput against CWmin of class-1 stations, 0,1W , while  
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0,2W  is selected to achieve target proportional differentiation among the classes. 

These results establish the claim that the proposed optimal CWmin value of class-1 

stations *
0,1W  indeed maximizes the aggregate throughput.  

Table 2. Throughput achieved by nodes in a wireless LAN with two classes of traffic 

Throughput ( is ) Mbps Throughput 
Ratio 

Differentiation Criterion 

Class1  

Analysis/ 

simulation 

Class 2 

Analysis/ 

simulation 

12 / ss  

Analysis/ 

simulation 

Total network 
throughput 
(Mbps) 

Analysis/ 

simulation 

n =1 0.603/ 0.605 0.27/ 0.252 0.446/ 0.417 0.873/ 0.857 
n =5 0.4977/ 0.51 0.23/ 0.214 0.462/ 0.42 0.727/ 0.724 EDCA  

W1,0 = 16 &  

W2,0 = 32 
n =10 0.439/ 0.445 0.2087/0.184 0.482/ 0.445 0.6477/ 0.629 

n =1 0.587/ 0.58 0.293/ 0.287 0.5/ 0.495 0.88/ 0.867 
n =5 0.577/ 0.569 0.288/ 0.29 0.5/ 0.5 0.865/ 0.861 Proportional 

Differentiation 
n =10 0.576/ 0.569 0.284/ 0.28 0.494/ 0.49 0.86/ 0.85 

 

Fig. 1. Aggregate saturation throughput vs number of nodes in each class 
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Fig. 2. Collision probability vs number of nodes in each class 

 

Fig. 3. Aggregate throughput vs CWmin value of class-1 stations, 0,1W  
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5   Conclusions  

In this paper we determined the maximum aggregate throughput of a wireless LAN 
with multiple priority classes. We computed class specific optimal CWmin values for 
multiple priority classes to achieve maximum aggregate throughput and proportional 
throughput differentiation simultaneously. We also obtained approximate closed-form 
expressions for maximum aggregate throughput, optimal collision probability and 
optimal idle slot probability, assuming large number of active nodes. We have shown 
that, with the current differentiation parameter setting, EDCA cannot provide 
satisfactory throughput differentiation between multiple priority classes. Compared to 
EDCA, the proportional throughput differentiation can provide consistent, adjustable 
proportional differentiation among different service classes. Further more we 
demonstrated that, with optimal CWmin values, the maximum aggregate throughput 
remains insensitive to number of nodes in the network while in EDCA, the aggregate 
throughput reduces drastically as the network size increases. Extensive simulations 
were conducted to corroborate the analytical findings. 
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Abstract. Overloading is a technique to accommodate more number of users 
than the spreading factor N. This is an efficient way to increase the number of 
users in a fixed bandwidth, which is of practical interest to mobile system 
operators. In this paper we have reviewed the different overloading schemes 
proposed in the literature for the DS-CDMA systems. The performance of an 
Orthogonal/Orthogonal (O/O) overloading scheme, using two sets of orthogonal 
codes (O/s-O) has been evaluated. Iterative multistage detector (IMSD) is used 
to reduce the multiple access interference between the users of two sets. The 
BER performance of IMSD is evaluated with hard and soft decisions functions 
using Monte-Carlo simulations. It is found that, this scheme provides 19% and  
11% channel overloading for synchronous DS-CDMA system in an AWGN 
channel, with a SNR degradation of less than 0.5 dB at a BER of 510− compared 
to single user bound for N=16 and 64 respectively. 

1   Introduction 

In a conventional direct sequence code division multiple access (DS-CDMA) 
communication, each user is assigned a unique spreading code or signature. The 
performance of CDMA system is dependent on the correlation properties of spreading 
codes, which determines the multiple access interference (MAI) power. The number 
of users supported in a DS-CDMA cellular system is typically less than spreading 
factor (N), and the cells are underloaded. To make a better use of radio spectrum, it is 
of considerable interest to assign more sequences than the spreading factor, i.e., to 
overload the channel. Hence the cellular system becomes overloaded, when the 
number of supported users exceeds the spreading factor. Infact this type of channel 
overloading is provisioned in the 3G standard [1]. 

The concept of overloading a DS-CDMA cell using orthogonal codes is illustrated 
in Fig.1. Let us consider two sets of spreading codes, set1: N mutually orthogonal 
codes of length N and set 2: another set of mutually orthogonal codes. Let there be a 
demand for more than N code channels and let the first N users be given N unique 
spreading codes of length N form set 1. The cell gets overloaded if additional M users 
are assigned spreading codes from a new set of codes, i.e., form set 2. 
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In a single set, if all codes are synchronized, orthogonal signatures are optimal due 
to complete elimination of multiple access interference (MAI).Synchronism between 
signatures can be maintained in the downlink of cellular systems with relative ease 
and hence, orthogonal signatures (Walsh functions) are used in the downlink of IS-95 
and UMTS mobile radio standards. Even in the uplink of UMTS, usage of orthogonal 
signatures has been advocated to realize multi-code channelization to increase the 
overall data rate. Also in the uplink, some systems that combine multicarrier 
modulation with CDMA can maintain orthogonality by inclusion of an appropriate 
cyclic prefix, and single-tap equalization [2]. 

BASE STATION
User N+2

User 1

User 10

User 6

User N+1

User  N+M

User 2

User N

First ‘N’ active users

Excess ‘M’ active users  

Fig. 1. Overloading concept in a single cell CDMA system 

The Capacity or the number of active users (K) in a conventional synchronous 
orthogonal CDMA environment is limited by the spreading factor, which is W.T, 
where W is the transmission bandwidth and T is the duration of the symbol. When K 
exceeds N, the system is overloaded and signatures are no longer orthogonal. This 
leads to MAI between the two sets. 

In an overloaded system, a conventional matched filter receiver is not optimal due 
to high level of MAI. Multiuser detection (MUD) is required in order to obtain a 
satisfactory performance of the users in any overloaded system. Linear MUD’s, such 
as the decorrelator, the minimum mean-squared error detector or linear decision 
directed interference cancellation are devised to detect users in an underloaded 
system. The Maximum Likelihood (ML) detection is not an option because of its 
complexity that is exponential in the number of users. The nonlinear MUDs such as 
multistage parallel interference cancellation (PIC) and successive interference 
cancellation (SIC) [3], have good complexity-performance trade-off as compared to 
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other MUD’s. Hence these MUDs are suitable for overloaded systems. Thus, the 
problem of overloading DS-CDMA systems may be stated as follows: How to 
increase the number of spreading codes, or the number of users K, without increasing 
the dimension N, while keeping minimum MAI to ensure low complexity of the 
receiver. 

In the next section, we give a detailed overview of five different overloading 
schemes that have been proposed in the literature. In Section-3, the system model of 
Orthogonal/Orthogonal (O/O) is presented. In section-4 Iterative multistage detection 
for the proposed scheme is explained. The Monte-Carlo simulation results of 
Orthogonal/scrambled-Orthogonal (O/s-O) overloading scheme are presented in 
Section-5. Finally, section-6 summarizes the results and concludes the paper. 

2   Overloading Schemes for CDMA Systems: A Review 

Let us consider an overloaded system with spreading factor N and the number of 
active users K (>N). We assume perfect power control and synchronous users. The 
received vector y  over an AWGN channel after demodulation and chip sampling is 

given in each symbol interval by 

   
1

K

i i
i

a
=

= +∑y = Sa + n s n                                          (2.1) 

where a  contains the BPSK modulated data symbols of K users and S  is the 
signature matrix of dimensions K N×  with unit norm sequences. All sequences are 
assumed to have equal energy. The Gaussian noise is represented by the real valued 
vector n  and consists of independent Gaussian noise samples with 

variance 2
0 bσ =N /(2E ) , where 0 / 2N is the variance of the noise and bE is the bit 

energy. In Fig. 2, the classification of overloading schemes based on signature 
sequence selection is shown. First we will discuss two schemes using single set of 
signature sequence and then three schemes based on multiple sets. These schemes are 
briefly explained below: 

 
(1) The signature sequence can be chosen randomly, i.e. random spreading. In each 

symbol interval, each signature is chosen independently and completely at random out 

of the set N{1/ N,-1/ N} . This is an evident choice for the signatures, as 

orthogonality between the users is impossible if K > N. Moreover, for high channel 
loads (K/N → ∞ ) or for very high signal-to-noise ratios, random spreading incurs 
almost no loss in spectral efficiency as compared to optimal signature sets [4].  

(2) One can look for signatures that are “as orthogonal as possible”. A popular 
measure in oversaturated channels for this is to look for unit-norm signatures that 
minimize the Total Squared Correlation (TSC) among the signatures. A lower bound 
to the TSC of any set of K unit-norm signatures of length N (Welch-Bound) is given 
by 

  2 2
min

1 1

( . ) /
K K

T
i j

i j

TSC s s TSC K N
= =

= ≥ =∑∑            (2.2) 
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For K<N, this bound cannot be achieved and the best code can be orthogonal 

sequences. For K ≥ N, this lower bound minTSC  can be achieved by so-called Welch-

Bound Equality (WBE) [5] sequences, satisfying  

T
N

K

N
=S.S I                                                     (2.3) 

Where NI  is the identity matrix of order N. Signatures sets satisfying (2.3) can be 

considered ‘as orthogonal as possible’ since TSC is minimized. 
These WBE sequences can be generated by means of an iterative procedure [6], but 

are not binary-valued in general. WBE sequences have some very interesting 
properties: they maximize the sum capacity among all possible signature sets, and 
maximize at the same time the network capacity. However, WBE sequences have the 
important drawback that they are not scalable: if the number of users in the system 
changes dynamically, these sequences have to be recomputed for every change in K.  

(3) A third approach is to design a scalable signature set that is especially suited to 
be detected by means of a particular multiuser detector. Examples are the tree-
structured channel overloading [7] and excess signaling [8], where the signatures are 
designed so that they can be detected easily by means of a Maximum Likelihood 
(ML) detector. Both overloading schemes allow for a restricted number of excess 
users (K-N) only, and do not have binary spreading sequences. In order to allow for a 
high number of excess users with binary spreading sequences and suboptimal 
Multiuser Detectors (MUD’s), schemes have been introduced such as the 
OCDMA/OCDMA (O/O) in [9], PN/OCDMA (PN/O) in [10]. In these schemes, the 
users are divided into two groups: the first N users are the ‘set 1 users’, while the M 
(=K-N) excess users are the ‘set 2 users’. Expression (2.1) can now be modified as: 

1 2
1 2

1 1

. .
N M

i i j j
i j

a b
= =

= + +∑ ∑y = S a + S b + n s s n                                   (2.4) 

where a  and b contain the data symbols of se1-users and set2-users respectively. In 
O/O scheme, the first N users (set-1 users) are assigned orthogonal sequences, while 
the excess users (set-2 users) are assigned other orthogonal sequences (O/O), while in 
PN/O set2-users are assigned random sequences (PN/O). The signature matrix 

1 1
1 N......1S = [s s ]  of the set1-users is the orthogonal Walsh-Hadamard matrix NW of 

order N in both the schemes. In PN/O, the signature of the set-2 users is chosen 
independently and completely at random in every symbol interval out 

of N{1/ N,-1/ N} . In this way, the set 1 users suffer from less interference in 

O/O scheme as compared to random spreading (PN), while the set 2 users suffer from 
less (O/O) or the same amount of interference (PN/O) as compared to random 
spreading with the same values of K and N. Because of the special structure of these 
signatures, both O/O and PN/O can be detected easily by means of iterative 
multistage interference cancellation [11] schemes, where in every stage, the set 1 
users are detected first, followed by a detection of the set 2 users. Also, we can 
combine two different orthogonal multiple access schemes like TDMA/OCDMA 
[12]. Recently, we have proposed a new overloading scheme [13], where set1 users 
are assigned synchronous orthogonal sequences, while set2 users are asynchronous 
with PN sequences to improve the overloading performance.   
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(4) Another kind of overloaded OCDMA is presented in [14], where signals are 
divided into groups that are orthogonal to each other. A similar idea is exploited in 
[15], where the N-dimensional global signal space is divided into a number of L-
dimensional orthogonal subspaces. Each L-dimensional subspace is assigned to L+s 
users. This method of arranging oversaturation is referred as group orthogonal CDMA 
(GO-CDMA). Each subspace is allocated to L+s users, which results in oversaturation 
efficiency equal to (1+s/L). 

(5) In the cdma2000 system, binary suboptimal Quasi-Orthogonal Sequences 
(QOS) [16] are used in the downlink instead of the WBE sequences. For N<K<2N, a 
binary QOS signature set is obtained for any spreading factor N that is a power of 2, 
by assigning the Walsh-Hadamard sequences ( )i

NWH  (i = 1, ……, N) of order N to 

the first N users (set 1 users), while the (K-N) excess users (set 2 users) are assigned 
the same Walsh-Hadamard sequence, but overlaid by a common (quasi-) bent 
sequences. These sequences have balanced crosscorrelation between users of the two 
sets. Although they have a lower user capacity than systems with WBE sequences, 
they are much more appealing from a practical point of view.  

From an information-theoretical point of view, WBE sequences are the best choice, 
since they maximize the sum capacity. The O/O signature set is almost as good as 
these WBE-sequences with respect to the sum capacity [17], while random spreading 
can remain substantially inferior to both WBE sequences and O/O, if the load is not 
too high [4]. It has been shown in [18], that O/O outperforms random, WBE 
sequences and PN/O schemes using multistage SIC as MUD when the spreading 
length 64N ≥ .  

3   System Model for O/O Overloading Scheme for DS-CDMA 

In the sequel we will consider the DS-CDMA system with processing gain N and the 
number of users K (=M+N). We assume that the channel is a nondispersive additive 
white Gaussian noise (AWGN) channel and that the different user signals are in 
perfect time synchronism. The signal , ( )u ku

s t  is the signature waveform of the k-th 

user in set-u, where 1{1,2} ,  {1,2,3....... }u k N∈ ∈  for set-1 and 2 {1,2,3....... }k M∈  for 

set-2 users ( M N≤ ). Here N is number of users in set-1 and M number of users in 
set-2. The signature waveform may be expressed as: 

, ,
1

( ) ( - )
N

j
u k u k c cu uj

s t s p t jT
=

= ∑                                     (3.1) 

where , { 1,1}j
u ku

s ∈ − , cT  is chip duration and ( )cp t is the rectangular pulse shape of 

the chip wave form with unit energy. We assume that all set-1 users are operational 
and hence N=Maximum number of users in set-1 (=Spreading factor). Let us denote 

1S  and 2S  as the signature matrices of the set-1 and set-2 users respectively, which 

are generated from two different orthogonal sequence sets. The dimensions of 
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signature matrix 1S  is N N×  and dimensions of  2S  is N M× . All users signatures 

are normalized such that , ( ) 1u ku
s t = , i.e. unit norm signatures. 

 

Fig. 2. Classification of overloading schemes based on the selection of signature sequence 

Let us denote 1b  and 2b  as the data matrices of the set-1 and set-2 users 

respectively. The signal , ( )u kb t  is the data waveform of the k-th users in set-u, and is 

given as 
 

           , ,( ) ( - )l
u k u k T bu u bl

b t b P t lT
∞

=−∞
= ∑                                          (3.2) 

where, data sequences , { 1,1}l
u ku

b ∈ −  are i.i.d. and equiprobable random variables. In 

(3.2), bT  is bit duration, N=spreading factor and ( )Tb
P t  is the rectangular pulse shape 

of the information data bits. 
Matrices A1 and A2 are diagonal matrices of received signal amplitudes of both 

groups of users and are expressed as: 

1 1,1 1,1 1, 1,N

2 2,1 2,1 2, 2,M

c[ os( ),..., cos( )]

[ cos( ),.., cos( )]
N

M

diag A A

diag A A

φ φ
φ φ

=
=

A

A
                                   (3.3) 
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Equation (3.3) models the channel attenuation and phases of the carriers of set-1 
and set-2. In (3.3) ,u ku

A is the complex channel attenuation for the k-th user of the  

set-u. For AWGN channel 
, u

A
u k

=1 and for Rayleigh fading channel model, fading 

amplitudes are generated according to ( ) ( )
, , ,

I Q
u ku u k u ku u

A A jA= + , where ( )

,

I

u ku

A  and ( )

,

Q

u ku

A  are 

independent zero mean real Gaussian distributed random variables with 

variance 2 2
( ) ( )

, ,

1

2I QA A
u k u ku u

σ σ= = .  The phase term ,u ku
φ is the carrier phase of the k-th user of 

the set-u. 
The discrete-time matrix model of the received BPSK modulated CDMA signal 

after demodulating and chip-matched filtering is given as:  
 

1 2

1 1 1 2 2 2= + +
r = r + r

S A b S A b n
                                        (3.4) 

where  

1 1 1 1r = S A b                                                              (3.5) 

2 2 2 2r = S A b .                                                           (3.6) 

The vector n is the sampled AWGN noise with zero mean, and variance equal 

to 2σ . An effective multistage iterative interference cancellation receiver is discussed 
in the next section, which reduces the high level of interference due to overloading. 

An important type of O/O scheme has been first discussed in [9], which is termed 
as scrambled-O/O (s-O/O) scheme. In this scheme set-1 users are assigned Walsh-
Hadamard codes scrambled with set specific random scrambling sequence. Once the 
number of users exceeds ‘N’, excess users are assigned the same Walsh- Hadamard 
codes of set 1 but with different random scrambling sequence. The scrambling 
sequences are considered to change randomly from symbol to symbol in both sets.  In 
this paper, we have shown the overloading performance of an O/O scheme, where 
scrambling sequence are used for the set 2 users WH codes only. This scheme is 
termed as O/s-O. The scrambling sequence for the set 2 is found by computer  
search such that the binary scrambling sequence provide equal crosscorrelation  

values ( 1/ N± ) between set 1 and set 2 spreading sequences. This balanced 
crosscorrelation property between two sets ensures same BER performance for all 
users in each set. 

4   Iterative Multistage Detection 

The amount of overloading depends upon the spreading sequence design and the 
ability of MUD to remove the high level of interference caused due to extra users. An 
efficient multiuser detection scheme can be used to improve the BER performance 
and overload the system for a given BER requirement. We will explain the iterative 
multistage interference cancellation receiver, which removes interference iteratively 
between the two sets. 
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In conventional matched filter receiver, the received demodulated and chip 
sampled signal (3.4) is despreaded and we obtain soft outputs of the transmitted bits 
embedded in multiple access interference (MAI) and AWGN noise. In conventional 
matched filter detection, these outputs are fed to the decision device to make the hard 
decision of the transmitted information bits. In this work, iterative multistage 
detection (IMSD) technique is used to remove the MAI between two sets users. The 
basic principle of this receiver is to iteratively remove the estimated interference from 
each set due to users of other set in multiple stages such that near single user 
performance is achieved. The interference power from set2-user (assuming that the 
useful signal power is normalized) is 1/N, and therefore the total interference power 
that affects set1-users is M/N. As long as M remains small compared to N, 
preliminary decisions can be made on the symbols transmitted by set1-users with 
some good reliability. But each of the set2-users gets an interference power of N 
(1/N) =1 from set1-users. Clearly the bit error (BER) performance will be poor for 
this set of users if detection is made prior to interference cancellation. As set1-users 
are detected with some good reliability, we can estimate the interference created from 
this set on set2-users. This estimated interference is removed from set2-uers before 
making the decision. Now in second iteration, interference from set2-users on set-1 
are estimated form the first iteration outputs of set-1 and a more reliable set1 bits are 
obtained. This process continues till we get a near single user performance. 

To explain the operation the following notations are used: 1
ˆ ib  and 2

ˆ ib  are 

decisions about set-1 & set-2 user data bits at thi  iteration respectively, 1
iy  and 2

iy  

are set 1 and set 2 matched filters output at thi  iteration. At each iterative stage of the 
IMSD detector, the decision on the information bits are made according to the 
following expressions, 

  

( )1
1 1 2, 2

ˆ ( . )i T (i- )
iφ δ= −b S r I                                        (4.1) 

( )2 2 1, 1
ˆ ( . )i T i

iφ δ= −b S r I                                            (4.2) 

where, 

1 1 1 1
ˆi i=I S A b ;                                                    (4.3) 

       2 2 2 2
ˆi i=I S A b                                                     (4.4) 

are estimated Multiple Access Interference (MAI) of set 1 on set 2 and set 2 on set 1 
respectively. 1, 2,and  (0 1)i iδ δ δ≤ ≤  are the partial cancellation factor (pcf) which 

decides the amount of estimated interference cancellation for set 2 and set 1 
respectively in the ith  iteration. Generally as the iterations increases these pcf values 

approaches unity. The value of pcf is selected to minimize the BER. In this paper 1,iδ  

is set to unity as the set-1 data estimates are reliable as compared to set 2 (M < N). 
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In equations (4.1) and (4.2), ( )xφ  is the nonlinear decision function. According 

to the decision function ( )xφ , IMSD can be classified as Hard Decision Interference 

Cancellation (HDIC) or Soft Decision Interference Cancellation (SDIC). For HDIC, 
the decision function is defined as 

( ) 1         0
( )

1            0 

x
x sgn x

x
φ

− <⎧
= = ⎨ >⎩

                                    (4.5) 

For SDIC except for the last iteration, where we take hard decision, in other 
iterations several nonlinear decision functions can be used. In some of the proposed 
schemes iteration dependent decision functions (ISDIC) are used. Computational 
complexity of SDIC is the limiting factor for its practical implementations. We have 
used piecewise linear approximation of hyperbolic tangent and is defined as: 

                    ( )
( )
                      

sgn                  

x x
x

x x

θθφ
θ

⎧ <⎪= ⎨
≥⎪⎩

                                      (4.4) 

where θ  is selected to minimize the average BER.  

5   Simulation Results 

In this section we show the overloading performance of Orthogonal/scrambled-
Orthogonal (O/s-O) overloading scheme for DS-CDMA system. The Monte-Carlo 
simulation has been carried out in MAT-Lab to evaluate the BER performance of O/s-
O overloading schemes in an AWGN channel. We have considered equal power and 
equal phase (assumed zero) synchronous users in both the sets. In the situation when 
users are synchronous and with equal phase, maximum level of MAI power results 
between the sets. The BER performance of hard decision interference cancellation 
(HDIC) and soft decision interference cancellation (SDIC) has been investigated. The 
amount of overloading is obtained for an average BER with a maximum SNR 
degradation of less than 0.5 dB compared to single user bound. We present the 
amount of overloading as the ratio of the total number of users K (=M+N) and  
the spreading length N, i.e., (M+N)/N % for a given BER and SNR degradation. The 
value of the parameter θ  is 0.7 for SDIC and it is fixed for all iterations. 

The overloading performance of HDIC technique for N=16 and 64 is shown in  
Fig. 3 and Fig. 4 respectively. For 6% overloading, the SNR degradation is less than 
0.5 dB as compared to single user performance, for both spreading factors. But as we 
increase the overloading to 11%, the SNR degradation is more than 1 dB. Hence the 
amount of overloading for HDIC scheme is less even we increase the value of N from 
16 to 64, as observed from Fig. 4. 

To increase the amount of overloading SDIC scheme is used. As can be observed 
from Fig. 5, 19% overloading is possible with less than 0.5 dB degradation for a BER 

of 510− when the value of spreading length N is 16. This is considerably higher than  
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Fig. 3. BER performance comparison with Hard decision Interference cancellation (HDIC) 
with N=16 for overloading a) 19%; b) 11%; c) 6%; d) Single user performance 
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Fig. 4. BER performance comparison with Hard decision Interference cancellation (HDIC) 
with N=64 for the overloading a) 19%; b) 11%; c) 6%; d) Single user performance 

the corresponding HDIC scheme. In Fig. 6, the BER performance of SDIC scheme for 
N=64 is shown at different values of overloading. It is interesting to observe that the 

amount of overloading is reduced to 11% for a BER of 510− .  
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Fig. 5. BER performance comparison with Soft decision Interference cancellation (SDIC) with 
N=16 for overloading a) 30%; b) 19%; c) 11%; d) Single user performance 
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Fig. 6. BER performance comparison with Soft decision Interference cancellation (SDIC) with 
N=64 for overloading a) 30%; b) 19%; c) 11%; d) Single user performance 



526 P. Kumar, M. Ramesh, and S. Chakrabarti 

6   Conclusions 

Efficient use of the available radio spectrum is an important requirement for future 
wireless communication. In a cellular system based on DS-CDMA, the number of 
sequences assigned to active users in a cell is typically less than the spreading factor, 
and the cells are underloaded. Overloading is an efficient way to increase the capacity 
of a DS-CDMA system. Among the approaches discussed in the literature, the most 
efficient ones use multiple sets of orthogonal signal waveforms, so that no 
interference arises between users from the same set. Multistage iterative interference 
cancellation receivers with hard and soft decision functions have been proposed in the 
literature as an efficient way to reduce the high level of interference level.  The 
performance of the Orthogonal/scrambled-Orthogonal overloading scheme for DS-
CDMA cellular system has been evaluated in this work. The BER performance of 
both hard and soft decision interference cancellation receiver is evaluated through 
simulation. It is shown that this scheme with soft decision interference cancellation 
(SDIC) can overload the DS-CDMA systems by 19%% and 11% for N=16 and  
64 with less than 0.5 dB SNR degradation as compared to single user bound at a BER 

of 510− .  
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Abstract. To extend the coverage area of conventional WLANs and to provide
better mobility support, multi-hop WLANs are emerging as a viable and cost-
effective solution. A possible way to construct such a multi-hop WLAN system
is to employ an ad hoc routing protocol to discover and maintain the multi-hop
paths between the clients and the access points. A prerequisite of proper routing is
that all the nodes have a unique network-layer identifier. However, traditional au-
toconfiguration protocols commonly used in infrastructure-based WLANs, such
as DHCP, are not directly applicable in this context due to multi-hop relaying
between hosts. In this paper we propose an enhancement of DHCP to enable dy-
namic address allocation of mobile nodes in multi-hop WLAN systems, without
changing the legacy implementation of the DHCP servers. We have implemented
a prototype of our solution, and we have measured the maximum delay needed
to configure an IP address under various topology configurations and network
loads. Our experimental results indicate that the proposed mechanism is quite fast
in lightly loaded networks, while the contention between data traffic and control
messages may significantly increase the configuration delay.

1 Introduction

In recent years, IEEE 802.11 wireless LAN (WLAN) systems have been widely estab-
lished on campuses, in public places and in indoor environments to provide convenient
data transmission between mobile devices and the Internet. A typical WLAN consists
of two different entities: access points (APs), which are connected to the backbone in-
frastructure, and clients (or stations), which are associated with an AP that is reachable
through one-hop wireless transmissions. However, due to radio signal attenuation the
coverage area of WLAN systems is limited. To extend WLAN coverage and to provide
better mobility support two approaches are traditionally followed in real practice. On
the one hand, it would be possible to increase the transmission power of an access point
in order to reach farther nodes. However, the main shortcoming of this solution is to
induce poor channel reuse and to increase the number of users that access the network
through the same access point. This results in the increase of the contention level within
each cell, which generally degrades the per-user throughput performance. In addition,
the extent of this technique is limited by the fact that the IEEE 802.11 technology oper-
ates in the unlicensed frequency spectrum (i.e. ISM band) and most governments restrict
the maximum transmission power level. On the other hand, we may opt for deploying

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 528–539, 2008.
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more access points at a closer spacing so as to increase the network capacity. However, a
number of reasons, including increasing possibility of co-channel interference between
nearby access points, availability of a limited number of orthogonal non-interfering fre-
quency channels, as well as cost and management overheads, limit the effectiveness of
this approach.

To overcome the limitations of the above-discussed approaches, recently several au-
thors have advocated the idea of enabling multi-hop communications inside WLAN
systems so that clients can have also multi-hop paths to reach the AP via other clients
that act as relays [1, 2, 3, 4]. Figure 1 shows an illustrative example of such network
organization. According to this view, the APs have to implement specific gateway func-
tionalities to interconnect the ad hoc components (basically a MANET network) to the
wired local infrastructure and the Internet [5]. A possible way to build such a multi-hop
WLAN system is to employ routing protocols that have been designed to construct
multi-hop paths among the nodes of an ad hoc network. In general, both proactive
(e.g., OLSR [6]) and reactive (e.g., AODV [7]) ad hoc routing protocols can be used
to discover and maintain the appropriate multi-hop routes between the clients and the
APs. However, using a network-layer based solution (i.e., an ad hoc routing protocol)
to construct this multi-hop WLAN system brings also a number of fundamental de-
sign challenges. In particular, a prerequisite for proper routing is that all nodes are
configured with a unique network-layer (e.g., IP) address. Since pre-configuration is
impractical in such networks, an address autoconfiguration protocol is crucial to al-
low dynamic assignment of nodes’ network addresses. However, the autoconfiguration
protocols commonly used in conventional infrastructure-based WLANs to configure
unique addresses, such as the Dynamic Host Configuration Protocol (DHCP) [8] or the
Zeroconf protocol [9] are not applicable in this context due to multi-hop relaying be-
tween clients.

In this paper we propose an enhancement of DHCP to enable dynamic IPv4 address
allocation of mobile nodes in multi-hop WLAN systems. Important features of the pro-
posed solution are the following: i) it is a fully distributed scheme that does not require
changes of the legacy DHCP server implementation, but all the modifications are re-
stricted to the clients; ii) it is designed to efficiently cope with node mobility, and iii)
the mobile clients do not need any a priori information on the identity or location of
the DHCP servers. In principle, it may be argued that any address autoconfiguration
protocol already designed to work in ad hoc networks might be also employed to assign
a unique identifier to mobile clients in a multi-hop WLAN system. However, on the one
hand these schemes assume stand-alone ad hoc networks not connected to any external
network (e.g. [10]). In this case, the autoconfiguration protocol assigns an address valid
only within that particular ad hoc network. Our proposed solution is not restricted to
configure only local addresses but it is specifically designed to assign globally routable
IP addresses. On the other hand, in case of an ad hoc network connected to the Internet,
ad hoc nodes may use the Internet gateway for network prefix allocation (e.g. [11]).
This design choice makes the autoconfiguration protocol simpler but introduces addi-
tional issues such as how each gateway provides a topologically correct routing prefix.
To avoid this complication our proposed scheme does not require any network prefix
pre-allocation for the wireless nodes. In other words, we permit that all the nodes in
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Fig. 1. Illustrative example of a multi-hop WLAN system

the multi-hop WLAN system, both ad hoc nodes and static ones, have an IP address
with the same network identifier. As shown in [4] this architectural design allows trans-
parent support for node mobility and reduced overheads. We have prototyped the main
components of our scheme in a realistic test-bed using the OLSR protocol [6] as ad hoc
routing protocol. In this test-bed, we have conducted several experiments to evaluate the
efficiency of our solution in terms of the maximum delay that is needed to configure an
IP address. The shown experimental results indicate that: i) in lightly loaded networks
the total configuration delay is quite small and stable, even when the client is several
hops far from the DHCP server, and ii) heavily loaded data traffic may interfere with
DHCP control messages causing a significant increase of the time needed to complete
the address allocation.

The remaining of this paper is organized as follows. The basic idea of the proposed
solution is presented in Section 2, while the protocol details are described in Section 3.
Section 4 presents the experimental evaluation. Section 5 concludes the paper and dis-
cusses future work.

2 Design Principles

The main goal of our autoconfiguration scheme, named AH-DHCP, is to assign a glob-
ally routable IPv4 address to the mobile nodes of a multi-hop WLAN using, in a trans-
parent way, the DHCP-based mechanisms already implemented in the wired part of the
network. This means that a wireless node establishing a multi-hop path through other
wireless nodes to reach the closest access point, must be able to perform a standard
DHCP request when interacting with the available DHCP servers. On the other hand,
from the point of view of the DHCP servers, requests generated from wired or wire-
less nodes must be undistinguishable. This implies that our solution can rely on legacy
DHCP servers, without requiring any change of the standard server implementation.

To enable a new joining node to deliver its address request to the available wired
DHCP servers, we exploit the standard DHCP relay functionalities. More precisely, a
DHCP Relay Agent is a device capable of intercepting DHCP DISCOVER and
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DHCP REQUEST packets from clients. Then, the DHCP relay rebroadcasts the request
to other networks, or send the client’s request to DHCP servers the relay has been con-
figured to contact. The DHCP server then responds back to the relay agent that, in turn,
forward the servers’ replies directly to the clientÕs hardware address. In our solution,
a mobile node not yet associated with the multi-hop WLAN executes a preliminary
message handshake to discover reachable and already configured wireless nodes. Then,
the unconfigured node elects one of the discovered neighbours as DHCP relay agent,
which will forward all the client’s DHCP messages to the known DHCP server. Note
that the DHCP standard does not define any specific mechanism to discover the avail-
able DHCP relay agents, but client-originated DHCP packets are implicitly forwarded
by the DHCP relay agents located on the same physical network segment of the client.
This behaviour is acceptable in wired networks because they are controlled environ-
ments, and both the location and number of DHCP relay agents is carefully planned.
Specifically, DHCP relay agents are usually enabled only on routers’ interfaces inter-
connecting different subnets. On the contrary, in a multi-hop WLAN each wireless node
is a potential DHCP relay agent. Therefore, if multiple DHCP relay agents are used si-
multaneously to pass client’s messages to DHCP servers, the DHCP servers may be
overloaded by the concurrent requests. Moreover, multiple copies of the same DHCP
messages will travel in the multi-hop WLANs increasing the control traffic overheads.

There is another shortcoming in the original design of DHCP that prevents its effi-
cient use in multi-hop WLAN systems. Specifically, DHCP standard assumes that nodes
are static during a client-server transaction and that message losses are infrequent. For
these reasons, DHCP clients adopts a simple retransmission strategies that relies on
timeouts to detect messages losses [8]. However, a multi-hop WLAN is a dynamic en-
vironment where nodes are free to move almost arbitrarily. Thus, the selected DHCP
relay and the unconfigured node may move out of their respective transmission ranges
and become unreachable before the address assignment is completed. This may lead
to unacceptable delays in the address allocation. On the contrary, our scheme incorpo-
rates a mechanism to allow a timely detection of DHCP relay’s movements in order
to ensure a prompt selection of a new valid DHCP relay. Note that after the comple-
tion of the allocation procedures, each wireless node has to periodically interact with
the DHCP server to renew its address. Some authors [10, 12] observed that it might be
difficult to guarantee a continuous access to DHCP servers since ad hoc networks can
become partitioned due to node mobility. However, in the considered network scenar-
ios this limitation does not appear problematic because the multi-hop WLAN system
we envision will be mostly used as a flexible and cost-effective extension of the fixed
networking infrastructure in enterprise buildings or campus facilities. In these contexts,
users are semi-static or nomadic and are interested in having a continuous access to
Internet and its centralized services.

3 AH-DHCP Description

We assume that the access points in the network implement the gateway functional-
ities described in [4]. This means that the access points can provide Internet and In-
tranet connectivity through multi-hop wireless paths to wireless nodes implementing
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a proactive ad hoc routing algorithm. Note that our scheme does not need a specific
initialization procedure, because the first nodes to join the multi-hop WLAN are the
access points themselves, which may interact with the DHCP servers using their wired
interfaces. Thus, in the following we describe the AH-DHCP operations when a new
wireless node (other that the access point) wants to join the multi-hop WLAN system.
Figure 2 summarizes the state machine of the AH-DHCP client, and it will be used as
the reference flow diagram during the protocol description.

DHCP Relay Discovery. Let node C be a new wireless node that wants to acquire
a network address. It boots up its AH-DHCP client module and it starts to broadcast
special messages, named RELAY DISCOVERYs. Other wireless nodes that are already
part of the multi-hop WLAN and that are in radio visibility of node C responds with a
RELAY ACK message that expresses the willingness of that node to act as DHCP re-
lay agent for node C. Note that these replay messages are unicast packets sent to node
C’s hardware address. In addition, each RELAY ACK message conveys the distance, in
terms of hops, between the relay and its closest gateway. Node C allocates a fixed time,
say TO, to collect the neighbors’ responses. After this timer expiration, node C selects
the relay that is at the minimum hop-distance to an access point as forwarder of its
DHCP messages. To this end, node C sends an unicast DHCP DISCOVERY message
to the selected relay, say R. Note that conventional DHCP clients transmit broadcast
DHCP DISCOVERY messages because they are not aware of the available DHCP re-
lays. On the contrary, an AH-DHCP client scans its radio coverage area to discover
available DHCP relays in order to activate only one of them, which will act as unique
initiator of the address allocation process. This avoids sending multiple copies of the
same allocation request to the DHCP servers.

To increase the probability of receiving at least a response from one of the neigh-
bor wireless nodes, node C periodically broadcasts new RELAY DISCOVERY messages
with period TR. However, to avoid synchronization with other AH-DHCP clients in ra-
dio visibility of node C and transmitting RELAY DISCOVERY messages, the generation
of control traffic should be randomized. To this end, we add a variable jitter for the
transmission of RELAY DISCOVERY messages. More precisely, if tk is the time instant
at which node C should transmit the k-th RELAY DISCOVERY message, the real trans-
mission is scheduled at time t ′k=tk+ jitter, where jitter is a random value selected in the
interval [−MAXj,MAXj]. In our prototype implementation we selected MAXj =0.1 ·TR.
Note that this randomization strategy is similar to the one adopted in the OLSR specifi-
cation [6] to avoid synchronization of control messages. Similarly, it is possible to have
collisions between the RELAY ACK replays, because node C may have a large number
of neighbor wireless nodes with DHCP relaying capabilities. Again, we adopt as col-
lision avoidance strategy the randomization of RELAY ACK transmissions. However,
since the collision probability may be higher for reply messages than for relay discov-
ery messages, for the former type of packets we selected a maximum jitter value equal
to 50% of TR. Finally, it would be possible that after the TO expiration, node C did not
receive any response. In this case, node C initializes the TO timer and keeps transmitting
RELAY DISCOVERY messages.
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Fig. 2. Flow chart of the AH-DHCP client’s behavior

DHCP Server Discovery. After sending the unicast DHCP DISCOVERY to the se-
lected DCHP relay R, node C waits for receiving a DHCP OFFER from the DHCP
sever, which the relay agent forwards the message to. However, it can occur that be-
tween node R and the access point there are persistent communication problems (e.g.,
poor quality wireless links or an overloaded channel) that may introduce unacceptable
delays in the configuration procedure. To control the maximum delay introduced by
the DHCP server discovery phase, node C initializes another timer, say TA. If the re-
ception of a DHCP OFFER does not occur before the TA expiration, node C checks
the list of DHCP relays discovered during the last DHCP relay discovery phase. If
this list is not empty, then node C selects a new DHCP relay R′ and it sends a unicast
DHCP DISCOVERY to node R′ to activate a new configuration procedure. On the con-
trary, if node R is the only discovered relays, node C starts a new DHCP relay discovery
phase to find additional neighbor nodes. In our envisaged scenario, nodes are free to
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move arbitrarily. Thus, the wireless link between node C and node R can break dur-
ing the DHCP server discovery phase because node C and node R moved away from
their transmission ranges. To ensure that node C is able to promptly discover a topology
change, we introduce a polling mechanism. Specifically, node C sends periodic unicast
RELAY POLL messages to relay R, which is mandated to reply immediately with a RE-
LAY ACK message. If node R does not reply for a maximum of retry limit times, node
C can assume that relay R is not reachable anymore and it searches another valid DHCP
relay, as after a TA expiration. The generation period of RELAY POLL messages and the
retry limit value should be chosen as a tradeoff between the promptness in detecting
topology changes, protocol overheads and the tolerance to poll message losses. Finally,
when node C receives a DHCP OFFER, it moves to the next state, the DHCP requesting
phase, by sending a DHCP REQUEST to relay R.

DHCP Requesting Phase. After sending the unicast DHCP REQUEST to the selected
DCHP relay R, node C waits for receiving a DHCP ACK from the DHCP sever, which
would complete the configuration process. This phase is similar to the previous one,
with the only difference that after the reception of a DHCP ACK packet node C is con-
figured and can start running the ad hoc routing daemon to participate in the multi-hop
forwarding. Moreover, it activates its own DHCP relay agent to intercept the requests
of future nodes that want to join the multi-hop WLAN system. As described previ-
ously, node C periodically polls the selected relay R to verify its reachability. If node
C does not receive a reply to its poll messages for a maximum of retry limit times,
node C selects a new DHCP relay R′ in the list, if available, and it sends a new unicast
DHCP REQUEST message to R′, which passes it to the wired DHCP server. Finally, if
the TA timer expires without receiving a DHCP ACK message, node C assumes that
relay R is not capable of successfully completing the configuration process and it tries
to use another relay.

4 Experimental Evaluation

To evaluate the efficiency of the proposed address autoconfiguration protocol, we have
deployed a small-scale test-bed with one access point and five nodes operating in static
configurations. We did not use a commercial access point, but a computer instrumented
as an access point and implementing the required functionalities to manage multi-hop
paths with the clients. We have adopted as reference implementation the DHCP server,
client and relay agent public source code provided by the Internet Systems Consortium
(ISC), which is one of the most popular DHCP implementations for POSIX-compliant
operating systems [13]. Then, we made the necessary modifications to the DHCP client
and relay agent software modules to implement the mechanisms described in Section 2.
Our prototype does not implement the polling mechanisms, and the following exper-
imental evaluation consider only static relay agents. Regarding the system hardware
configuration, our test-bed consists of six laptops running Linux 2.6.12 OS kernel. To
provide Internet connectivity to the configured mobile nodes we adopted the multi-hop
WLAN architecture described in [4], which is based on OLSR ad hoc routing proto-
col [6]. All nodes were located in the same room, and the IP-tables feature of Linux
was used to emulate the multi-hop topologies. To generate the background UDP traffic
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Fig. 3. Network layouts used for the experiments described in Section 4.1

we used the iperf tool [14]. If not otherwise stated, the UDP payload size is fixed and
set to 1448 bytes.

It is worth point out that we conducted the performance tests in an area of CNR
building covered by other wireless networks, which introduced uncontrollable radio in-
terference. However, we believe that the randomness due to the external interference is
well representing the characteristics of real radio environments and it is useful to attain
more realistic results. To measure steady-state performance we have replicated each
test fifty times. The following graphs report both the averages and the 95% confidence
intervals. Note that the confidence intervals are often very tight (≤ 1 percent), and are
not appreciable from the plots.

4.1 IP Address Configuration

First of all, we carried out a set of experiments to evaluate the IP address configuration
delay, say Dcon f , which is defined as the interval from the time the new joining node
boots up its AH-DHCP client and the time it receives the DHCP ACK message with
the committed IP configuration parameters. Several factors can affect this delay, such as
the duration of the 4-message exchange adopted by the DHCP protocol and the process-
ing delays on the DHCP servers [15]. However, in a multi-hop WLAN system also the
distance of the DHCP server from the mobile node plays a crucial role in determining
the configuration delay. For instance, the configuration requests delivered by the new
joining node may have to traverse multiple wireless hops before reaching the closest
access point, which acts as gateway between the ad hoc domain and the wired infras-
tructure. To estimate this component of the total Dcon f delay we performed several tests
in the network scenarios illustrated in Figure 3. More precisely, we considered a single
client C that is n wireless hops far from the access point A. Thus, at least n−1 relays
are needed to establish this n-hop path between C and A. Obviously, each wireless hop
adds its own medium access delay, processing delay and queuing delay. Regarding the
DHCP server, we used the legacy server deployed on the LAN, which the access point
is attached to.

Figure 4(a) shows the IP address assignment delay for different n values. The shown
delays have been measured without background traffic, i.e., when OLSR routing
messages and AH-DHCP messages are the only packets transmitted over the wireless
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Fig. 4. IP address assignment delay

links. Beside the length of the route between C and A, the other system parameter we
varied during the tests was the observation period (TO) duration. Specifically, we con-
figured TO = m · TR + Δ, where TR is the repeat period of RELAY DISCOVERY mes-
sages and Δ is a guard time. In all experiments, the TR value was fixed to 20 msec and
Δ = TR/2. The m value is an integer varying in the range [1,5]. From the shown ex-
perimental results, we observe that the Dcon f value increases almost linearly with TO

and that it is slightly dependent on the n value. To explain this behaviour it is useful to
introduce two additional variables. The first one, say Ddisc, expresses the time between
the first RELAY DISCOVERY message sent by the AH-DHCP client running on the new
joining node and the DHCP relay activation (through the unicast DHCP DISCOVERY

message sent by the AH-DHCP client to the selected relay). The second one, say
Dassign, expresses the time between the DHCP relay activation and the reception of the
DHCP ACK message concluding the IP address assignment. It is intuitive to write that
Dcon f = Ddisc + Dassign. Without background traffic, the network contention induced
by control traffic (i.e., OLSR and DHCP messages) is negligible and the transmission
buffers are empty most of the time. Consequently, packet losses are rare events and they
are mainly due to the radio disturbance caused by external interfering radio sources. In
these conditions, new joining node was always capable of discovering the neighbor re-
lay node within one TO interval. This implies that Ddisc ≈TO and Dcon f ≈ Dassign+TO. In
addition, by inspecting the traces we observed that the Dassign value does not depend on
the TO parameter but only on the path length between C and A. Since the network load
is negligible, the Dassign contribution to the total configuration delay is quite limited
and it ranges from 60 mses, in case of a client directly connected to the access point, to
100 msec, in case of a 5-hop chain of relay agents.

The protocol behaviour changes radically with background traffic, as shown in Fig-
ure 4(b). The background traffic consists of n−1 UDP flows. Specifically, each relay
R is a CBR (Constant Bit Rate) source sending UDP packets to a server in the wired
LAN, which the access point A is attached to. The per-flow UDP load was set in such a
way to saturate the wireless channel. From the experimental results we notice that the
total configuration delay varies from 200 ms, in case of a single relay node between
client C and access point A, up to 6 seconds, in case of four relay nodes between the
C and A. To explain the observed values we should clarify the impact of data traffic on
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Fig. 5. Network layouts used for the experiments described in Section 4.2

DHCP control traffic. Specifically, client’s DHCP messages are encapsulated into UDP
packets that are sent as broadcast frames, which are particularly vulnerable to colli-
sions because they are not acknowledged. For these reasons, loss probability for DHCP
packets is much higher that for data frames. The first effect of these losses is that the
Ddisc increases, because a single TO interval is not generally sufficient for discovering
the neighbor DHCP relay. From the experimental results we found out that the Ddisc de-
lay, with background traffic, ranges from 65 msec (for TO =30 msec) to 110 msec (for
TO=110 msec). In addition, the Dassign delay is significantly higher than the Ddisc delay
due to the high queuing delay observed in overloaded networks. Finally, DHCP mes-
sages forwarded by DHCP relays may get lost due to various factors (e.g., retry limits at
MAC layer, buffer overflows, radio interference). DHCP protocol relies on timeouts to
detect messages losses and introduces randomized delays before retransmissions. Thus,
DHCP message losses may significantly increase configuration delay in challenged en-
vironments. Our measurements indicate that, in the considered overloaded networks,
each additional wireless hop adds about one second to the total configuration delay.

4.2 Relay Discovery

In the previous section, we considered network scenarios where the new joining node
has a single neighbor DHCP relay agent. However, in general the client C may be in
radio visibility with a greater number of configured nodes. Hence, it is important for the
client to discover all the possible relays in order to select the best one (e.g., the relay
at a shortest distance from the access point). To evaluate the efficiency of the discovery
phase we have carried out several tests in the network scenarios illustrated in Figure 5.
More precisely we considered a single client (C) that is in radio visibility with n differ-
ent relays. All these potential DHCP relays are in radio visibility with the same access
point A. Thus the client C is two hops far from the access point A. In the experiments
we varied the TR parameter, i.e., the repetition frequency of RELAY DISCOVERY mes-
sages. Note that in these tests the TO period was unbounded and we forced the client
to execute a continuous DHCP relay discovery procedure. Figure 6(a) shows the mini-
mum observation period needed to discover all the available relays in a network without
background traffic. From the experimental results we observe that in the case of a single
relay, the discovery phase is very short and the first RELAY DISCOVERY message sent
by node C is sufficient to trigger the RELAY ACK reply. On the contrary, with more
than one relay it is possible that RELAY ACK messages sent by relay nodes get lost
due collisions. This leads to an increase of the time required to discover all the relays.
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Fig. 6. Duration of relay discovery phase

Note that the smaller the TR interval and the higher the probability of collision because
RELAY DISCOVERY packets are sent more frequently.

Figure 6(b) shows the results obtained when the same experiment is replicated in
overloaded networks. The background data traffic consists of n CBR (Constant Bit
Rate) UDP flows established with a server in the wired LAN, one for each relay R.
The per-flow UDP load was set in such a way to saturate the wireless channel. The first
observation we may derive from the experimental results is that there is an increase in
the minimum time needed to discover all the available relays. This was expected, since
data traffic increases the contention level on the channel, inducing an higher number
of collisions that negatively affect the delivery rate of broadcast frames (such as RE-
LAY DISCOVERY messages). The second observation concerns the increased variability
of the measured delays and the more evident dependency on the TR value. This can be
explained by noting that the longer the TR interval, and the longer the time between con-
secutive RELAY DISCOVERY messages. Hence, the time needed to recover a message
loss increases. However, we may observe that the DHCP relay discovery phase is quite
fast even with background traffic.

5 Conclusions

In this paper we have described AH-DHCP, an address autoconfiguration protocol for
multi-hop WLAN systems. The main goal of our work was to show the applicability
of DHCP, originally designed to provide configuration parameters to hosts in a fixed
network, also when traditional WLANs integrate ad hoc networking technologies to
discover and maintain multi-hop wireless path within the network. The basic idea is to
take advantage of DHCP relay capabilities available in already configured nodes. To this
end, we have proposed an enhancement of DHCP to enable a new joining node to dy-
namically choose a reachable wireless node as the DHCP relay that transparently passes
all the client-originated messages to the DHCP servers located in the wired part of the
network. Experiments conducted with a prototype implementation of AH-DHCP have
shown that the proposed solution has low latency in lightly loaded networks, while the
contention between data traffic and control messages increases the address configuration
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delay. Especially when the mobile node is far from the DHCP server, this increase may
be remarkable. However, the causes of these delays may be rooted to the inefficiencies of
multi-hop ad hoc networking rather than to the AH-DHCP overheads. For future work,
we intend to investigate mechanisms to reduce the impact of multi-hop forwarding on
address assignment, e.g. by introducing a hierarchy of DHCP relay agents. Another key
research issue is the extension of our solution to IPv6.
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Abstract. This paper deals with multimedia channel assignment in
a hexagonal cellular network with two-band buffering. After deriving
a lower bound on the minimum bandwidth for real-life situations, we
present an algorithm for assigning channels using Genetic Algorithm
(GA). We also propose an elegant technique for re-use of the channels,
using only eighteen distinct frequency bands on a nine-node subgraph of
the network, and then extend it for assignment of the complete network.
The proposed algorithm converges very rapidly with required bandwidth
close to the derived lower bound.

1 Introduction

The Channel Assignment Problem (CAP) for a mobile cellular network is the
task of assigning frequency channels to the calls satisfying some frequency sep-
aration constraints with a view to avoiding channel interference and using as
small bandwidth as possible [5]. A lower bound on bandwidth requirement for
assigning multimedia channels to a hexagonal cellular network has been derived
in [6], considering only two types of multimedia signals, say type A and type B,
with a single demand of each type at each node of the network. In this paper, we
use the same system model as used in [6] and first estimate the lower bounds on
the required bandwidth for assigning channels in some real-life situations. We
next present an algorithm for solving the multimedia channel assignment prob-
lem, using genetic algorithm (GA), under the condition of 2-band buffering and
with only two types of multimedia signals where each cell has a single demand
for each type of signal. We then select a subset of only nine nodes of the net-
work and propose a clever technique of re-using the frequency channels so that
by repeatedly using only eighteen bands (two bands for each node for assigning
both the types of multimedia signals), the required assignment for the whole
network can be completed. For this purpose, we first find the required frequency
separation constraints among the channels to be assigned to the different nodes
of the network, and then use our proposed GA-based algorithm for assigning
the multimedia channels for the complete network. Experiments show that the
proposed assignment algorithm converges very rapidly and assigns channels with
a bandwidth close to the derived lower bound.
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2 Notations

We denote the bandwidths required for type A and type B signals as BWA

and BWB, respectively. W.l.o.g, we assume that BWA ≥ BWB . The required
frequency separations for avoiding interference in a 2-band buffering system be-
tween two calls in the same cell, in two cells distance 1 apart and in two cells
distance 2 apart are denoted by 1) s0, s1 and s2, respectively for the two type A
calls, 2) s′0, s′1 and s′2, respectively for the two calls, one of type A and the other
of type B, and 3) s′′0 , s′′1 and s′′2 , respectively for the two type B calls. Because
BWA ≥ BWB , we assume that s0 ≥ s′0 ≥ s′′0 , s1 ≥ s′1 ≥ s′′1 and s2 ≥ s′2 ≥ s′′2 .
We further assume that s0 ≥ s1 ≥ s2, s

′
0 ≥ s′1 ≥ s′2 and s′′0 ≥ s′′1 ≥ s′′2 .
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Fig. 1. Hexagonal Cellular network: a) A 7-node subgraph, b) A 9-node subgraph

3 Lower Bound on Bandwidth

Considering the seven-node subgraph of Fig. 1 (a), for different relative values
of the parameters s0, s1, s2, s

′
0, s
′
1, s
′
2, s
′′
0 , s′′1 , s′′2 , we first state the result from [6].

Result: To assign one band for type A signal and one band for type B signal
to each of the nodes in a hexagonal cellular network, the required minimum
bandwidth is given by the following expressions:

i) min[s′0+s′1+4s2+2s′2+5s′′2 , s1+2s′1+3s2+2s′2+5s′′2 , s1+s′1+s′′1+4s2+s′2+5s′′2 ,
s1 + s′1 + 4s2 + 2s′2 + 5s′′2 ], for s2 + s′′2 ≤ 2s′2, and ii) min[s′0 + s′1 + 10s′2 + s′′2 ,
s1 + s′1 + s′′1 + 9s′2 + s′′2 , s1 + s′1 + 10s′2 + s′′2 ], for s2 + s′′2 ≥ 2s′2.

3.1 Approximations in Practical Situations

Assuming that the frequency response curves for the bands assigned to type
A and type B signals are typically of trapezoidal shape with BWA ≥ BWB ,
it has been shown in [6] that s1 − s′1 = s2 − s′2 = s′1 − s′′1 = s′2 − s′′2 . Hence,
s′′2 + s2 = 2s′2. Thus, the result in [6] now reduces to the following under such
real-life constraints:

Theorem 1. To assign one band for type A signal and one band for type B
signal to each of the nodes in a hexagonal cellular network, the required minimum
bandwidth is min[s′0 + s′1 + 4s2 + 2s′2 + 5s′′2 , s1 + 2s′1 + 3s2 + 2s′2 + 5s′′2 , s1 + s′1 +
s′′1 + 4s2 + s′2 + 5s′′2 , s1 + s′1 + 4s2 + 2s′2 + 5s′′2 ].
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4 Genetic Algorithm for Multimedia Channel Assignment

We now use the elitist model of genetic algorithm (EGA) for solving the multime-
dia channel assignment problem. First, we form a Channel Assignment Problem
(CAP) graph similar to that in [1], in which a node represents a call generated
from a cell, and two nodes vi and vj are connected by an edge with weight cij ,
where cij(> 0) is the minimum separation between the channels assigned to the
corresponding calls. Let C = cij be the frequency separation matrix for the CAP
graph consisting of n nodes. Let M be the population size which is an even in-
teger. Let cp be the crossover probability, for which we take a high value, say
0.95, in our algorithm. We start with a mutation probability of q = 0.5 and then
vary it with the number of iterations similar to that used in [5].

We now describe the fitness function Fit(S), used in our algorithm, as follows:

function Fit(S) // S is a string.//
t[0]← 0; // t [i] is the frequency assigned to the i-th node nodei of S //
for i = 1 to n − 1 do

Set t[i] to smallest integer without violating the frequency separation
requirements specified by the matrix C with all the previously
assigned values t[0], t[1], ..., t[i − 1].

return max t[0], t[1], ..., t[n − 1].

4.1 Algorithm GA

Step 1: Set the iteration number t ← 0; Set cp ← 0.95; Set M ← 20.
Step 2: (initial population) For i = 0 to M −1, generate a random order of the

nodes in the CAP graph and consider it as a string Si; set qt ← {S0, S1, ..., SM−1}
as the initial population.

Step 3: Compute Fit(Si) for each string Si(0 ≤ i ≤ M −1) of qt. Find the best
string Sbest1 (i.e., the string with the least fitness value) and the worst string
Sworst1 (i.e., the string with the highest fitness value) of qt. If Sbest1 or Sworst1
is not unique, choose one arbitrarily.

Step 4: (Selection or reproduction) a) Calculate the probability pi of selection

of Si(i = 0, 1, ..., M − 1) as pi =
1

F it(Si)∑ M−1
i=0

1
F it(Si)

b) Calculate the cumulative probability qi for Si(i = 0, 1, ..., M − 1) as qi =
∑i

j=0 pi.
c) Generate a random number rj from [0, 1] for j = 0,1,...,M - 1. Now, if

rj ≤ q0, select S0; otherwise select Si(1 ≤ i ≤ M − 1), if qi−1 < rj ≤ qi).
Note: p0 = q0 and pi = qi - qi−1 for 1 ≤ i ≤ M − 1.
Step 5: (Crossover) Form M/2 pairs of pairing the i-th and (M/2 + i)-th

string from qmat(1 = 0,1,...,(M/2 - 1)). For each pair of strings, generate a
random number R from [0, 1]. If (R ≤ cp)then generate two random numbers
from {0, n − 1} to define a matching section. Use this matching section to effect a
cross through position-by-position exchange operation (to produce two offsprings
for the next generation).



Channel Assignment in Multimedia Cellular Networks 543

Step 6: (Mutation) Set q ← m probability(t). For each string Si of qtempi

(0 ≤ i ≤ M − 1), and for each node nodej(0 ≤ i ≤ M − 1) of string Si, generate
a random number from [0, 1], say m. If (m ≤ q) then exchange nodej of Si with
any other randomly selected node nodek of Si, (0 ≤ k ≤ n − 1, k �= j).

Step 7: Calculate Fit(Si) for each string Si(0 ≤ i ≤ M − 1) of qtemp2. Find
the best string Sbest2 and the worst string Sworst2 of qtemp2. If Sbest2 or Sworst2
is not unique, choose one arbitrarily.

Step 8: (elitism) Compare Sbest1 of qt and Sbest2 of qtemp2. If Fit(Sbest2) >
Fit(Sbest1), then replace Sworst2 with Sbest1. Rename qtemp2 as qt.

Step 9: t ← t + 1. If t < T then go to stpe 3; otherwise stop.
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Fig. 2. Frequency assignment of the whole network using eighteen bands

5 Assignment Technique with Reuse of Channels

The algorithm developed above can now be applied to any CAP graph. However,
in case of a hexagonal cellular network, we propose an elegant technique for re-
using the channels in a very effective way. For this, we first consider a 9-node
subgraph with nodes a, b, c, d, e, f, g, h and i, as shown in Fig. 1(b), where each
node represents a cell. We refer to it as a 9-node block. We assign only eighteen
bands to this 9-node block, i.e., one band for type A and one band for type B
calls to each of the nine nodes, satisfying all the frequency separation constraints
within the block, as well as, with the neighboring blocks. We then repeat this
9-node block along with the assigned eighteen bands, over the entire cellular
network to complete the whole assignment.

Let φA(α) be the band assigned to a type A call and φB(α) to a type B call,
at node α, where α ∈ {a, b, c, d, e, f, g, h, i}. We consider three directions x, y and
z on the cellular graph as shown in Fig. 1(b). In x direction, there are three dif-
ferent sequences of node alignments identified by their repetitive nature as type
x1 : a, b, c, a, b, c, · · ·; type x2 : d, e, f, d, e, f, · · ·; and type x3 : g, h, i, g, h, i, · · ·.
However, in cases of y and z directions, each has only one type of node sequence,
identified by their repetitive natures as type y : a, h, f, c, g, e, b, i, d, · · ·, and type
z : d, c, i, f, b, h, e, a, g, · · ·, respectively.
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Table 1. Frequency Separation matrix for 9-node block

Nodes aA aB bA bB cA cB dA dB eA eB fA fB gA gB hA hB iA iB
aA s0 s′

0 s1 s′
1 s1 s′

1 s1 s′
1 s1 s′

1 s2 s′
2 s1 s′

1 s1 s′
1 s2 s′

2

aB s′
0 s′′

0 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2

bA s1 s′
1 s0 s′

0 s1 s′
1 s2 s′

2 s1 s′
1 s1 s′

1 s2 s′
2 s1 s′

1 s1 s′
1

bB s′
1 s′′

1 s′
0 s′′

0 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1

cA s1 s′
1 s1 s′

1 s0 s′
0 s1 s′

1 s2 s′
2 s1 s′

1 s1 s′
1 s2 s′

2 s1 s′
1

cB s′
1 s′′

1 s′
1 s′′

1 s′
0 s′′

0 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1

dA s1 s′
1 s2 s′

2 s1 s′
1 s0 s′

0 s1 s′
1 s1 s′

1 s1 s′
1 s2 s′

2 s1 s′
1

dB s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
0 s′′

0 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1

eA s1 s′
1 s1 s′

1 s2 s′
2 s1 s′

1 s0 s′
0 s1 s′

1 s1 s′
1 s1 s′

1 s2 s′
2

eB s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
0 s′′

0 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2

fA s2 s′
2 s1 s′

1 s1 s′
1 s1 s′

1 s1 s′
1 s0 s′

0 s2 s′
2 s1 s′

1 s1 s′
1

fB s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
0 s′′

0 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1

gA s1 s′
1 s2 s′

2 s1 s′
1 s1 s′

1 s1 s′
1 s2 s′

2 s0 s′
0 s1 s′

1 s1 s′
1

gB s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
0 s′′

0 s′
1 s′′

1 s′
1 s′′

1

hA s1 s′
1 s1 s′

1 s2 s′
2 s2 s′

2 s1 s′
1 s1 s′

1 s1 s′
1 s0 s′

0 s1 s′
1

hB s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
0 s′′

0 s′
1 s′′

1

iA s2 s′
2 s1 s′

1 s1 s′
1 s1 s′

1 s2 s′
2 s1 s′

1 s1 s′
1 s1 s′

1 s0 s′
0

iB s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
2 s′′

2 s′
1 s′′

1 s′
1 s′′

1 s′
1 s′′

1 s′
0 s′′

0

For the given problem of assigning two channels uniformly to each node of the
9-node subgraph, we have to construct a CAP graph with eighteen nodes, and
the corresponding the frequency separation matrix with the above strategy of
re-using the channels is shown in Table 1. Note that the frequency separations
shown in Table 1 takes care of the adjacency of other neighboring nodes (outside
the 9-node subgraph) in the network.

We next apply the AlgorithmGA over the 9-node block of Fig. 1(b), for as-
signing bands to one type A and one type B calls at each of the nine nodes
for minimum bandwidth, satisfying all the frequency separation requirements of
Table 1. Note that from the equality s1 − s′1 = s2 − s′2 = s′1 − s′′1 = s′2 − s′′2
and Fig. 2, there can be five different conditions C1, C2, C3, C4 and C5 as listed
below:

1) C1 : 2s′′2 < s′′1 , 2s2 < s1 and s2 + s′2 < s′′1 , 2) C2 : 2s′′2 < s′′1 , 2s2 < s1 and
s2 + s′2 ≥ s′′1 , 3) C3 : 2s′′2 < s′′1 , 2s2 ≥ s1 and s′′2 + s′2 < s′′1 , 4) C4 : 2s′′2 < s′′1 ,
2s2 ≥ s1 and s′′2 + s′2 ≥ s′′1 , and 5) C5 : 2s′′2 ≥ s′′1 .

The GA-based assignment algorithm with the above technique of channel
re-use has been run on the entire hexagonal cellular network under all these
five different conditions. The resulting bandwidth requirements under different
conditions are stated in the following theorem.

Theorem 2. The bandwidth BW required by our proposed assignment technique
under different conditions is given as follows:
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for C1, BW = 2s1 + 4s′1 + 2s′′1 + s′2; for C2, BW = s1 + 5s′1 + 2s′′1 + s2;
for C3, BW = 2s′1 + s′′1 +6s2 +3s′2; for C4, BW = s1 +4s′1 +3s2 +4s′2; and
for C5, BW = 5s2 + 6s′2 + 6s′′2 .

Proof: The proof follows from the details of channels assigned to each of the 9-
nodes of the network under the above constraints for each of these five conditions.
All these details are, however, omitted due to brevity.

6 Conclusion

We have first derived a lower bound on the bandwidth for multimedia channel
assignment in cellular netywork for real-life situations. We have next presented
an algorithm for multimedia channel assignment based on genetic algorithm
(GA). Exploiting the hexagonal symmetry of the cellular network, we have then
proposed an elegant technique of reusing the frequency channels. Use of this
idea causes a rapid convergence of our allocation algorithm with a resulting
bandwidth close to the lower bound. Future work includes improving the lower
bound on bandwidth for a feasible assignment of the whole network.
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Abstract. We study routing algorithms for three-dimensional ad hoc
networks that guarantee delivery and are k-local, i.e., each intermediate
node v’s routing decision only depends on knowledge of the labels of the
source and destination nodes, of the subgraph induced by nodes within
distance k of v, and of the neighbour of v from which the message was
received. We model a three-dimensional ad hoc network by a unit ball
graph, where nodes are points in R

3, and nodes u and v are joined by
an edge if and only if the distance between u and v is at most one.

The question of whether there is a simple local routing algorithm that
guarantees delivery in unit ball graphs has been open for some time. In
this paper, we answer this question in the negative: we show that for any
fixed k, there can be no k-local routing algorithm that guarantees delivery
on all unit ball graphs. This result is in contrast with the two-dimensional
case, where 1-local routing algorithms that guarantee delivery are known.
Specifically, we show that guaranteed delivery is possible if the nodes of
the unit ball graph are contained in a slab of thickness 1/

√
2. However,

there is no k-local routing algorithm that guarantees delivery for the
class of unit ball graphs contained in thicker slabs, i.e., slabs of thickness
1/

√
2 + ε for some ε > 0. The algorithm for routing in thin slabs derives

from a transformation of unit ball graphs contained in thin slabs into
quasi unit disc graphs, which yields a 2-local routing algorithm. We also
show several results that further elaborate on the relationship between
these two classes of graphs.

1 Introduction

Mobile ad hoc networks (MANETs) have been the subject of intensive study
over the last decade. Communication between different nodes in a MANET is
achieved by means of a multi-hop routing protocol, which dictates how a packet
from a source node should be forwarded along the edges of the network to a given
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destination node. Many routing algorithms for MANETs model the network as
a two-dimensional geometric graph [12,19,20,25]. This captures a large number
of possible application scenarios for ad hoc networks, where nodes might be
vehicles moving through city streets or some other terrain. However, there is
increasing interest in applications where ad hoc and sensor networks may be
deployed in three-dimensional space, such as in an ocean, the atmosphere, or in
a building [5,13]. For example, underwater networks that perform ocean column
monitoring would require nodes to be placed at different depths in the water,
creating a three-dimensional network [4]. In this paper, we study the problem of
routing in three-dimensional ad hoc networks, and the extent to which they differ
from two-dimensional ad hoc networks from the perspective of routing protocols.
In brief, our results show that the two settings are indeed quite different.

Two-dimensional ad hoc networks are usually modelled as unit disc graphs
(UDG). Every node in a UDG can be mapped to a point on the plane, in such
a way that any two nodes at distance at most one are connected by an edge. In
other words, a node v is connected to every node u occurring within the disc of
radius one centred at v. The unit disc centred at a point represents the transmis-
sion range of the corresponding host. In reality however, the transmission range
of a wireless node is affected by many unpredictable factors, and is unlikely to
be a perfect disc. In [6], the notion of a quasi unit disc graph (QUDG) was intro-
duced to address the issue of unstable transmission ranges. Roughly, a d-QUDG
is a geometric graph in which any two nodes at distance at most d are always
connected, nodes at distance greater than one cannot be connected, and nodes
at distance between d and one may or may not be connected.

The ad hoc nature of the networks under consideration, and the mobility of
the nodes implies that the topology of the network is arbitrary, and moreover, it
changes over time. In the absence of any information about the location of nodes,
routing protocols are obliged to flood control packets through the network in
order to obtain information about the topology of the network [24]. However, in
many cases, it is reasonable to assume that nodes do have access to information
about not only their own locations, but also the location of their immediate
neighbours, and correspondent nodes, via GPS and location servers. There is
a large body of work on routing protocols that utilize position information in
order to achieve efficiency in routing (see the surveys [12,25]). Most of these are
heuristics, and there may be graph instances on which the routing algorithm fails
to deliver the packet. In greedy routing, for example, a node transmits the packet
to its neighbour that minimizes the Euclidean distance to the destination [21].
In compass routing, the next node is chosen to the neighbour that minimizes
the angle between itself, the current node, and the destination node [16]. In
both these algorithms, the packet can get stuck in a loop, resulting in a routing
failure. The only class of algorithms that is guaranteed to deliver the packet
is based on face routing, in which a planar subgraph of the unit disc graph is
extracted locally, and then routing proceeds by traversing the faces of this planar
graph that intersect the line segment between the source and destination [16].
Face routing can be combined with greedy routing [9,15], and can be limited in
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space [17] to achieve faster delivery times. Face routing can also be simulated
on d-QUDGs where d ≥ 1/

√
2, as shown in [6,18].

A unit ball graph (UBG) is the natural generalization of a UDG to three
dimensions, where nodes correspond to points in R

3. A node v is accordingly
connected to every node within the unit-radius ball centred at v. Similarly, the
quasi unit disc graph model can be extended to a quasi unit ball graph model.
All the algorithms that have been proposed so far for routing in UBGs are based
on heuristics [1,2,3,11,14]. As yet, there is no known algorithm for routing that
guarantees delivery in such networks. In this paper, we address the question of
what kind of UBGs admit a routing algorithm that guarantees delivery.

The answer to this question depends on the kind of information that is avail-
able to a routing algorithm in deciding where next to forward a packet. At one
end of the spectrum are algorithms that have complete information about the
entire graph, and that can store routing tables that contain next-hop informa-
tion along shortest paths for every possible destination. At the other end are
the so-called online and memoryless algorithms [8], where a node makes its for-
warding decision based only on the labels1 of itself, the destination node, and
its neighbours. Bose et al. show that there is no deterministic memoryless al-
gorithm that is guaranteed to succeed even if the graphs are limited to convex
subdivisions [7].

Routing algorithms with complete information are entirely unsuitable for the
application domain of mobile ad hoc networks, with their changing topologies,
autonomous nodes, and low-bandwidth wireless links. On the other hand, mem-
oryless algorithms are far too restrictive. For example, in practice, when a node
receives a message, it knows which of its neighbours sent it. Yet, it is precisely
the lack of this information that makes it impossible for a memoryless algorithm
to route on all convex subdivisions; the only information outside the memoryless
model available to face routing, which does succeed on all convex subdivisions,
is knowledge of the previous node. Similarly, it would be reasonable to allow a
node knowledge of the topology of its k-hop neighbourhood for small and fixed
values of k. We say an algorithm is k-local if a node has access to the topology
of its k-hop neighbourhood, as well as the previous node on the path, in making
its forwarding decision. There has been increased recent interest in distributed
algorithms that are sensitive to locality; see for example the book by Peleg [23].
Routing algorithms with information about O(1) other nodes in the graph are
related to k-local algorithms and have been studied in [16,17]. In this paper, we
restrict ourselves to routing algorithms that are k-local. While our algorithm for
a restricted class of unit ball graphs is 2-local, the impossibility results apply to
k-local algorithms for any fixed k.

Our Results

In essence, we show that routing in three-dimensions is harder than routing in
two dimensions. As far as routing is concerned, it is possible to “lift off” the

1 In a geometric graph, a node is labelled by its coordinates.
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plane to a certain extent, but not beyond. We consider unit ball graphs where
nodes are contained in a slab of fixed thickness. We show that if the thickness
of a slab is less than 1/

√
2 times the transmission radius of nodes, then there is

a 2-local algorithm that guarantees delivery in the graph. Conversely, for unit
ball graphs in thicker slabs, we show that if a k-local routing algorithm were
to exist, then a k-local algorithm for routing would also exist for an arbitrary
graph, which we show is impossible.

The algorithm for UBGs contained in thin slabs derives from the fact that
such a UBG can be transformed via projection into a d-QUDG with d ≥ 1/

√
2,

for which a 2-local algorithm with guaranteed delivery was outlined in [18]. We
explore the relationship between UBGs and QUDGs further in Section 4. We
show that neither the class of all UBGs nor the class of d-QUDGs is contained
in the other, for fixed values of d. In particular, for every d <

√
3/2, we exhibit

a d-QUDG that cannot be embedded as a UBG. While it is straightforward to
see that any graph can be embedded as a d-QUDG for small enough d, we show
that for any fixed d, there are UBGs that cannot be embedded as a d-QUDG.
Finally, our negative results on routing in UBGs contained in slabs of large
enough thickness imply the non-existence of a k-local algorithm for d-QUDGs
with d < 1/

√
2. This shows that the results of Barrière et al. [6] and Kuhn et al.

[18] on routing in QUDGs are tight.

2 Definitions

Given a labelled, connected, undirected graph, G = (V, E), and two vertices, s
and t in V , the problem of routing is to send a packet from s to t using the edges in
G. To this end, an algorithm for routing is implemented in a distributed manner
at every node in the graph, in such a way that when the packet arrives at a
particular node u, the routing algorithm implemented at u must deterministically
choose a unique neighbour of u to which the packet should be forwarded. An
algorithm halts once the message is forwarded to the destination vertex t. In
this case, we say the algorithm delivers the message. We say routing algorithm
A succeeds for a class of graphs G if, for all G ∈ G, A delivers a message from
any origin s to any destination t in G. Otherwise, we say A is defeated by some
G ∈ G.

Let the k-neighbourhood of a vertex v, denoted Gk(v), be the subgraph of G
induced by vertices within graph distance k from v (including the corresponding
vertex labels). The vertex labelling scheme should be independent of the graph;
in particular, the labelling should not encode additional information about the
topology of the graph or the neighbourhood of a vertex. For example, in a geo-
metric graph, each vertex is labelled by its coordinates.

Let Σ denote the set of possible vertex labels for a given class of graphs and let
P(A) denote the power set of set A. Given a fixed k, we say a routing algorithm
is k-local if it can be defined by a routing function f : Σ4 × P(Σ2) → Σ with
the following interpretation: f(s, t, v, u, Gk(u)) specifies the neighbour to which
node u should forward the packet, provided (a) the packet was received from its
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neighbour v, (b) the source and destination of the packet are s and t respectively,
and (c) Gk(u) is the k-neighbourhood of u.

A k-local algorithm must therefore make the forwarding decision at a node u
based only on the source and destination nodes, its k-neighbourhood, and the
previous node on the path. It has no additional information about the route. In
particular, no memory or state information may be stored in the message other
than s, t, and v, nor may the state of a vertex be modified after forwarding a
message.

Given a set of points P in R
2, the unit disc graph induced by P , denoted

UDG(P ), is an embedded graph whose vertices correspond to P and for which
edge (u, v) exists if and only if ||u − v|| ≤ 1. Given a set of points P in R

3, the
unit ball graph induced by P , denoted UBG(P ), is defined analogously.

Given d ∈ [0, 1], graph G = (V, E) can be realized as a d-quasi unit disc graph,
denoted d-QUDG, if there exists an embedding of G, f : V → R

2, such that for
all u, v ∈ V ,

1. ||f(u) − f(v)|| ≤ d ⇒ (u, v) ∈ E, and
2. ||f(u) − f(v)|| > 1 ⇒ (u, v) �∈ E.

If ||f(u)−f(v)|| ∈ (d, 1], then no conclusion may be drawn about the membership
of edge (u, v) in E: both (u, v) ∈ E and (u, v) �∈ E are possible. Observe that
a 1-QUDG is a UDG and any graph is a 0-QUDG. See Barrière et al. [6] and
Kuhn et al. [18] for a discussion of quasi unit disc graphs.

Given a fixed d, let UDG, UBG, and d-UBG denote the classes of graphs that
can be realized as a UDG, a UBG, or a d-QUDG, respectively.

Finally, if P1 and P2 denote parallel planes in R
3, we refer to the closed region

between P1 and P2 as a slab and to the minimum distance between P1 and P2
as its thickness.

3 Routing in Unit Ball Graphs

In this section we present our main results on routing in unit ball graphs in
Theorems 1 and 2. Together, these two results characterize the class of UBGs
for which a k-local routing algorithm is possible. Our first observation, stated
formally in the following lemma, is that any UBG contained in a slab of thickness
λ < 1 can be transformed into a QUDG by projecting the points in the UBG to
a plane parallel to the slab.

Lemma 1. Choose any λ ≤ 1 and let P denote a set of points in R
3 contained

in a slab of thickness λ. Let f : R
3 → R

2 denote the projection onto a plane
parallel to the slab. Let G = (V, E) denote the embedded graph such that V =
{f(v) | v ∈ P} and E = {(f(u), f(v)) | ||u − v|| ≤ 1, u, v ∈ P} (V and E may
be multisets). G is a (

√
1 − λ2)-QUDG.

Proof. Choose any two points u, v ∈ P . If ||f(u) − f(v)|| > 1 then ||u − v|| > 1
and (f(u), f(v)) �∈ E. Similarly, if ||f(u) − f(v)|| ≤

√
1 − λ2 then ||u − v|| ≤ 1

and (f(u), f(v)) ∈ E. Therefore, the projected graph G is a (
√

1 − λ2)-quasi unit
disc graph. 	
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Kuhn et al. [18] propose a 2-local routing algorithm for d-quasi unit disc graphs
that succeeds for any d ≥ 1/

√
2. The following theorem is an immediate conse-

quence of Lemma 1.

Theorem 1. For every finite set of points P in R
3 contained within a slab

of thickness 1/
√

2, there exists a 2-local routing algorithm that succeeds for
UBG(P ).

Proof. By Lemma 1, the projection of UBG(P ) onto a plane parallel to the slab
is a 1/

√
2-QUDG, G. Since UBG(P ) and G are isomorphic, the k-neighbourhood

of a vertex v in UBG(P ) determines the k-neighbourhood of the corresponding
vertex in G. Therefore, a 2-local routing algorithm in UBG(P ) can be achieved
by projecting the 2-neighbourhood of the current vertex v and simulating a 2-
local routing algorithm such as the one in [18] on the corresponding QUDG. 	


Note that Theorem 1 requires knowledge of a normal to the plane since, in
general, this cannot be determined from the 2-neighbourhood of a vertex.

In the remainder of this section, we show that the result in Theorem 1 is tight:
there is no k-local routing that can guarantee delivery on all UBGs contained in
slabs thicker than 1/

√
2. To prove this, we first show that any such algorithm

would imply the existence of a 1-local routing algorithm for arbitrary graphs
(Lemma 2). Next we show the impossibility of a 1-local routing algorithm for
arbitrary labelled graphs (Lemma 3).

Lemma 2. If there exists some ε > 0, some k ≥ 1, and a k-local routing algo-
rithm that succeeds for UBG(P ), for every finite set of points P in R

3 contained
within a slab of thickness 1/

√
2 + ε, then there exists a 1-local routing algorithm

that succeeds for any connected, labelled graph G.

Proof. Suppose for some ε > 0, there exists a k-local algorithm A that succeeds
in routing on every UBG contained in a slab of thickness at most 1/

√
2 + ε.

For any arbitrary graph G, we show how to construct a UBG G′ such that
routing on G can be accomplished by simulating A on G′. Let G = (V, E) be
an arbitrary connected labelled graph. Let n = |V |. Without loss of generality,
assume the vertices are labelled 0, . . . , n − 1; that is, V = {0, . . . , n − 1}. The
proof holds regardless of whether the set of vertex labels is a contiguous subset
of the integers.

We define a transformation from G to a set of points P (G) in R
3. Let ε′ =

min{ε,
√

3 − 1/2}. For each vertex v ∈ V , create two sets Cv = {(2vk, y ±
1/2, 0) | y ∈ {2k · min(N(v)) − (k − 1), . . . , 2k · max(N(v)) + (k − 1)}} and
Rv = {(x ± 1/2, 2vk, 1/

√
2 + ε′) | x ∈ {2k · min(N(v)) − (k − 1), . . . , 2k ·

max(N(v)) + (k − 1)}}, where N(v) denotes the set of labels of neighbours
of v and v itself. That is, Cv is a column of points in the xy-plane starting at
(2vk, 2k min(N(v))− k + 1/2, 0) and Rv is a row of points in the xy-plane start-
ing at (2k min(N(v)) − k + 1/2, 2vk, 1/

√
2 + ε′). For each edge (u, v) ∈ E, add

a point pu,v = (2uk, 2vk, (1/
√

2 + ε′)/2). Finally, for each v ∈ V , add the point
pv,v = (2vk, 2vk, (1/

√
2 + ε′)/2). The graph UBG(P (G)) is defined in the usual
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way; every pair of points within distance one of each other is connected by an
edge. Figure 1 shows a graph G and the corresponding graph UBG(P (G)) for
k = 1.

0

1

3 42

p
u,v

Rv

Cvvertex in column

for some u, v

vertex in row

for some v

for some v

0 1 2 3 4

4

3

2

0

1

Fig. 1. A graph G and the corresponding graph UBG(P (G)) for k = 1

For each v ∈ V , the set Cv (similarly, Rv) is a sequence of points, each at
distance one from the previous point, and therefore, Cv (Rv) corresponds to
a path in UBG(P (G)). For any u �= v, columns Cu and Cv are at distance
at least two apart and rows Ru and Rv are at distance at least two apart. If
edge (u, v) �∈ E, where u �= v, then the distance between any point i ∈ Cu

and any point j ∈ Rv is greater than one; therefore, i and j are not adjacent
in UBG(P (G)). Since ε′ ≤

√
3 − 1/

√
2, if edge (u, v) ∈ E, then the distance

between some point i ∈ Ru and pu,v is at most one and the distance between
some point j ∈ Cv and pu,v is at most one; therefore, i and pi,j are adjacent in
UBG(P (G)), as are j and pi,j . See Figure 2.

Fig. 2. The region [2ik ± 1/2] × [2jk ± 1/2] × [0, 1/
√

2 + ε′] in UBG(P (G)) if i and j
are not adjacent in G and the same region if i and j are adjacent in G

It is straightforward to see that UBG(P (G)) is contained within a slab of
thickness 1/

√
2 + ε′ ≤ 1/

√
2 + ε and therefore algorithm A should succeed on it.

We claim that a straightforward simulation of A in UBG(P (G)) constitutes a 1-
local routing algorithm for G. That is, upon reaching a vertex v ∈ V , it suffices
to simulate A on the subgraph of UBG(P (G)) that corresponds to vertex v
and its 1-neighbourhood in G. The simulation begins at point pv,v with the
goal of reaching the destination vertex pt,t. When the simulation moves to a
point outside Cv ∪ Rv ∪ {pv,v} in UBG(P (G)), it must reach a point pv,u or
pu,v for some u �= v. This corresponds to forwarding the message to vertex u,
which must be a neighbour of v in G. The computation of the k-local subgraph of
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UBG(P (G)) around any vertex in Cv∪Rv∪{pv,v}, and hence the simulation, can
be performed completely locally for any vertex v, given the the 1-neighbourhood
of v in G. Furthermore, knowledge of the number of vertices in G is not required
to simulate the local neighbourhood of v in UBG(P (G)). Since the simulation
results in a 1-local routing algorithm guaranteed to succeed on an arbitrary
graph G, the lemma follows. 	


We proceed to show the non-existence of a 1-local routing algorithm for an
arbitrary labelled graph G.

Lemma 3. For any 1-local routing algorithm A, there exists a labelled graph for
which A is defeated.

Proof. A 1-local routing function f must be defined for all valid combinations
of input. In particular, f(s, t, vi, u, {(u, v1), . . . , (u, vk)}) must be defined for all
i ∈ {1, . . . , k}, where s denotes the origin, t denotes the destination, vi denotes
the last vertex visited, u denotes the current vertex, and {v1, . . . , vk} denotes
the set of neighbours of u. Let f ′u(vi) = f(s, t, vi, u, {(u, v1), . . . , (u, vk)}) for a
given s, t, u, and its set of neighbours. We refer to f ′u as a local routing function.

Function f ′u : {v1, . . . , vk} → {v1, . . . , vk} is one of kk possible functions.
Function f ′u must be bijective. Assume otherwise. Without loss of generality,
say f ′u(vi) �= v1 for all i ∈ {1, . . . , k}. Function f ′u is defeated by a tree with t
in the subtree of u rooted at v1 and s in any other subtree of u. Furthermore,
if k > 1 then f ′u must be a derangement. Assume instead that f ′u(vi) = vi for
some i ∈ {1, . . . , k}. Function f ′u is defeated by a tree with s in the subtree of
u rooted at vi and t in any other subtree of u. Therefore, it suffices to consider
local routing functions f ′u that are derangements.

ts d a

b

e h

c

g

f

ts d a

b f

e h

c g G1 G2

Fig. 3. Any routing algorithm is defeated by G1 or G2 if all local routing functions are
derangements

A set of cardinality two has a unique derangement. Therefore, f ′u is uniquely
defined when u has degree two. A set of cardinality three has two possible de-
rangements. Therefore, f ′u is one of two functions when u has degree two. Observe
that f ′u is also uniquely defined when u has degree one.

Let G1 and G2 denote the graphs illustrated in Figure 3. Graphs G1 are G2 are
automorphic upon permuting vertices f and g. As discussed, the local routing
function is uniquely defined for all vertices of degree two or less. There are two
vertices of degree three: a and e. Let f ′a(v) = f(s, t, v, a, {(a, b), (a, c), (a, d)})
and f ′e(v) = f(s, t, v, e, {(e, f), (e, g), (e, h)}) denote the local routing functions
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Table 1. The four combinations of derangements for local routing functions f ′
a and f ′

e

routing function 1 routing function 2 routing function 3 routing function 4
u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u)

b c f g b d f g b c f h b d f h
c d g h c b g h c d g f c b g f
d b h f d c h f d b h g d c h g

G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c

G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc

routing function 1 routing function 2 routing function 3 routing function 4

Fig. 4. Four routing functions are possible for graphs G1 and G2 such that each local
routing function is a derangement. Each routing function is defeated by G1 or G2 when
delivering a message from s to t. A defeat is denoted by X.

for vertices a and e, respectively. Each of f ′a and f ′e may be defined by one of
two derangements, resulting in four possible routing functions for graphs G1 and
G2, given in Table 1. As shown in Figure 4, each of the four routing functions is
defeated by either G1 or G2. 	

Remark: It is straightforward to show the non-existence of a k-local routing
algorithm for any fixed k by replacing the edges in graphs G1 and G2 by paths
of length k.

The following theorem is an immediate consequence of Lemmas 2 and 3.

Theorem 2. For every ε > 0, every k ≥ 1, and every k-local routing algorithm
A, there exists a finite set of points P in R

3 contained within a slab of thickness
1/

√
2 + ε such that A is defeated by UBG(P ).

Theorem 2 and Lemma 1 also give the following corollary:

Corollary 1. For every ε ∈ (0, 1/
√

2], every k ≥ 1, and every k-local routing
algorithm A, there exists a (1/

√
2 − ε)-QUDG, G, such that A is defeated by G.

In [6] and [18], algorithms for routing in d-QUDGs for d ≥ 1/
√

2 are given.
Corollary 1 implies that these results are tight: it is impossible to extend the
range of d for which the class of d-QUDGs would admit a k-local algorithm.

4 Unit Ball Graphs and Quasi Unit Disc Graphs

In Section 3 we showed that any UBG contained within a slab of thickness λ ≤ 1
is isomorphic to some (

√
1 − λ2)-QUDG. In this section we present additional
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observations on unit ball graphs and their relationship to quasi unit disc graphs
and more general graphs. We show the following general result which follows
from Lemmas 4 and 5.

Theorem 3. (1) Given any fixed d, UBG �⊆ d-QUDG. (2) Given any fixed d′ <√
3/2, d′-QUDG �⊆ UBG.

We first show that the class UBG is not contained within the class d-QUBG for
any fixed d:

Lemma 4. For every d, there exists a finite set of points P in R
3 such that

UBG(P ) is not isomorphic to any d-QUDG.

The proof of Lemma 4 was omitted due to space limitations. If d is not fixed,
then any graph can be realized as a d-QUDG for some d:

Proposition 1. For every finite labelled graph G, there exists a d and a d-
QUDG, G′ such that G is isomorphic to G′.

Proof. Choose any graph G. Embed all vertices of G at distinct points contained
within a disc of radius 1/2 in the plane. Add the edges of G. Choose d > 0 such
that d is less than the minimum distance between any two points. The resulting
graph is a d-QUDG since all edges have lengths in the range [d, 1]. 	


By Lemma 1, any UBG contained in a slab of thickness λ < 1 is isomorphic to
some quasi unit disc graph. The converse is not true; as we show in Lemma 5,
there exist quasi unit disc graphs that are not isomorphic to any UBG.

Lemma 5. K3,3 is forbidden as an induced subgraph of a UBG but can be real-
ized as a (

√
3/2 − ε)-QUDG for any ε > 0.

The proof of Lemma 5 was omitted due to space limitations. It follows that
d-QUDG ⊆ UBG when d = 1 but d-QUDG �⊆ UBG when d ≤

√
3/2. It remains

open to determine for which range of values of d ∈ (
√

3/2, 1) the predicate
d-QUDG ⊆ UBG remains true.

The definition of a d-quasi unit disc graph has a natural generalization to
three dimensions as a d-quasi unit ball graph, denoted d-QUBG. We note the
following straightforward relationship between d-QUBG and d-QUDG:

Proposition 2. For every d ≤ 1, every λ < d, and every d-QUBG, G, contained
in a slab of thickness λ, there exists a (

√
d2 − λ2)-QUDG G′ such that G is

isomorphic to G′.

Proof. The proof is analogous to the proof of Lemma 1. 	


Proposition 2 and the 2-local routing algorithm of Kuhn et al. [18] give:

Corollary 2. There exists a 2-local routing algorithm that succeeds for any
d-QUBG, G, such that d ≥

√
λ2 + 1/2 and G is contained in a slab of

thickness λ.
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5 Discussion

We have shown the impossibility of routing algorithms that guarantee delivery
in three-dimensional ad hoc networks, modelled by unit ball graphs, when nodes
are constrained to have information only about their k-hop neighborhood. This
result is in direct contrast to the two-dimensional case, where a 1-local algorithm
such as face routing guarantees delivery on all unit disc graphs.

The results from the planar case do “lift off” the plane to a limited extent.
We showed that unit ball graphs for which the nodes are contained in a slab
of thickness 1/

√
2 admit a 2-local routing algorithm that guarantees delivery.

On the other hand, we also showed that for any fixed k, there is no k-local
routing algorithm that is guaranteed to succeed on all unit ball graphs, even if
the nodes are contained in a slab of thickness of 1/

√
2 + ε for arbitrarily small

ε > 0. An interesting question would be to characterize precisely the class of unit
ball graphs in thicker slabs that do have routing algorithms. Since distributed
algorithms for routing in unit ball graphs remain an urgent necessity, the question
of the kind of information with which a routing algorithm might be augmented,
in order to circumvent the negative results in this paper would be useful to
answer.

In this paper, we have begun an exploration of the relationship between unit
ball graphs, quasi unit disc graphs, and quasi unit ball graphs. Many questions
remain open. For example: does there exist a δ > 0 such that any (1 − δ)-
QUDG is isomorphic to some UBG? If so, what is the supremum of all such
δ? By Lemma 5, δ < 1 −

√
3/2. Several graph problems that are NP-complete

are efficiently approximable (e.g., maximum independent set, graph coloring,
and minimum dominating set [22]) or tractable (e.g., max-clique [10]) on unit
disc graphs. A similar investigation of which graph problems are tractable or
approximable on unit ball graphs and the other classes of graphs studied here
might be a fruitful avenue of research.
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Abstract. Motivated by reducing communication overhead and pro-
longing network lifetime in wireless ad hoc and sensor networks, we pro-
pose an energy-efficient dominating tree construction (EEDTC ) algo-
rithm to construct a dominating tree that can serve as a communication
backbone in wireless infrastructures. The algorithm has a theoretical
approximation factor of at most 9, and has O(n) message complexity
and O(n) time complexity. Due to the low message complexity, EEDTC
performs well on energy consumption. The energy-aware ranking tech-
nique introduced can also balance energy consumption in the network,
and hence reduce the probability of network failures caused by energy
depletion of backbone nodes.

1 Introduction

Wireless ad hoc and sensor networks have drawn lots of attention in recent years.
Unlike other traditional networks, they are decentralized and have no physical
backbone infrastructure. Broadcasting feature is a nature of wireless networks
and can cause high communication overhead.

To reduce communication overhead, many researchers proposed to use a con-
nected dominating set (CDS ) as a virtual backbone for hierarchical routing in
wireless ad hoc and sensor networks [1][2][3][4][5][6][7][8][9][10].

But constructing and maintaining a CDS will impose other control overhead
onto overall communication, so a CDS -construction algorithm should be efficient
enough. On one hand, the size of a CDS should be as small as possible, so that
overhead will be minimized when an application is executed on the CDS. On the
other hand, the algorithm also should have good performance on time complexity
and message complexity, and try its best to reduce control overhead.
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Among existing literature, the algorithms proposed in [1], [4] and [5] are tree-
based schemes. A dominating tree seems more appropriate in many application
scenarios, such as data dissemination, data fusion, routing, and so on. While
constructing a dominating tree always introduces high algorithm complexity.

To construct a dominating tree with lower algorithm complexity, we propose
an energy-efficient dominating tree construction (EEDTC ) algorithm, that is
a quite different approach from those in [1], [4] and [5]. The differences lie in
execution processes, as well as in the amount of nodes involved.

EEDTC consists of two phases: Marking Phase and Connecting Phase. The
Marking Phase constructs a maximal independent set (MIS ), and meanwhile
forms a forest consisting of trees rooted at several initiators. In the Connecting
Phase, the forest is connected to a dominating tree by connecting some adjacent
trees.

Compared with other tree-based algorithms [1][4][5], EEDTC simplifies the
execution process by combining MIS construction and forest formation together
which are separated in other schemes. Moreover, only a small proportion of nodes
get involved to connect the forest in EEDTC, while every node is involved up to
n times in other schemes. Therefore EEDTC gains better algorithm complexity.

EEDTC has an approximation factor of at most 9, O(n) message complexity
and O(n) time complexity. To the best of our knowledge, EEDTC outperforms
all existing tree-based CDS -construction schemes on message complexity.

Simulations show that EEDTC performs well on energy consumption, energy
balance, and message complexity.

The rest of this paper is organized as follows. We survey some of related schemes
in Section 2, and introduce our contribution in Section 3. Some preliminaries and
assumptions are presented in Section 4. In Section 5, we propose the EEDTC al-
gorithm. Then we analyze the performance of EEDTC by theoretical analysis in
Section 6 and by simulations in Section 7. Section 8 concludes this paper.

2 Related Work

In this section, we briefly survey several schemes of constructing connected dom-
inating sets in wireless ad-hoc and sensor networks.

Wu and Li [2] first find a connected dominating set (CDS ) of a connected
graph G in the Marking Process. The algorithm then removes all redundant
nodes from the initial CDS in the Reducing Process.

Stojmenovic et al. [3] improve the algorithm proposed in [2] by replacing
larger-id priority with highest-degree priority to remove redundant nodes in the
Reducing Process.

Literature [6] and [7] take energy issue into consideration. Instead of the id-
based removal approach exploited in [2], Wu et al. [6] consider two extended
rules for selective removal. In [7], Kim et al. propose an algorithm similar to the
one in [11], but Kim et al. consider residual energy of each node.

The algorithms in [8], [9] and [10] are based on the multipoint relays (MPR)
approach proposed in [12]. Adjih et al. [8] propose a source-independent MPR
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that constructs a CDS based on the original MPR algorithm. Wu et al. [9]
extend the source-independent MPR by providing several extensions. Liang et
al. proposed a gateway multipoint relays (GMPR) scheme in [10].

The algorithms proposed in [1], [4] and [5] are tree-based.
Sivakumar et al. [1] first construct a dominating set S. Then it connects S to a

connected dominating set by using the minimum spanning tree (MST ) algorithm
proposed in [13].

The algorithm proposed by Wan et al. [4] consists of two phases which con-
struct a maximal independent set (MIS ) and a dominating tree, respectively. The
algorithm runs on the basis of a spanning tree constructed by the distributed
leader-election algorithm in [14].

Min et al. [5] also first construct a spanning tree using the same approach as
in [4] prior to the MIS formation. Then it interconnects nodes in the MIS to a
spanning tree using the distributed algorithm proposed in [14].

3 Our Contribution

The EEDTC algorithm we propose is different from those in [1], [4] and [5] on
execution processes.

The algorithm in [1] first constructs a dominating set which is then connected
by the MST algorithm in [13]. The algorithms in [4] and [5] all construct a tree
using the algorithm in [14] before the CDS construction.

The tree construction approaches in [13] and [14] all have high message com-
plexity, because every node is involved up to n times to collect information
for combination decision. Either all nodes report to the root [14], or the root
broadcasts a query and gets response over the tree [13].

EEDTC first constructs a MIS, and meanwhile a forest consisting of some
multi-hop trees is formed with a little extra overhead. Then it connects the
forest using the shortest paths between some pairs of adjacent trees.

EEDTC combines MIS construction and forest formation together, and only
a small proportion of nodes are involved to connect the forest, therefore it use
less messages than in other schemes.

The algorithm in [1] has O(n|C| + m + nlogn) message complexity, and the
algorithms in [4] and [5] both have O(nlogn) message complexity, while the
message complexity of EEDTC is O(n).

Lower message complexity definitely leads to lower energy consumption. More-
over, EEDTC also has good performance on energy balance. So EEDTC is
energy-efficient, and can greatly prolong the lifetime of wireless networks.

4 Preliminaries and Assumptions

We assume that the transmission ranges of all nodes in the network are equal.
Without losing generality, we model the network as a unit disk graph G(V, E)
[15], where V denotes the vertex (node) set and E denotes the edge set.



EEDTC in Wireless Ad Hoc and Sensor Networks 561

A subset S of V is a dominating set if each node u in V is either in S or is
adjacent to a certain node v in S. A subset C of V is a connected dominating
set (CDS ) if C is a dominating set and C also induces a connected subgraph of
G. Naturally, the nodes in C can communicate with each other without using
nodes in (V − C), and every node in G can be accessed by a certain node in C
within one-hop distance.

A subset R of V in a graph G is an independent set if, for any pair of
vertices in R, there is no edge between them. A subset M of V is a maximal
independent set (MIS ) if no more vertices can be added into it to generate a
larger independent set. From the definition, it is easy to know that a maximal
independent set (MIS ) is also a dominating set.

We assume that nodes in the network are uniquely indexed and can gauge its
residual energy. Furthermore, through message exchanges, a node is aware of its
neighbor nodes, including their IDs and residual energy.

We also assume that nodes are static or can be viewed as static during a
reasonable period of time.

Since the connected dominating set (CDS ) we construct in EEDTC is also a
dominating tree, we will use these two phrases interchangeably in the remainder
of this paper.

5 The Energy-Efficient Dominating Tree Construction
(EEDTC ) Algorithm

Our algorithm towards the construction of a dominating tree is named EEDTC
(the energy-efficient dominating tree construction). It consists of two phases:
Marking Phase and Connecting Phase. The Marking Phase constructs a MIS
(as discussed in the previous section, a maximal independent set (MIS ) is also
a dominating set), and a forest composed of trees rooted at several initiators is
generated at the same time, then the Connecting Phase connects the forest to a
single spanning tree, in which a subset of nodes form a dominating tree.

5.1 Marking Phase

The goal of this phase is to construct a MIS. Meanwhile, the MIS will be con-
nected to a forest by some intermediate nodes.

We first introduce an energy-aware ranking technique. A node has a higher
rank if it has more residual energy, and node IDs are used to break a tie when
nodes have equal energy.

During the Marking Phase, each node is initially a candidate, and subse-
quently becomes a dominator, a connector or a dominatee. All dominators form
a MIS, connectors are intermediate nodes responsible for connecting the MIS to
a forest, and other nodes are dominatees.

At the beginning, a candidate with the highest rank compared with all its
neighbors turns into a dominator, then broadcasts a DOMINATOR message. It
also becomes the root of a tree, and the tree is marked by the ID of this node.
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Upon receiving a DOMINATOR message, a candidate changes to a dominatee,
and selects the sender as its parent. Subsequently, it broadcasts a DOMINATEE
message.

Upon receiving a DOMINATEE message, a candidate changes to a dominator
if there are no candidates with a higher rank than itself in its vicinity. Then it
selects the neighbor closest to the root (with fewest hops to the root) while with
higher rank as its parent (When selecting a parent, the node first considers its
connector neighbors if there exist such neighbors). Then the new dominator sends
a REQUESTPARENT message to its parent, and broadcasts a DOMINATOR
message.

Upon receiving a REQUESTPARENT message, if the node is a dominatee,
it changes to a connector and broadcasts a CONNECTORNOTIFY message
notifying the change.

The Marking Phase terminates when there are no candidates left in the
network.

Fig. 1 depicts an example with twenty-one nodes. After the Marking Phase,
a forest with four trees is constructed (see 1(b)). The MIS is comprised of five
dominators (nodes with rank 15, 17, 19, 20 and 3) and a connector (the node
with rank 13).
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(b) the forest constructed
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(c) final dominating tree

Fig. 1. The dominating tree construction

5.2 Connecting Phase

In this phase, we will connect the forest constructed in the Marking Phase to a
single spanning tree.

The tree construction approaches in [13] (exploited in [1]) and [14] (used by [4]
and [5]) all have high message complexity, because, in each combination round,
all nodes in related trees are involved to collect information for next combination
decision, and some nodes will be involved n times in an extreme instance (for
example, a chain structure).

To minimize amount of messages used in this phase, we now propose a novel
approach to connect the forest to a spanning tree. By this approach, the forest will
be connected only through communication along the shortest paths between pairs
of adjacent trees, and nodes not in these paths will not be involved in the execution.

For ease of explanation, we use an edge node to denote a node in a tree that
has more than one neighbor in other trees.
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The Connecting Phase runs as follows.
At the beginning, each edge node sends a FEEDBACK message to the root

of the tree it belongs to along its tree branch.
Upon receiving a FEEDBACK message, a non-root node just forwards the

message.
After receiving FEEDBACK messages from all edge nodes in the tree, a root

node gets information of adjacent trees, and knows the shortest paths to all
adjacent trees. In the paths, only edge nodes might be dominatees, and the
other nodes are either dominators or connectors.

Then, all trees in the forest will gradually be merged into the tree with the
largest ID, and eventually there is only one tree left that spans the network. The
dominatees in the shortest paths that connect the forest will become connectors.

We define a merging rule here. If a tree has at least one adjacent tree, and
has the smallest ID compared with all its adjacent trees, it will be merged into
the adjacent tree with the highest ID.

If a tree satisfies the merging rule, it first sends a MERGE message to the
root of the tree it is about to be merged into, and changes its ID to the ID of
that tree. Then it sends a MERGENOTIFY message to the roots of any other
adjacent trees notifying the ID change.

Both a MERGE message and a MERGENOTIFY message are sent along the
shortest paths between pairs of adjacent trees.

Each sender or forwarder of a MERGE message select its next-hop node in
the path as its new parent. Upon receiving a MERGE message, a node changes
to a connector if it is a dominatee.

When receiving a MERGE message or a MERGENOTIFY message, a root
node starts another merging round if it satisfies the merging rule.

The Connecting Phase terminates when there are no root nodes satisfying the
merging rule, and there is just one tree left that spans the network. All domina-
tors form a maximal independent set(MIS ), and all connectors are responsible
for connecting the MIS to a dominating tree.

Fig. 1(c) shows the dominating tree we finally get. The dominators (marked
with solid dots) and the connectors (marked with solid squares) form the domi-
nating tree.

6 Features of EEDTC

EEDTC constructs a maximal independent set(MIS ) in the Marking Phase. The
size relation between any MIS and any optimal connected dominating set(CDS )
in a unit disk graph G is shown in Lemma 1 which has been proved in [4].

Lemma 1. The size of any maximal independent set (MIS) of a graph G is at
most 4opt + 1, where opt is the size of any optimal connected dominating set
(CDS) of a graph G.

Lemma 2. Algorithm EEDTC has an approximation factor of at most 9.
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Proof. The Marking Phase generates a MIS M, and a forest. We assume the
number of trees in the forest is k. Let Mi be the set of dominators in tree i, so
M =

∑k
i=1 Mi

In the Marking Phase, each non-root dominator selects a connector as its
parent if there is a connector neighbor. Otherwise it selects a dominatee as its
parent and the selected dominatee becomes a connector. In an extreme situation,
every non-root dominator selects a distinct connector as its parent, and the
number of connectors in tree i is |Mi|−1. So the number of connectors introduced
in the Marking Phase is at most

k∑

i=1

(|Mi| − 1) =
k∑

i=1

|Mi| − k = |M | − k (1)

In the Connecting Phase, since there are k trees in the forest, we will use
k − 1 paths to connect them together. Each path introduces no more than two
dominatees which become connectors in the Connecting Phase. So the number
of connectors added into CDS in this phase is at most 2(k − 1).

Hence the number of connectors in CDS is no more than

|M | − k + 2(k − 1) = |M | + k − 2 (2)

And the size of CDS is at most

|M | + (|M | + k − 2) � 2(4opt + 1) + k − 2 = 8opt + k (3)

For k is the number of trees in the forest F and is equal to the number of
higher rank initiators, it couldn’t be larger than the size of any optimal connected
dominating set (CDS ), i.e. k is less than or equal to opt.

So the approximation factor of EEDTC is at most 9opt.

Lemma 3. Algorithm EEDTC has message complexity of O(n) and time com-
plexity of O(n).

Proof. Before the execution of EEDTC, every node should know all its neigh-
bors’ id and residual energy. This can be achieved from broadcasting a HELLO
message by each node in the Neighbor Discovery Phase, and the execution time
is constant. The amount of massages sent is exact one per node in this phase, so
this phase is bounded by O(1) time and O(n) messages.

In the Marking Phase, every node sends either a DOMINATOR message or a
DOMINATEE message. A non-root dominator also sends a REQUESTPARENT
message, and a dominatee sends a CONNECTORNOTIFY message when it
changes its state from dominatee to connector. These also use linear execution
time. The message complexity introduced in this phase is O(n), and the time
complexity is O(logn).

In the Connecting Phase, every edge node in a certain tree sends a FEED-
BACK message to its root node along its branch, and only nodes in the shortest
paths between adjacent trees are involved while the forest are connected, there-
fore the amount of messages introduced is comparable with that in the Marking
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Phase. The Connecting Phase also takes linear time. So the Connecting Phase
also takes O(n) message complexity and O(n) time complexity.

Altogether, EEDTC has O(n) message complexity and O(n) time complexity.

Instead of involving all nodes to connect a forest in [1], [4] and [5], we just use
a small proportion of nodes which are in the shortest paths between pairs of
adjacent trees. Hence EEDTC gains better message complexity, and consume
less energy than other schemes. Due to the energy-aware techniques, EEDTC
also performs well on energy balance. These together earn a prolonged lifetime
for wireless networks, which is verified by the simulations in Section 7.

7 Simulation

In this section, we evaluate energy consumption, CDS size, approximation fac-
tor, and message complexity of EEDTC through simulations. For performance
comparison, We also simulate the tree-based algorithm proposed by Wan et al.
[4] (marked with WAN ).

The simulations run in the discrete event simulator OMNeT++ (version 3.3)
[16]. The Mobility Framework (version 2.0) model [17] is used to support simu-
lations of wireless networks within OMNeT++.

We assume that all nodes remain stationary throughout the simulation, and
wireless nodes are randomly deployed in a 600 × 600m2 playground. The com-
munication range is set to 150m.

7.1 Energy Consumption and Lifetime

According to the model proposed in [18], power consumption for sending is set to
1 unit per packet (we assume all packets in our simulations are of the same size),
and power consumption for receiving is set to 0.5 unit per packet. We neglect
power consumption in idle phases and computation processes. The initial energy
of each node is assigned a random value between 2950 and 3000 unit.

We compare EEDTC algorithm with WAN, and also evaluate the EEDTC
with no energy awareness in which an id-priority ranking is exploited and the
energy issue is neglected.

We randomly deploy 40, 60, and 80 nodes in the playground, and simulate
three schemes for 10 rounds respectively. We don’t change the topology in each
deployment after it is generated in the first round.

First, we simulate plain dominating tree construction processes, in which we
only construct a dominating tree in each round. As shown in Fig. 2, compared
with WAN, EEDTC is much more efficient on energy consumption. The average
amount of energy consumed in EEDTC is only about one-fourth of that in WAN.

The dominators and the connectors are always responsible for forming a vir-
tual backbone of wireless networks, and consume more energy in a communi-
cation process than other nodes. To evaluate this feature, we build a set of
simulations where a simple data query application is executed 10 times after the
dominating tree construction in each round.
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Fig. 2. Energy Consumption of Plain Dominating Tree Construction
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Fig. 3. Energy Consumption with Query Applications

As illustrated in Fig. 3, energy of some nodes in WAN and in the EEDTC with
no energy awareness is consumed rapidly. Due to the energy-priority ranking,
EEDTC performs well on energy balance in every deployment. This remarkably
prolongs lifetime of wireless networks.

7.2 The Size of CDS

To observe the size of CDS, we run simulations with 30, 40 ,50, 60, 70, 80, 90
and 100 nodes respectively, and each case is measured by 20 different topologies
which are generated randomly.

Fig. 4(a) shows the number of dominators, connectors and CDS nodes (the
union of dominators and connectors) in 8 cases. The number of dominators in
EEDTC is almost the same as in WAN, but the number of connectors is less
than that of WAN, which leads to less CDS nodes. This owes to the connector
selection technique used in EEDTC.

However, the size of CDS varies a little when wireless nodes are evenly de-
ployed in a fixed size playground and communicate at a fixed communication
radius. So when the network becomes dense, the ratio of CDS nodes to simula-
tion nodes drops remarkably (see Fig. 4(b)).

7.3 Approximation Factor

The simulation setup in this part is the same as in section 7.2.
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Fig. 4. CDS size measurement

Lemma 1 indicates that the size of any maximal independent set (MIS ) is at
most 4opt+1, and we also proved in Lemma 2 that EEDTC has an approximation
of at most 9. According to Fig. 4(c), the number of the connectors is about 55
to 60 percent of that of the dominators in EEDTC. So the approximation factor
of EEDTC approaches to about

4opt + 1 + 0.6(4opt + 1) ≈ 6.5opt (4)

The ratio of connector number to dominator number in WAN ranges from
0.6 to 0.75, so the approximation factor of WAN is about

4opt + 1 + 0.75(4opt + 1) ≈ 7opt (5)

From simulation results, the approximation factor of EEDTC is slightly better
than that of WAN.

7.4 Message Complexity

The simulation setup in this part is the same as in section 7.2.
Fig. 5 illustrates the average messages sent and received in the simulations.
According to the aforementioned discussions, in EEDTC, the number of mes-

sages sent in the Neighbor Discovery Phase is exact one per node, and the Mark-
ing Phase introduces no more than two messages per node. Number of messages
received in those two phases is decided by the average degree (see Fig. 5(c),
the denser the network is, the higher the average degree is). When the average
degree goes up, the number of messages received increases accordingly.

In the Connecting Phase, each message is unicasted along the branch its sender
belongs to or the shortest path between pairs of adjacent trees. Only a small
proportion of nodes are involved in this phase. Although some nodes may send
or receive more than one message, there are not many messages transmitted in
this phase.

As depicted in Fig 5(a), number of messages sent in EEDTC is about 4.5,
and number of messages sent is directly proportional to the average degree (see
Fig. 5(b) and Fig. 5(c)).
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Fig. 5. Messages measurement and average degree

WAN constructs a spanning tree using the distributed leader-election algo-
rithm [14] which has O(nlogn) message complexity. As shown in Fig. 5, it sends
about 15 messages per node, and receives about 70 to 240 messages when the
simulation nodes ranges from 30 to 100. The number of overall messages sent
and received in WAN subsequently increases.

These verify Lemma 3 that EEDTC has O(n) message complexity, while
WAN has O(nlogn) message complexity. Compared with WAN, EEDTC has
much better message complexity, which leads to a better performance on energy
consumption in EEDTC (see section 7.1).

8 Conclusion

In this paper, we propose an energy-efficient dominating tree construction
(EEDTC ) algorithm to construct a connected dominating set (CDS ), and the
final CDS we get is a dominating tree. EEDTC has a good approximation factor,
as well as low message complexity and time complexity. Compared with Wan’s
algorithm, EEDTC performs well on message complexity and energy consump-
tion, and can greatly prolong the lifetime of wireless networks.
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Abstract. An interesting and useful application in ad hoc wireless mobile 
community is searching and locating information in a distributed and decentral-
ized manner. Locating and collecting information in a highly dynamic network 
while minimizing the consumption of scarce resources such as bandwidth and 
energy is the main challenge in this domain. In this paper we present a radically 
new location aided content searching mechanism that can determine the loca-
tion and the content as well of the information searched that incurs minimum 
overhead. Here we have used a stable geographically clustered network that  
enables us to distribute the search message in a location-aided manner. In disas-
trous scenarios the access of emergency information, services or resources is 
considered to be of special interest to the user groups. Mobile terminals are 
there to gather information from sensors and other sources. The location-Aided 
content searching mechanism discussed here is concerned with efficiently  
delivering this information together with the geographical location of the in-
formation to the person in the field on need basis. The mobility tolerant clusters 
structures are used to lower the proactive traffic while minimizing the query 
cost. We present results from detailed simulations that demonstrate the effi-
ciency of our mechanism and discuss the scalability of this model to larger  
networks. 

1   Introduction 

Ad hoc networks are multihop wireless networks consisting of 1000s or more radio 
equipped nodes that may be as simple as autonomous (mobile or stationary) sensors 
or PDAs, laptops carried by peoples. These types of networks are useful in any emer-
gency or disastrous scenario where temporary network connectivity is needed, such as 
in disaster relief or in the battlefields. 

In this paper we have used Geographical clusters for locating information which 
were specially designed to support and manage highly dynamic mobile nodes. 

For the same we have introduced a content search mechanism that can be easily 
deployed for searching information in a resource poor infrastructure less decentralized 
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network where the communication overhead due to searching matters a lot. In general 
a content-based network is a novel communication infrastructure in which the flow of 
message through the network is driven by the content of the message, rather than by 
explicit addresses assigned by sender. In a content-based network, receivers declare 
their interests to the network by means of filters, while senders simply inject mes-
sages into the network. The network is responsible for delivering any and all  
messages to each receiver matching the filter declared by that receiver.  The content –
search mechanism that we have introduced in this paper is distinct from existing con-
tent based search models in that we are not allowing the senders to inject information 
in the network and as such there is no need of centralized servers to publish the con-
tents.  Here the users are to declare the information needed in the form of search mes-
sages, and the message itself using the location aided routing mechanism reaches the 
appropriate senders. Now delivering the information to the intended searchers while 
minimizing the message overhead and reducing battery consumption is a challenge 
made harder because of node mobility. In location aided search mechanism informa-
tion is delivered back to the users using same path discovered by location aided rout-
ing and in this case route failures during data transfer due to mobility can be managed 
incurring little overhead.  

In order to explain the location-aided content searching mechanism model better, 
let us focus on an obvious application area. Imagine the effect of a severe Gas leak in 
Bhopal, India. It is likely that the effected area will contain a variety of threats to 
disaster relief personnel such as gas leaks, intense fires, toxic leaks, riots etc. Disaster 
relief personnel sent into these areas will need to be kept appraised of the location and 
types of existing threats to ensure their safety. They will also need to be kept in-
formed of deployment of other relief personnel, equipments and resources (such as 
food, emergency medicine etc) made available in the affected area. Thus a person in 
the emergency field is typically most interested in obtaining information that will 
provide him with a complete picture of his surroundings. 

In the above scenario, all this emergency information can be collected by autono-
mous sensors dropped into the affected area and can be further forwarded to the in-
tended users together with the location information. For example in emergency like 
Gas leak case think of a person who wants to know about the maximum intensity of 
the poisonous gas and the exact location of the affected area. He can generate this 
query from any node in the field. It is the task of the searching protocol to discover 
the maximum intensity zone in the network and deliver the information back to the 
person. Thus the location-Aided content searching mechanism we discuss here is 
concerned with efficiently delivering the information together with the geographical 
location of the information content (from sensors and other sources) to the person in 
the field on an as need basis.  

1.1   Over View of the Search Mechanism  

It is very natural that when disasters like fire breakouts, rise in water level, Gas Leaks, 
explosions etc happens people will be more concerned for obtaining information not 
only about the situation but also about the exact location of affected area. The knowl-
edge Sensors and other nodes can sense the situation and can generate information 
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about the intensity and location of threats. In Location-Aided Content search mecha-
nism, all this information can be searched and send to those nodes that need it on 
emergency basis. However, the search takes place in a manner that minimizes the 
network traffic overhead. The problem arises as the information flows through a mul-
tihop wireless mobile set of nodes; it becomes difficult to maintain the route from the 
source to the destination. When there are multiple senders the receiver have no way of 
knowing which sender’s location information is nearest and modify the search accord-
ingly as they themselves are moving.  In the remainder of this section we discuss the 
challenges in conducting the content searching in a mobile scenario incurring mini-
mum overhead. 

Our mechanism assumes that all devices in the network know their own location 
(using GPS Receivers). Since this protocol is meant to operate in an ad hoc network, 
it is important to summarize some of the properties of the environment as they relate 
to the content location service.  

• First, we cannot assume a static topology. Nodes may join and leave the net-
work at any time and node mobility is an accepted occurrence. To handle this 
situation we will be using mobility tolerant stable cluster structures to parti-
tion the network [1] and will describe the clustering mechanism used in sec-
tion 3. 

• Second, since the cost of making sure that every one knows every thing is 
prohibitive, to locate a specific content, a device is not allowed to be aware 
of all the contents available in the network. In this context our proposed 
mechanism takes the help of cluster heads, which timely collects the infor-
mation from other nodes when needed and sends them only to the source 
node. So nodes that attempts to locate content need only to contact the clus-
ter heads within the definite locations of cluster boundaries discussed in  
section 4.  

• The proposed mechanism must be scalable, fault-tolerant, adaptable and  
accurate. We attempt to work in an environment where communication cost 
is high and we want our queries can be made relatively cheap while allowing 
for lower overhead. We can show the possibility of lowering the overhead 
cost in a scalable network in the performance and evaluation section. 

1.2   Overview of the Paper 

In section 2, we describe other content based searching mechanism used for ad hoc 
networks and describe how our mechanism differs from them. Section 3 describes the 
clustering protocol used in detail and section 4 describes our model in detail. We 
present results of simulations in section 5. The work reported in this paper is on going 
and we conclude with our current research focus in section 6. 

2   Related Works 

Recently several authors have begun developing a variety of algorithms to solve the 
problem of resource location in ad hoc networks. Some of the first approaches to 
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appear followed the centralized client-server architecture.  Some examples of such 
approaches are presented in [4,5]. What all these models have in common is the  
reliance upon a centralized storage that would handle queries by users. This assump-
tion violates the requirements of ad hoc networks where all node should be considered 
equal and no one should be given extra responsibility when compared to peers.  

Decentralized approaches [6,7] remove the reliance upon a central directory server 
but do not take link cost into account when computing routes. This makes them im-
practical for use in ad hoc networks. Some protocols have been proposed specifically 
for such resource poor environments [8] but these still rely heavily on the use of 
broadcast making them too expensive to operate. 

A novel approach to disseminating service information is described in [7,8]. The 
authors propose the use of location information for routing, but the protocol requires 
all nodes to periodically send advertisements along geometric trajectories, which 
again congest the network with overhead traffic. 

It is easy to see that the Location-Aided content searching mechanism proposed in 
this paper is very different from any of the above models. This is because here the 
searches are performed in parallel within the geographical cluster boundaries. As the 
location of the information changes, there is no problem in finding them within the 
mobility tolerant clusters. This feature of our mechanism makes it unique as well as 
extremely powerful in disastrous scenarios where the goal is to maximize message 
efficiency while ensuring minimum overhead.  

3   The Framework Used with Geographical Cluster Structures 

The clustering approach proposed in this paper is based on positional concepts  
(individual node position), which is available via reliable position locating system 
(i.e. GPS). A good clustering scheme will tend to preserve its structure when a few 
nodes are moving and the topology is slowly changing. Otherwise, high processing 
and communication overheads will be paid to reconstruct the cluster. 

The objective of the algorithm is to form a set of geographically stable clusters, 
which do not, changes their structures with the member mobility. We propose to de-
fine a geographic boundary for each cluster with the information of the GPS of the 
nodes lying at the boundary. Generally the existence of a cluster in a mobile scenario 
depends on the existence of its member node and so it keeps changing.  In this frame-
work once the clusters have been defined by their boundaries they remain absolutely 
fixed over the whole network area and only the mobile nodes move over these geo-
stationary clusters. Thus there is no need to run the clustering algorithm frequently for 
managing the mobile nodes and to keep the cluster member information updated. In 
this stable network framework the initial clustering algorithm is required only when 
the member list of a cluster head is empty, or when a node enters a region and no 
periodic messages are received from any of its neighbor. So the clustering algorithm 
is triggered with a long interval.  
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   (a)     (b) 

Fig. 1. a) The cluster Structures with their Geographical boundaries. b) The cluster Heads and 
their member node mappings. 

3.1   GPS Bounded Cluster Structure Algorithm 

To obtain the initial set of clusters in an ad hoc environment, we referred a leader 
election algorithm - Max-Min D –Cluster Formation algorithm proposed by Alan D. 
Almis, Ravi Prakash, Vuong Duong and T. Huynh [ 2 ]. There are several advantages 
for using Max-Min D–Cluster Formation algorithm over other existing clustering 
algorithms like the nodes can asynchronously run the heuristics so no need for syn-
chronized clocks, we can customize the number of clusters as a function of d. 

In our GPS based clustering algorithm [1] we have used the initial leader election 
part of the Max-Min D–Cluster algorithm in the first phase. In the second phase the 
elected leader or the cluster head will be able to recognize its boundary by getting the 
GPS information from all of its member nodes and will announce this boundary loca-
tion values within d hop. Thus all the member nodes get alarmed about the current 
cluster boundary and will utilize this value while going out of this cluster.   

The GPS based clustering algorithm will partition the network into a number of 
geographically overlapping clusters. These cluster boundaries are static, and are not 
required to be redefined with the mobility of the boundary nodes. This boundary 
value will be once notified to all the members of a cluster and will remain fixed until 
the region becomes completely empty. In that case the cluster-head will recall the 
initial clustering algorithm to remain connected and the cluster boundary does not 
exists any more. This particular technique of defining the clusters with fixed bounda-
ries has following advantages. 

 
1. The cluster structure becomes robust in the face of topological changes caused by 

node motion, node failure and node insertion /removal. 
2. Conventional beacon-based cluster management algorithms require the entire  

network to reconfigure continuously, while in GPS based cluster management pro-
tocol the impact of node mobility has been localized within the cluster and its  
immediate neighboring clusters. 
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3. The ability of surrogating cluster headship from a mobile cluster head to any of its 
neighbor.  

4. Independent and autonomous cluster control and maintenance by the mobile mem-
bers only.   

5.  No performance degradation of the network due to cluster management protocol. 
 
Here in this framework to make the network knowledgeable we will use the flooding 
mechanism to inform all the cluster heads about all other clusters formed in the net-
work. Thus after the initial clusters were formed using our GPS Bounded Cluster 
structuring mechanism each CH will start flooding its boundary value within the net-
work. In this case we cannot avoid flooding because the formed cluster structures are 
not known to the network. Though the network over head is reasonably high but as 
the cluster boundaries are stable so this one kind of static information needs to be 
percolated only once in the network. 

3.2   Cluster Management Protocol with Mobile Cluster Heads    

For periodic beacon based cluster maintenance protocols if a cluster member is mov-
ing out of the transmission range of the CH, the member node searches for the new 
head by detecting the new CH beacon signal. There is no other intelligent way to 
track the mobility of a member node. Here we have proposed a cluster maintenance 
protocol using GPS technology, which is able to maintain a stable cluster structure 
even in presence of high mobility incurring little overhead. In this protocol any node 
including the cluster head automatically gets alarmed while crossing the geographical 
boundary of a cluster using the program, which continuously compares the current 
GPS value of the node with that of the boundary values. Thus it is quite easy for a 
departing node to make a timely arrangement for rebinding with a new CH and un-
bind with the old one. This work uses a novel optimistic cluster head-surrogating 
scheme for achieving efficiency in mobile cluster management process. In this 
scheme a cluster-head is also free to leave its cluster after delegating the leadership to 
any member-node of its current cluster. This member-node will now act as a surrogate 
cluster-head of the cluster. The process actually duplicates a copy of headship pro-
gram and related member information list to the selected surrogate-head.  

4   Location-Aided Content Searching    

Based on the above discussion we can now apply the searching mechanism on a geo-
graphically clustered network. The proposed mechanism treats all the member nodes 
in the network as equal and only selected cluster heads are allowed to take more re-
sponsibility than others. Once the clusters are formed with definite boundaries the 
boundary location information is flooded through out the network and all the cluster 
heads keep the record of all other cluster boundaries in the network.  As these cluster 
boundary information are absolutely stable there is no need to send the clustering 
update message periodically.  The nodes inside the clusters may change their position, 
but using the surrogating scheme of cluster headship there is always one node to take 
the responsibility of head and as such the cluster structures remains absolutely stable. 
This significantly decreases the amount of proactive traffic, as the cluster boundary 
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information is flooded only once in the network though the network can be highly 
dynamic in nature. To make sure that all nodes within a cluster are informed timely 
about the accurate position of the cluster heads which can also change position, the 
cluster heads are allowed to periodically broadcast their node ID and location value 
(GPS) amongst it’s d hop neighbors. But in the said framework the cluster head 
change notification traffic is restricted to the cluster boundary only. The basic mecha-
nism follows from the scheme described in section 3.2.   

In this geographically clustered network a node can easily locate any content in the 
network by sending a query messages first to the cluster head. The cluster head on 
behalf of a node sends the query to all other cluster heads. In a dense network, the 
messages are guaranteed to reach all the clusters through greedy geographical packet 
forwarding technique (forward the packet to the neighbor closest to the destination). 
A node where content is found informs its own cluster head about the information. 
The CHs are now responsible for delivering the information to the source clusterhead 
from where query generates. In this way it keeps the cost low while finding the clos-
est path to the destination node in the vast majority of situations. Finding the closest 
path is an important benefit as it generally means fewer hops between the source and 
the destination [1,3] which in turn, translates into lower connection cost.  

4.1   Detail Description of the Content Discovery Mechanism    

To illustrate how this strategy works suppose a source node (shown in Fig 2) gener-
ates a search message in the network. As the node knows the location of its cluster 
head it forwards the message to the head. The clusterhead then searches the content 
among its own member by announcing the message within d hop cluster boundary. In 
this case the CH simply uses restricted broadcast method to flood the message within 
the cluster boundary only. If the searched message is found within the local cluster 
then there is no need to forward the search message further and the cluster head sends 
the current position (GPS) and the Node ID of the resultant node. But if the content 
cannot be found within the cluster the search message is sent towards all the cluster 
locations. A cluster head can easily forward the packet to all these predefined direc-
tions as it carries these cluster boundary information from the initial stage of the clus-
tering of network.   

The content searching process is exemplified in Fig 2. The next hop in the message 
forwarding is selected using the same regular geographic routing [8] with each node 
forwarding the packet to its neighbor closest to the destination (Here destination is the 
GPS value of the Cluster Boundaries described). The message on reaching the cluster 
boundaries is forwarded to the corresponding cluster heads by the gateway nodes 
(nodes lying at the boundaries). In this way all the cluster heads (if reachable) get the 
search message request packet. Each CH then advertises (restricted broadcast) this 
message within d hop of its boundary, which finds the result of the search at the des-
tined node in a cluster. Once the result is discovered at a particular node, it immedi-
ately replies with a response message to its CH. The clusterhead is here responsible to 
contact the source CH from where the search request arrived. The source node may 
receive more than one response message corresponding to the same query. In such 
case it selects the response identifying the destination closest to its geographical loca-
tion. Now a definite geographical route is possible to establish from source node to 
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Fig. 2. Location-Aided content searching using Geographical cluster boundaries 

destination node for seamless data communication, which remains valid as long as the 
destination remains within the current cluster. During the course of information flow 
from the destination to the source using our cluster management protocol [1] we can 
timely register the moment a node crosses the cluster boundary and calls for de-
registration. Here the CH can timely inform the source about the unavailability of the 
node. The source then again sets a fresh search message. This way by timely inform-
ing the source node about the unavailability of the information resource we can  
reduce the frequency of packet drops and can significantly reduce the searching over-
head due to mobility. 

Note that the idea behind choosing Location-Aided content searching comes as a 
result of the following observations: 

1. In a large mobile network all cluster heads are easily reachable using stable geo-
graphical cluster boundaries.   

2. The end-to-end delay during data transmission and probability of packet failures 
may decrease due   informing the source about the absence of the destination 
node in the early stage. 

3. In a large dense network, the use of large cluster structures can significantly re-
duce searching overhead, as much lesser number of search messages will be gen-
erated to reach those clusters. 

4.2   Algorithm for Location-Aided Content Searching 

Step I:   The Source node sends Search Message (SM) to 
its cluster head (CH); 

Step II:  If the SM is found in the local Cluster           
The CH sends the GPS of the discovered node to 
the source node   and route is established from 
source to destination;   
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         Else           

          The CH forwards the SM towards all predefined 
cluster boundaries using geographical packet 
forwarding technique;          

Step III:  A gateway node finding the SM                                    
Forwards the SM to the CH of that boundary;                

Step IV:   Each CH broadcasts the SM within d hops;   

          If   the result is found                                        
Forward the Resultant message together with 
the location of the cluster and the node ID 
(the node which contains the information) to 
the Source CH node using same forwarding 
technique;                       

Step V:    On receiving the search result together with 
its location the source CH forwards the mes-
sage to the original source node that can now 
continue further communication using geo-
graphical routing. 

5   Simulation Results 

In this section we evaluate the performance of our protocol in a simulated environ-
ment. A java simulation program was developed to simulate a variety of network 
conditions. To study the effects of mobility a moderate density network of 100 nodes 
was evaluated with varying node speeds. Several measures were considered when 
evaluating the search mechanism.  In this case we have only evaluated the on demand 
overhead traffic generated during the message searching. 
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Fig. 3. a) Searching overhead with varying node density. b) Searching overhead with varying 
Cluster size in d hops. 
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5.1   Effects of Network Density 

This section studies the effects of node density on the performance of Location-aided 
content searching as measured by the factors specified in the discussion. To simulate 
a low to high-density network we have placed 100 to 500 nodes on an area of 1000 by 
1000 meters. As seen in Figure 3a, in case of content searching by simple flooding the 
amount of search message in the network grows exponentially with the increase in the 
node density. This is because with the addition of nodes in the network a huge num-
ber of search messages were generated. On the other hand a lowering curve for loca-
tion aided searching shows that with the increase of network density the number of 
search messages produced in the network remains almost unaffected. As in this case 
the search messages are forwarded towards the cluster boundaries using the same 
geographic routing [1,3] and there is no scope of generation of redundant packets in 
the network. The above-mentioned figures clearly demonstrate the scalability of the 
mechanism.   

5.2   Effects of Cluster Size 

Here we have allowed our d (the input which determines the cluster size) to vary  
from 2 to 7 i.e. from 2 hops cluster size to large 7 hops clusters. We can find from  
figure 3b. that the searching overhead involved with flooding does not vary with the 
cluster size as simple broadcast protocol does not utilizes any  advantage of clustering 
in the network.  Here maximum overhead has been used for tracking the mobile 
nodes. But the overhead curve shown in figure [3b] for location aided content search-
ing has a general trend to get lowered. Because in this case with increase in d the 
larger clusters have formed in the network forcing the total number of clusters formed 
in the network to be less. Due to the above reason the number of search messages 
required to forward for the cluster boundaries have also become reduced which shows 
that with the use of large clusters for larger networks the searching over head can be 
significantly reduced using our mechanism. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 10 15 20

Velocity in meters/s

Content searching by flooding

Location -Aided content searchin

 

Fig. 4. Searching overhead incurred with varying node velocity 



580 P. Bhaumik and S. Bandyopadhyay 

5.3   Effects of Mobility 

To get the effects of mobility during the simulation runs we have considered mobile 
nodes whose speed varies from 5 m/sec to 20 m/sec. Fig. 4 shows that at high mobil-
ity, the overhead required to search content in the network is much lower than the 
broadcast based content searching. This is an expected behavior from the network as 
in this network the mobility of the nodes are managed timely using the cluster bound-
ary information.   

6   Conclusions  

The high level contribution of this paper is in proposing a location aided search tech-
nique in a mobility-managed framework. Discovering any resource in mobile ad hoc 
networks while minimizing the searching overhead and reducing network mainte-
nance cost is a challenge made harder because of node mobility. In this context we 
have developed a radically new mechanism to search information in mobile ad hoc 
networks using fixed geographical cluster boundaries. Proposed Location-Aided con-
tent searching mechanism aims to support geographical position based searching. It 
achieves its goal with the introduction of stable cluster structures and proposes low 
overhead methods for discovering resourceful nodes. A special scheme of mobility 
management and cluster maintenance solves the problem of constant location updat-
ing of the nodes.   We have presented simulation results, which show that with the use 
of large clusters for larger networks the searching overhead can be significantly  
reduced using our mechanism. 
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Abstract. The topology of a MANET is maintained enduring transmission 
failures by suitably selecting multiple coordinators among the nodes 
constituting the MANET. The basic philosophy behind the algorithm is to 
isolate four coordinators based on positional data. Once elected, they are 
entrusted with the responsibility to emit signals of different frequencies while 
the other nodes individually decide the logic they need to follow in order to 
maintain the topology, thereby eliminating the need for routing. The algorithm 
is going to be formulated in such a way, that the entire network is going to 
move in one direction while each node can move freely. As far as our 
knowledge goes, we are the first ones to conceive the concept of multiple 
coordinators. The simulation results prove the efficacy of the scheme in 
topology maintenance.  

1   Introduction 

Ad-hoc networks are an emerging domain in wireless communications for mobile 
hosts (nodes) where there is no fixed infrastructure such as base stations or mobile 
switching centers.[1,2] Mobile nodes that are within each other’s radio range 
communicate directly via wireless links, while those that are far apart rely on other 
nodes to relay messages as routers. Node mobility in an ad hoc network causes 
frequent changes of the network topology. Thus routing is necessary to find the path 
between source and destination and to forward the packets appropriately [3].Mobile 
ad-hoc networks are extensively used to retain connectivity of nodes in inhospitable 
terrains, disaster relief etc. where preconceived infrastructure is absent and sudden 
data acquisition is necessary [3-5]. 

Random node movement makes routing an essential requirement for MANET. Due 
to frequent node movement it may so happen that when the source node wants to 
transmit packets, the destination node may be out of range of the source node. 
Further, transmission losses occurring due to different natural phenomena may be 
another cause of frequent network disruption. Hence, the current focus of many 
researchers is to find out an efficient topology management algorithm, which ensures 
node connectivity without much delay and unnecessary overhead. 
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The two widely accepted approaches for topology management are centralized and 
distributed algorithms [5]. However in the centralized algorithms considered so far, 
there being only one coordinator, the workload on the coordinator is immense. 
Moreover as far as our knowledge goes, all of them assume multiple transmission 
ranges, which is not possible in many practical situations. The distributed approaches 
on the other hand suffer form the drawback that it is very difficult to maintain 
complete connectivity among the nodes. 

The paper is organized as follows: in the following section we formally state the 
topology management problem. Section three contains the primary assumptions. The 
next section is the coordinator election procedure. Section five deals with the 
movement algorithm. We finally conclude with simulation results and a comparative 
study with previous algorithms in section seven. 

2   Topology Management Problem  

Given a physical topology of a mobile ad-hoc network the problem is to control the 
movements of the individual nodes so as to maintain a stable neighborhood topology. 
In a system of n nodes (n0, n1….nn-1) constituting a MANET, two nodes ni and nj are 
said to be neighboring if and only if they can communicate without the need of 
routing. Now if we assume that the transmission range of each node be Rmax and Dij 
denotes the relative distance between the nodes then the network neighborhood 
topology will be maintained provided ∃ at least one j such that 

Dij≤Rmax ∀ i,j=0,1,2….n-1 

3   Primary Assumptions 

1. The network moves in only one direction, here the x-direction while the nodes can 
move in any direction they please.2. Initially all the nodes can communicate with one 
another.3. Each node knows its initial position through a GPS set. 

4   Coordinator Election Algorithm  

Among the set of all x-coordinates {x1, x2…, xi..., xn} and the set of all y-coordinates 
{y1, y2, …, yi, … ,yn} received by a node, the minimum and maximum x-coordinate 
and the minimum and maximum y-coordinate are selected, denoted by xmin, xmax, ymin, 
ymax respectively. Now let pmin and pmax respectively denote  

pmin = min {xmin,ymin}, pmax = max {xmax,ymax} (1) 

Let ‘4a’ denote the distance between (pmax,pmax) and (pmin,pmin). 

4a = √2 * (pmax – pmin) (2) 

Considering a square with coordinates P (pmax, pmax), Q (pmax, pmin), R (pmin, pmin), S 
(pmin, pmax), the diagonals PR and QS are divided into four equal parts as shown in 
Figure 1 and the points of division are obtained as D,O,B and A,O,C with 
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A= ((pmax+3pmin)/4, (3pmax+pmin)/4), B= ((pmax+3pmin)/4, (pmax+3pmin)/4) 
C= ((3pmax+pmin)/4, (pmax+3pmin)/4) D= ((3pmax+pmin)/4, (3pmax+pmin)/4) 

Now, following the initial coordinator movement procedure stated in section 4.1, 4 
nodes occupy positions A, B, C, D and declare themselves as coordinators C1, C2, C3 
and C4 respectively and emit messages in this regard. The coordinators now emit 
signals continuously of frequencies f1, f2 ,f3 and f4 respectively and of range 
Rmax=a=(pmax-pmin)/(2√2). Thus all nodes initially lie within the square PQRS as is 
evident from Figure1. 

 

Fig. 1. Election of Coordinator 

4.1   Initial Coordinator Movement Procedure 

At first each node calculates its distance from A, B, C and D and sends it to all the 
other (n-1) nodes in the network. A node now checks if its distance from A is less 
than the other (n-1) nodes. If the answer is positive then  it moves to the point A by 
moving along the x direction for a time Tx and then along the y direction for a time Ty 
with Tx = │xi – xA│/ Vimaxx  and Ty =│yi – yA │/ Vimaxy. Thus the total time required 
for the node to move to A is TA = Tx + Ty. However if the answer obtained is negative 
a similar procedure is repeated for points B, C and D.  

5   Movement Algorithm 

The nodes now forward their maximum velocities along the x-direction Vimaxx to the 
coordinators. Let Vx=min {Vimaxx}. The coordinators now decide to move with a 
velocity Vc < Vx and inform it to all other nodes. 

Since all the nodes are initially in the region PQRS as referred to Figure 1, it 
receives either of f1, f2, f3 or f4.  During movement only when it does not receive any 
frequency, it realizes it has moved just out of range. Since the algorithm is 
instantaneous the instant a node fails to receive f1, f2, f3 or f4, it is at the edge of the 
circles with C1, C2, C3 or C4 as centers. 

5.1   Failure of a Node to Receive f1 or f2 

As soon as a node fails to receive f1 or f2, it realizes that it has moved out through arcs 
12 or 23 as in Figure 2. It then decides to shoot to regain a stable position in the 
topology. 
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Fig. 2. Movement of nodes on failing to receive f1 or f2 

Since a node is provided with a GPS set it knows its position (xi,yi) at that instant. 
Let us consider that a node was receiving f1 or both f1 and f2 before it moved out of 
range. Since yc1 of coordinator C1 is fixed it calculates xc1 from the relation  

2
1

2
max1 )(|| ciic yyRxx −−=− . 

The node now decides its movement algorithm depending on its y-coordinate. 

If 2/|| max1 Ryy ci ≤−  then it is on the arc 1′ 2 as shown in Figure 3. It then 

shoots along the direction of movement with a velocity Vimaxx for a time tshoot= |xc1-
xi|/(Vimaxx-Vc ).  

 

Fig. 3. Movement of nodes on failing to receive f1 or f2 depending on y –coordinates 

However, if for a node 2/|| max1 Ryy ci >−  it lies on the arc 1′ 1 as depicted in 

figure 3. It then moves forward with a velocity V=Vcî-Vimaxyĵ for a time t1=(Rmax-
(Rmax/√2))/Vimaxy .After moving for t1, it shoots forward for a time tshoot1 with Vimaxx as 
stated earlier. The movement algorithm is similar if a node fails to receive f2. 

Lemma 1. The maximum value for tshoot for a particular node is Rmax/(Vimaxx-Vc). 

5.2   Failure of a Node to Receive f3 Or f4 

As soon as a node fails to receive f3 or f4, it realizes that it has moved out through arcs 
14 or 43 as in Figure 3. It then decides to stop to regain a stable position in the 
topology. Let us consider that a node was receiving f3 or both f3 and f4 before it 
moved out of range. Since yc3 of coordinator C3 is fixed it calculates xc3 from the 
relation  

2
3

2
max3 )(|| ciic yyRxx −−=− . 
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If 2/|| max3 Ryy ci ≤−  it stops for a time tstop=|xc3-xi|/Vc. If however 

2/|| max3 Ryy ci >− it initially moves with a velocity V=Vcî-Vimaxyĵ for a time t1 

as calculated in section 5.1 and then it stops for a time tstop. The movement procedure 
is identical if a node fails to receive f4.  

Lemma 2. The maximum value of tstop for all nodes is Rmax/Vc. 

5.3   Transmission Losses 

The movement algorithm ensures that even if there is a loss of a single frequency for 
an extended time period none of the nodes diverge out. 

Suppose that a node, which was previously receiving f1 or f2 suddenly fails to 
receive any frequency. Following the movement algorithm stated in section 5.1 it 

checks for its y-coordinate. If 2/|| maxRyy cji ≤− where j=1 or 2 depending on f1 

or f2, this node is in the shaded region 1 as shown in the Figure 4. The node now 
shoots in the positive x-direction for a time tshoot. The maximum shooting period is 
Rmax/(Vimaxx-Vc) vide Lemma 1. Thus the maximum distance that the node covers 
relative to the coordinators during this period is Rmax. Hence even if the node initially 
was in the unstable positions X or Y as shown in Figure 4 or at any other position at 
the rim of the circles with centers C1 or C2, at the end of shooting it is either going to 
receive f3 or f4. Thus even after tshoot if a node does not receive any frequency it 
realizes transmission loss and moves with a velocity Vc in the positive x-direction 

until it receives a frequency again. Again if 2/|| maxRyy cji >− where j=1 or 2 

then the node is in the shaded region 1′ as shown in figure. If it suddenly fails to 
receive any frequency then it moves with a velocity V = Vcî-Vimaxyĵ or V=Vcî + Vimaxyĵ 
for a time t1 according as whether it received f1 or f2 previously vide section 5.1. This 
brings it back within the square PQRS. Now it shoots forward in the positive x-
direction for a time tshoot whence by previous arguments we conclude that after a time 
t1+tshoot the node must receive a frequency. If it does not, it realizes transmission loss 
and moves with velocity Vc until it receives a frequency again. 

 

Fig. 4. Transmission Loss of f1 or f2: Region Division 

A similar argument can be put forth for nodes which previously received f3 or f4. In 
this case the nodes converge after a period a period t1+tstop. 
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6   Simulation Results 

Extensive simulations in several synthetically designed situations establish that none 
of the nodes ever diverge out from the topology. A sample illustration is provided in 
Figure 5.  

 

Fig. 5. Distance of a node from the coordinators at various times. Initial position of node  
(-7,17). Vimaxx=11 units. Vimaxy=10 units. Coordinator positions (-8,8), (-8,-8), (8,-8) and (8,8). 
Rmax = 11.5 units. Vc = 5 units. 

7   Conclusion 

As proposed earlier, we have been able to develop a novel algorithm in which the 
nodes of the network always maintain the topology. In addition as compared to single 
coordinator systems proposed in [3-5] multidirectional node movement becomes 
feasible. Moreover, the system never becomes static as a whole and hence no time is 
wasted in maintaining the network topology thereby ensuring greater efficiency. 
Apart from this no node ever diverges out of communication range. Elongated 
transmission time loss periods can also be endured. Number of messages transmitted 
and received being reduced the workload on the coordinator is decreased. Apart from 
these advantages the requirement of three communication ranges is also eliminated.  
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